Homework 2 Math 530 Due September 21, 2015

1. Suppose that f is an entire function such that for some positive constant M and and a positive integer n , f satisfies

$$
|f(z)| \leq M\left(1+|z|^{n}\right) \text { for all } z \in \mathbf{C}
$$

Show that f is a polynomial.
2. Show that the function f defined by

$$
f(x)= \begin{cases}e^{-1 / x^{2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

cannot be expressed as a power series in powers of z .
3. Compute the integral $\int_{|z|=1} e^{z} z^{-n}$ for all integers n .
4. Show that the successive derivatives of an analytic function at a point can never satisfy $\left|f^{(n)}(z)\right|>n!\left(n^{n}\right)$.
5. Let γ_{1} denote the directed segment from 1 to $2+2 i$, and let γ_{2} be the semicircular path from $2+2 i$ to $2 i$ that lies in the upper half circle of radius 1 about $1+2 i$. Compute $\int_{\gamma_{1}+\gamma_{2}} \frac{1}{z} d z$
6. Compute

$$
\int_{|z|=2} \frac{d z}{z^{2}-1}
$$

