Math 530

Homework 1

- **1.** a) Prove that $\left|\frac{z-w}{1-z\bar{w}}\right| = 1$ if either |z| = 1 or |w| = 1. What exception must be made if |z| = |w| = 1?
 - b) Prove that $\left|\frac{z-w}{1-z\bar{w}}\right| < 1$ if |z| < 1 and |w| < 1.
 - **2.** Prove that $|z + w|^2 + |z w|^2 = 2(|z|^2 + |w|^2)$. What does this equality mean geometrically?
 - **3.** Suppose that f is an analytic function on an open set Ω_1 which maps into an open set Ω_2 on which g is defined and analytic. Prove that h(z) = g(f(z)) is analytic on Ω_1 and that h'(z) = g'(f(z))f'(z). (This is the complex CHAIN RULE.)
 - 4. Show that a sequence of complex numbers $\{a_n\}$ converges to b if and only if Re $a_n \to \text{Re } b$ and Im $a_n \to \text{Im } b$. Also, show that $\{a_n\}$ is a Cauchy sequence if and only if Re a_n and Im a_n are Cauchy. Hence, the completeness of the complex number system follows from the completeness of the reals.
 - 5. Prove that an absolutely convergent series of complex numbers is convergent.
 - 6. Show that the radius of convergence of a power series $\sum_{n=0}^{\infty} a_n z^n$ is given by the supremum of the set of real numbers $r \ge 0$ with the property that there exists a bound M such that $|a_n|r^n \le M$ for all n. (Note: M may depend on r.)