Math 530

Homework 4

1. For what values of z is the series $\sum_{n=0}^{\infty}\left(\frac{z}{1+z}\right)^{n}$ convergent? Same question for $\sum_{n=0}^{\infty} \frac{z^{n}}{1+z^{2 n}}$.
2. If f is analytic on the unit disc and $|f(z)| \leq 1 /(1-|z|)$, find the best estimate of $\left|f^{(n)}(0)\right|$ that the Cauchy Estimates will yield.
3. Show that the successive derivatives of an analytic function at a point a can never satisfy $\left|f^{(n)}(a)\right|>n!n^{n}$. Formulate a sharper theorem of the same kind.
4. Prove that

$$
\cos (\theta+\psi)=\cos \theta \cos \psi-\sin \theta \sin \psi
$$

without mentioning trigonometry or angles.
5. Suppose that f is analytic on a disk $D_{\epsilon}(0)$ and satisfies the differential equation $f^{\prime \prime}=f$. Prove that f is given by $A \cosh z+B \sinh z$, where A and B are constants.
6. If $f(z)=\sum a_{n} z^{n}$, what is $\sum n^{3} a_{n} z^{n}$?
7. Prove that an entire function f such that $\operatorname{Re} f(z)>0$ for all z must be constant.
8. Prove that there is no analytic function f on the unit disk such that $f(1 / n)=2^{-n}$ for $n=2,3,4, \ldots$
9. Give a proof of the Fundamental Theorem of Algebra based on the Maximum Principle.
10. Show that $\int_{0}^{\infty} \sin \left(x^{2}\right) d x=\int_{0}^{\infty} \cos \left(x^{2}\right) d x=\frac{\sqrt{2 \pi}}{4}$ by integrating $e^{-z^{2}}$ around the counterclockwise boundary of $\left\{z=r e^{i \theta}: 0<r<R, 0<\theta<\pi / 4\right\}$ and letting $R \rightarrow \infty$.

