Math 530

Homework 5

1. Prove that there is no analytic function f on the unit disk such that $f(1 / n)=$ $(-1)^{n} / n$ for $n=2,3,4, \ldots$
2. If $f(z)$ is analytic on a domain Ω, show that $\overline{f(\bar{z})}$ is analytic on $\{z: \bar{z} \in \Omega\}$.
3. Suppose that Ω is a domain in \mathbb{C} that is symmetric with respect to the real axis. If $f(z)$ is an analytic function on Ω that is real-valued on a non-empty open interval of the real line contained in $\Omega \cap \mathbb{R}$, prove that $f(\bar{z})=\overline{f(z)}$ for all z in Ω.
4. Suppose that F is a one-to-one analytic mapping of a domain Ω onto the unit disc such that $F(a)=0$. Prove that if g is any analytic function on Ω which maps Ω into the unit disc such that $g(a)=0$, then $\left|g^{\prime}(a)\right| \leq\left|F^{\prime}(a)\right|$. If $\left|g^{\prime}(a)\right|=\left|F^{\prime}(a)\right|$, does it follow that $g \equiv F$?
5. Suppose that F is a one-to-one analytic mapping of the unit disc onto a domain Ω. Show that if g is any other analytic map of the unit disc into Ω such that $g(0)=F(0)$, then $g\left(D_{r}(0)\right) \subset F\left(D_{r}(0)\right)$ for all $0<r<1$.
6. Suppose that F is a one-to-one analytic mapping of the unit disc onto a square with center at the origin. Prove that, if $F(0)=0$, then $F(i z)=i F(z)$ for all z.
7. Suppose that f is an analytic function on a domain Ω such that for each point $a \in \Omega$, there is some coefficient c_{N} which is zero in the power series expansion $f(z)=\sum_{k=0}^{\infty} c_{k}(z-a)^{k}$ at a. Prove that f must be a polynomial. (Note that N may depend on a.) Hint: Let \mathcal{O}_{n} denote the set consisting of points $z \in \Omega$ such that $f^{(n)}(z)=0$. Notice that $\Omega=\cup_{n=0}^{\infty} \mathcal{O}_{n}$.
