## Math 530

Homework 6

1. Use the zero counting formula

$$
N=\frac{1}{2 \pi i} \int_{C_{r}} \frac{f^{\prime}(z)}{f(z)} d z
$$

to give yet another proof of the Fundamental Theorem of Algebra. (This proof will show that a polynomial of degree $N$ has $N$ roots, counted with multiplicity.)
2. Prove that an isolated singularity of $f(z)$ is removable as soon as either $\operatorname{Re} f(z)$ or $\operatorname{Im} f(z)$ is bounded above or below near the singularity.
3. Suppose that $f_{n}$ is a sequence of analytic functions on a domain $\Omega$ containing $\{z:|z| \leq 1\}$ and suppose that $f_{n}$ is uniformly Cauchy on the set $\{z:|z|=1\}$. Show that $f_{n}$ converges uniformly on $\{z:|z|<1\}$ to a function $f$ which is analytic there.
4. Show that an isolated singularity of $f(z)$ cannot be a pole of $\exp f(z)$.
5. Prove that if $h$ is an analytic branch of $f^{1 / n}$, then $h^{\prime} / h=f^{\prime} /(n f)$.
6. Derive the formula

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos ^{2 n} \theta d \theta=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots(2 n)}
$$

by integrating

$$
\frac{1}{z}\left(z+\frac{1}{z}\right)^{2 n}
$$

around the unit circle.

