Math 530

Homework 7

- 1. Find a one-to-one conformal mapping of the region common to the two disks $|z-1| < \sqrt{2}$ and $|z+1| < \sqrt{2}$ onto the unit disk.
- **2.** Find a one-to-one conformal mapping of the region $\{z : 0 < \text{Re } z < 1\}$ onto the unit disk.
- **3.** Let Ω denote the open set obtained by removing from \mathbb{C} the interval [-1, 1]. Prove that there is an analytic function F(z) on Ω such that $F(z)^2 = \frac{z+1}{z-1}$. *Hint:* What is the image of Ω under the map (z+1)/(z-1)?
- 4. Show that the Laurent expansion of $(e^z 1)^{-1}$ at the origin is of the form $\frac{1}{z} \frac{1}{2} + \sum_{k=1}^{\infty} (-1)^{k-1} \frac{B_k}{(2k)!} z^{2k-1}$. The numbers B_k are known as the Bernoulli numbers. Calculate B_1 and B_2 .
- 5. Prove that a Laurent series can be differentiated term by term. When can a Laurent series be anti-differentiated term by term?
- 6. Assume that f(z) is analytic and satisfies the inequality |f(z)-1| < 1 in a domain Ω . Prove that

$$\int_{\gamma} \frac{f'(z)}{f(z)} \, dz = 0$$

for every closed curve in Ω .

- 7. Suppose that f_n is a sequence of analytic functions on a domain Ω which converges uniformly on compact subsets of Ω to a non-constant function f. Suppose that f has a zero of order m at a point a in Ω . Prove that there is an $\epsilon > 0$ and a positive integer N such that each function $f_n(z)$ with n > N has exactly m zeroes (counted with multiplicity) on $D_{\epsilon}(a) \subset \Omega$.
- 8. Suppose that f_n is a sequence of analytic functions on a domain Ω which converges uniformly on compact subsets of Ω to a function f. Suppose that $\widetilde{\Omega}$ is a domain containing $f_n(\Omega)$ for each n. Prove that, if f is not constant, then $\widetilde{\Omega}$ contains $f(\Omega)$ too.
- 9. Compute

a)
$$\int_0^\infty \frac{x^{1/3}}{1+x^2} dx$$
, b) $\int_0^\infty \frac{1}{1+x^5} dx$,
c) $\int_{-\infty}^\infty \frac{x^2}{(x^2+a^2)^3} dx$, *a* real, d) $\int_{-\infty}^\infty \left(\frac{\sin x}{x}\right)^2 dx$.