Homework 3 for Math 530

1. Show the function

$$
f(z)=\sum_{n=1}^{\infty} \frac{z^{2}}{n^{2} z^{2}+8}
$$

is defined and continuous for all real values of z. Determine the region of the complex plane in which this function is analytic.
2. Let $f(z)=\frac{1}{(z-1)(z-2)}$. Find the Laurent series of $f(z)$ when (a) $1<|z|<2$ and when (b) $|z|>2$.
3. Evaluate

$$
\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x
$$

(Hint: Consider the integral of $\frac{1-e^{2 i x}}{x^{2}}$.)
4. Evaluate $\int_{0}^{2 \pi} \frac{1}{2+\sin \theta}$.
5. Suppose that f is a holomorphic function on the unit disc D such that $|f(z)-i|<1$ for all $z \in D$. Show that $\int_{\gamma} f(z) d z=0$ for every closed path in D.
6. Let $P(z)=z^{8}-5 z^{3}+z-2$. How many zeros of P are in the annulus $1<|z|<2$.
7. Find the first three terms of the Laurent series expansion of the function

$$
f(z)=\frac{e^{z}}{(z-1)^{2}(z+1)}
$$

that converges in $0<|z|<1$.
8. Find the residue of the function $\frac{z^{2}}{\left(1+z^{2}\right)^{3}}$ at the points i and $-i$.
9. If f is analytic in the annulus $1 \leq|z| \leq 2$ and $|f(z)| \leq 3$ on $|z|=1$ and $|f(z)| \leq 12$ on $|z|=2$, then prove that $|f(z)| \leq$ $3|z|^{2}$ for $1 \leq|z| \leq 2$
(Hint: Consider $\bar{f}(z) / 3 z^{2}$)

