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Abstract. Studied here is the Boussinesq system

ηt+ux+(ηu)x+auxxx−bηxxt=0,

ut+ηx+
1

2
(u2)x+cηxxx−duxxt=0,

of partial differential equations. This system has been used in theory and practice as a
model for small-amplitude, long-crested water waves. The issue addressed is whether
or not the initial-value problem for this system of equations is globally well posed.
The investigation proceeds by way of numerical simulations using a computer code
based on a a semi-implicit, pseudo-spectral code. It turns out that larger amplitudes
or velocities do seem to lead to singularity formation in finite time, indicating that the
problem is not globally well posed.
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1 Introduction

A class of multi-dimensional Boussinesq systems of the form

ηt+∇·v+∇·ηv+a∆∇·v−b∆ηt =0,

vt+∇η+
1

2
∇|v|2+c∆∇η−d∆vt=0,

(1.1)
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was put forward in [6] as models for the propagation of small amplitude, long wave-
length surface water waves. Here, η = η(x,y,t) describes the height of the free sur-
face, relative to its rest position, above the point (x,y,0) on the bottom and the vector
v=v(x,y,θ,t) has components (u,w) representing the horizontal velocity field at height θ
above the same point. The gradient, divergence and Laplacian are all taken with respect
to the horizontal spatial variables (x,y). The overlying assumptions leading to such mod-
els are that the ratio α of the waveheight to the undisturbed depth be small, the ratio β
of the undisturbed depth to a typical wavelength be small, but that the quotient α/β2

be of order one. As written in (1.1), the horizontal coordinates x and y are measured in
wavelengths whereas the vertical coordinate z is measured in depths. A consequence of
the latter fact is that θ∈ [0,1]. The constants a,b,c,d have the form

a=

(

θ2

2
− 1

6

)

λ, b=

(

θ2

2
− 1

6

)

(1−λ), c=
1−θ2

2
ν, d=

1−θ2

2
(1−ν), (1.2)

where λ and ν are modeling parameters which may take any real value without disturb-
ing the formal level of approximation inherent in such models. Details of the derivation
and scaling being used may be found in [6, 7, 12].

The system (1.1) of three, coupled, nonlinear evolution equations allows for propaga-
tion in all directions. The long-crested regime is where most of the motion takes place in
the x–direction, say, with little or no variation in the y–direction. In this case, the model
simplifies. The second component w of the horizontal velocity v is zero, derivatives with
respect to y vanish and the third equation is satisfied identically. The system then reduces
to

ηt+ux+(ηu)x+auxxx−bηxxt =0,

ut+ηx+
1

2
(u2)x+cηxxx−duxxt=0,

(1.3)

where a,b,c and d are as above and subscripts connote partial differentiation.

Mathematical theory for various of both the one– and two–dimensional versions of
this class of Boussinesq systems appears in [1,3,5–7,12,21–25], for example. In particular,
combining the results in [12], the existence theory for the model equations mentioned
above and similar results for the full water-wave problem in [2], one sees that these sys-
tems are indeed approximations of the full, inviscid, water wave problem with rigorous
error estimates that validate the formal asymptotics that go into their derivation.

The results in the papers about the Boussinesq models reveal that some of the abcd-
systems are well posed, at least locally in time. These are the candidates for use in
practical situations. However, for almost all of these systems, there is little information
available as to whether or not they are globally well posed, even for small data. (The
exceptions are what is termed the original Boussinesq system, see [25] and [3], which is
globally well posed for arbitrary-sized, localized, smooth initial data and the Bona-Smith
system [10] which is globally well posed for order-one initial data.
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In this paper, we will concentrate on one special member of the one-dimensional sys-
tem (1.3), namely

ηt+ux+(uη)x−
1

6
ηxxt=0,

ut+ηx+uux−
1

6
uxxt=0,

(1.4)

which obtains by taking θ2 = 2/3 and λ = ν = 0. This particular member of the class
(1.3) has been used in a number of contexts (see e.g. [5], [13] ) and it has many helpful
mathematical properties, viz.

• The linearized system is globally well posed in Lp and in Wk
p for 1 ≤ p ≤ ∞ and

k=0,1,2,··· .

• Global well-posedness in time for the nonlinear problem is proved in [1] under the
condition that there is an α>0 such that the solution satisfies

1+η(x,t)≥α forall t≥0. (1.5)

Note that this is an imperfect result because it is based on an assumption about the
solution η which is not known to be verified from conditions on the initial data.
In physical terms, the condition (1.5) simply means that the bed does not run dry
at any time, or what is the same, the free surface never touches the impermeable
bottom.

• It has the invariant functionals

H(η,u)=
1

2

∫

∞

−∞

u2(1+η)+η2dx,

I(η,u)=
∫

∞

−∞

uη+
1

6
ηxuxdx,

Iu =
∫

∞

−∞

udx and Iη =
∫

∞

−∞

ηdx.

Moreover, there is a Hamiltonian structure based on H and I, namely

∂t∇(η,u) I(η,u)+∂x∇(η,u)H(η,u) = 0,

where ∇(η,u) is the Euler derivative. As pointed out in [7], none of these invariant
functionals are composed only of positive terms, so they do not on their own pro-
vide the a priori information one needs to conclude global existence of solutions of
initial-value problems. However, they are useful is helping assess the accuracy of a
numerical scheme for approximating solutions of the system.
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• The system has solitary-wave solutions (single hump, traveling-wave solutions)
[20], cnoidal-wave solutions [15], standing waves [17], doubly periodic solutions
[18, 19] and multi-pulsed solutions [16].

• High accuracy, unconditonally stable numerical schemes for the system (1.4) are
straightforward to construct. Numerical investigation of the stability and interac-
tion of various special solutions may be found in [5].

• The system has the exact solution

u±(x,t)=± 15

2
sech2

(

3√
10

(x∓ 5

2
t)

)

,

η±(x,t)=
15

2
sech2

(

3√
10

(x∓ 5

2
t)

)

− 45

4
sech4

(

3√
10

(x∓ 5

2
t)

)

,

(1.6)

which are also helpful for checking the accuracy of numerical schemes.

• The system (1.4) can be posed on the half-line or on a bounded interval with a mini-
mum of auxiliary boundary conditions. This is especially helpful when attempting
to use the model in a laboratory or field setting, as in [9]. The pure initial-value
problem is seldom of practical applicability.

Despite these very satisfactory results, the fundamental issue of determining condi-
tions on the initial data that ensure the solution exists for all time still remains. The
present contribution aims to cast light on this issue. The investigation is carried out
computationally, using an accurate computer code in an exploratory mode. It will tran-
spire that there are initial data that appear to blow up in finite time and others that sup-
port globally defined solutions. The simulations provide clues as to what conditions are
needed to ensure global solutions exist. These are discussed in Sections 3 and 4, which
are preceded by a short section providing accuracy checks for the numerical scheme.

2 Accuracy and convergence of the numerical scheme

The scheme used to simulate the system (1.3) is a semi-implicit, Fourier-pseudo-spectral
method. Solutions on the entire real line R are approximated by finite Fourier series,
which works well provided they remain suitably localized (see [4] and [14] for theory
concerning this type of approximation). More precisely, first invert the operator I− 1

6 ∂2
x

subject to periodic boundary conditions to obtain the system

Vt= L(V)+N(V)

where V=(η,u), L is the linear part of the equation and N is the nonlinear operator. The
operator L is computed spectrally while the nonlinear part of N is computed in the orig-
inal variables and the non-local operator (I− 1

6 ∂2
x)

−1 is computed on the result spectrally.
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Table 1: Error of L∞ and L2 norm of η and u, with respect to ∆t.

∆t 6.4e-03 3.2e-03 1.6e-03 8.0e-04 4.0e-04 2.0e-04 1.0e-04

‖η‖∞ error 7.6e-04 2.7e-06 5.8e-05 1.5e-05 3.6e-06 9.0e-07 2.3e-07

‖u‖∞ error 1.1e-03 1.9e-04 7.5e-05 1.9e-05 4.7e-06 1.2e-06 3.0e-07

‖η‖2 error 4.4e-05 1.1e-05 2.8e-06 7.1e-07 1.8e-07 4.5e-08 1.1e-08

‖u‖2 error 1.2e-04 3.0e-05 7.5e-06 1.9e-06 4.7e-07 1.2e-07 3.0e-08

The time stepping is implemented semi-implicitly via the scheme

un+1−un−1

2∆t
=

L(un+1)+L(un−1)

2
+N(un)

where uk = uk(x) is the Fourier series approximation of the vector V(x,t) at the time
t= k∆t,k=0,1,2,··· . This scheme should be second order in time and have spectral con-
vergence in space, facts that can be rigorously proved, but we pass over this point here.
It was observed that the scheme is stable, again a point that can be proved rigorously, but
is not considered in detail here.

The numerical method was checked for correct coding using the exact traveling-wave
solutions displayed in (1). The spatial discretization error was ascertained by using a step
size that is so small that the temporal discretization does not contribute to the error much
beyond about machine accuracy. We started the computation with initial data as in (1)
specified on the spatial interval [−10,10] and applied periodic boundary conditions at the
ends of the spatial interval. We compared the exact solution with the calculated solution
at T=1. With ∆t=0.0001, the error associated with the approximation of (η,u), in the L∞

norm, is (2.3×10−7,3.0×10−7) as soon as ∆x is smaller than about 0.1, which is to say,
the number of modes taken in the spectral approximation is more than about 200. The
convergence was seen to be spectral in nature, as expected.

Similar calculations are performed to investigate the time discretization error. For ∆x
fixed at 0.02, i.e. 1000 modes, the error in the L∞ norm and L2 norm of (η,u) with respect
to ∆t are shown in Table 1. Note that the numerical study of the temporal error indicates
clearly that the algorithm is indeed second order in time.

3 Interaction of exact traveling waves

Once one is sure of the code, it is an interesting first foray to ask what happens if two of
these exact traveling-wave solutions are allowed to interact. To this end, take for initial
data a sum

(

η+(x−x+,0),u+(x−x+,0)
)

+
(

η−(x−x−,0),u−(x−x−,0)
)

(3.1)

of a widely separated right-moving and left-moving wave. The spatial domain was cho-
sen to be [-14, 14] and x± =±7. Notice that this special initial data has η(x,0) an even
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function of x whereas u(x,0) is an odd function. For such smooth, localized initial data,
the local well-posedness theory insures that there are solutions defined on some positive
time interval that lie in Hk(R) for any k=1,2,··· .

Remark first that if the L∞–norm of either η or u remains bounded on a time interval
[0,T], then the other does as well. For consider the elementary energy identity

d

dt

∫

∞

−∞

(

u2+η2+
1

6
u2

x+
1

6
η2

x

)

dx=2
∫

∞

−∞

ηxuηdx

obtained by multiplying the first equation by η, the second by u, summing the two re-
sults and then integrating over R and integrating by parts. If either η or u is uniformly
bounded on R×[0,T], then a Gronwall-type argument applied to this identity reveals
immiediatly that the H1(R)–norm of both η and u are bounded on the same interval.
(Indeed, it suffices for one of η and u to be bounded in L2(R)–norm on [0,T] to draw this
conclusion.)

Second, observe that the system (1.4) is invariant under the transformation u→−u
and x→−x. Thus if (η(x,t),u(x,t)) is a solution, so is (η(−x,t),−u(−x,t)). As the ini-
tial data posited above has η(x,0) even and u(x,0) odd, it itself is invariant under this
transformation. The uniqueness of solutions to the initial-value problem thus implies
that η(x,t) will be an even function and u(x,t) an odd function of x as long as they exist.
Hence, if there is to be a single-point blow-up of the solution emanating from (3.1), it
must occur at x= 0. Indeed, this is exactly what appears to happen. The interaction of
these two traveling waves apparently leads to the L∞–norm of both η and u becoming
infinite at x = 0 at a fixed, finite time. Here is a sketch of the evidence in favor of this
conclusion.

Solution Plots The evolution of the solution is plotted in Fig. 1 for t=0 (the initial data)
and t=1.5,3.25 and t=4.75. The value η(0,t) approaches −∞ as t approaches t0 and the
velocity variable u(x,t) appears also to be blowing up, becoming unboundedly positive
on the set {(x,t) :−ν< x<0,t< t0} and unboundedly negative on the set {(x,t) : 0< x<
ν,t< t0} for any ν>0.

The computation is terminated when the absolute value of η at any spatial point ex-
ceeds 1010.

Local Similarity Structure Blow up for nonlinear, dispersive wave equations often
shows a similarity structure, at least near the blow-up point. An early appreciation of
this point may be found in the work of Weinstein [26] on the generalized KdV equa-
tion. See also [8] for analysis and graphics depicting local similarity structure for these
equations.

The possibility of (local) similarity blow-up was tested in our case by monitoring the
blow-up rates of various norms of the blowing up solution. In more detail, if a function
f (x,t) is in the form

f (x,t)=
1

tr∞

F
( x

tq

)

(3.2)
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Figure 1: The head-on collision of exact traveling-wave solutions of the BBM-BBM system.

where F is a function in Lp for 1≤ p≤∞, then it has

‖ f‖L∞
=O(t−r∞)

and

‖ f‖Lp =
1

tr∞

tq/p

(

∫

Fp
( x

tq

) 1

tq
dx

)1/p

=O(tq/p−r∞)=O(t−rp).

Thus, the quantity

rp= r∞− q

p

is the blow-up rate for the Lp–norm when it is positive, which will certainly be true if

r∞ > 0 and p is large enough. In particular, r2 = r∞− 1
2 q. Thus, a knowledge of r∞ and

r2 allows determination of the value of q and thereby, in principle, the blow-up rate in
Lp–norm for any other value of p from the formulas

q=2(r∞−r2), rp= r∞− 2(r∞−r2)

p
. (3.3)

The conjecture (3.2) is now examined in the light of (3.3). The computation is carried
out with 28000 Fourier modes and a time step ∆t= 1

10000 . The value of t0 is approximated
as the time when ‖η‖L∞

reaches 1010. In this case, it has the value t0 = 5.1725. The log-
log plot of ‖η‖L∞

,‖η‖L2
,‖u‖L∞

,‖u‖L2
with respect to t0−t is shown in Fig. 2 for the time

interval 4.5< t < 5.1. Notice that the solution seems to be well settled into a similarity
structure in this time range. Using a least square approximation, the blowup rate for the
Lp–norms for p=1,2,··· ,10 are computed and plotted in Fig. 3. Using the data obtained
for the L∞ and L2–norms of η and u, which are 2.49 and 2.21 for η and 1.21 and 0.95 for
u, respectively, the values of rp are calculated using (3.3) and plotted in Figure 3. The Lp–
norms of η are very well predicted by (3.3), but the Lp–norms of u show some discrepancy
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Figure 2: Plot of the log of various Lp-norms with respect to log(t0−t) for 4.5< t<5.1.

for lower values of p. The L1–norms are not as well matched as the Lp–norms for p>2,
probably because Iη =

∫

R
ηdx is constant in time, as is Iu =

∫

R
udx. From these data, one

is tempted to conjecture that near the blow-up point (x,t) = (0,t0), the solution has the
similarity structure

η(x,t)=
1

(t−t0)2.5
N

(

x

(t−t0)0.5

)

, u(x,t)=
1

(t−t0)1.25
U

(

x

(t−t0)0.5

)

as x→0 and t→ t0, for suitable shape functions N and U. Fig. 4 plots the solution at two
times close to the blow-up point.
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Figure 3: Comparison between predicted rates of blowup using the similarity hypothesis with numerically com-
puted rates.

It deserves remark that if the blow up has a similarlty structure, this is probably only
local around the blow-up point (0,t0). Deviation from pure similarity blow up can be
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discerned by computing the function

−maxx η(x,t)

minx η(x,t)
.

If a pure similarity was to obtain globally, this should approach a constant as t → t−).
Graph 5 shows it to be a linear function of t for t near t0, thereby indicating that the
hypothesis (3) does not hold globally over the entire interval. Note also that the rates
posited in (3) could easily be off by logarithms, as these might be invisible at the numer-
ical level.
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Figure 4: Closer look near the blow up point and the maximum.

4 Initial profiles constructed from Gaussians and their

derivatives

The tentative conclusion derived from the information in the last section is that there are
solutions emanating from certain initial data that blow up in finite time. On the other
hand, the exact traveling-wave solutions displayed in (1) are obviously globally defined.
In this section, we delve a little more deeply into this dichotomy, with particular attention
given to the transition from globally defined to blowing up solutions.

In the simulations reported below, we will be using N=200×L Fourier components,
where L is the width of spatial interval, and ∆t will be set to 1/2000 unless otherwise
noted. The choice 200∗∆t = 1

10 insures that when blowup occurs, an accurate approxi-
mation of the blowup time t0 is forthcoming. The L is always chosen large enough that
no significant energy reaches and wraps around the boundary. Outcomes of the simula-
tions were checked by halving the temporal mesh size, doubling the number of Fourier
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components and increasing the width of the interval. The solution curves were virtually
indistinguishable in all cases.

A solution was declared to be ‘global’ if it failed to blow up (i.e. η stays below 1010

in absolute value) on the time interval [0,Tend] where Tend was here taken to be 40. This
criterion was tested with longer runs and found to be satisfactory for the sort of initial
data described below. Indeed, we observed that blow-up of solutions corresponding to
these initial data, if it is to occur, will typically happen very rapidly. (Though, obviously,
the interaction of traveling waves that was the subject of Section 3 could be postponed as
long as one likes by simply increasing the separation in the right- and left-going wave at
time t=0.)

We began the investigation with Gaussian profiles of various amplitudes for both η
and u. As already noted, the Boussinesq system (1.4) is invariant under the transforma-
tion u→−u and x→−x. Hence the sign of u plays no role in whether or not the solution
is global. Thus, if η0 is symmetric in x, as Gaussians are, and if (η0,u0) is initial data
leading to a globally defined solution, then (η0,−u0) does also. However, for η, positive
and negative values can be distinguished, as will be seen presently. The first tests were

performed with both η(x,0) and u(x,0) having Gaussian profiles of the form η0e−x2
and

u0e−x2
, respectively. Solutions in this case seem to be globally defined for waves of ele-

vation, where we allowed amplitudes η0 and u0 in the entire range (0, 5), but mixed for
waves of depression.

Guided by the situation obtaining in Section 3, where the initial velocity was of both
signs, we tested initial data of the form

η(x,0)= ae−x2
, u(x,0)=bxe−x2

(4.1)

with varying values of a and b. Notice in this case that ‖η(x,0)‖L∞
= |a| and ‖u(x,0)‖L∞

=
|b|√

2
≈ 0.707|b|. Fig. 5 gives an indication of what happens to the solution when a range

of values of a and b are chosen. Provisional conclusions deriving from this set of experi-
ments are as follows:

• The size of the wave, ‖η(·,0)‖L∞
, alone is not an indicator of blow up. For example,

with a=−2,b=0, the solution blows up, but with a=−2,b=4, the solution remains
bounded.

• The set of values (a,b) which generate global solutions appears to be a connected
set in the plane. This is indicated in the ‘blow-up map’ in Fig. 5. The x’s connote
values of (a,b) where the solution blows up and the circles are values where the
solution appears global.

• Waves of depression (initial data featuring negative values of η) are more likely to
blow up.

• Values of a >−1 correspond to physical situations where the bottom has no dry
spots initially. That is to say the total initial height h(x,0)=1+η(x,0) of the wave is
positive. In this case, provided that b is small, it seems that a global solution exists.
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Figure 5: Blowup map for values of the parameters a and b.

−80 −60 −40 −20 0 20 40 60 80
−2

0

2

4

η(x,t) for t=0,15,31.25

−80 −60 −40 −20 0 20 40 60 80
−2

0

2

4

−80 −60 −40 −20 0 20 40 60 80
−2

0

2

4

−80 −60 −40 −20 0 20 40 60 80
−2

−1

0

1

2
u(x,t) for t=0,15,31.25

−80 −60 −40 −20 0 20 40 60 80
−2

−1

0

1

2

−80 −60 −40 −20 0 20 40 60 80
−2

−1

0

1

2

Figure 6: a=5,b=5. The initial wave of elevation resolves into a pair of solitary waves propagating in different
directions, each trailing a dispersive tail.

• The collision of left- and right-moving waves can cause large variations in u near
the collision point and this in turn can lead to blow up.

Several representative cases are now described in detail. The first one has data of
the form shown in (4.1) with a = b = 5, a wave of elevation. As the initial horizontal
velocity u(x,0) is negative for x < 0 and positive for x > 0, one expects the solution to
break into right- and left-propagating waves. This is indeed the case and after while,
these two wavetrains cease to interact. They are led by a solitary wave and followed by
a dispersive tail. Snapshots of the solution at three time are plotted in Fig. 6; the solution
seems to exist globally in time. A further argument in favor of this conclusion can be
made based on the comparison results between the system (1.4) and the unidirectional
BBM model

ηt+ηx+
3

2
ηηx−

1

6
ηxxt = 0
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Figure 7: a=−0.5,b=5, starting from a wave of depression, a solitary waves develop propagating at the front
in each direction, trailing complex dispersive tails.
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Figure 8: a=−0.5,b=5, snapshots of the waves at t=0,15.31,25 and 50.

developed in [1], but this point is not pursued here.

The next case begins life as a wave of depression with a =−0.5,b = 5. the blow-up
map in Fig. 5 reveals that for b small, the solution exists globally in time. However, as
b is increased, the solution ceases to be global. The evolution of the solution when b=5
is shown in a space-time plot in Fig. 7 while Fig. 8 shows more detailed spatial plots at
various times. . The norms of the solution (η,u) and the conserved quantities Iη, Iu and
H(η,u) are computed and plotted as a function of time in Fig. 9. The degree to which
the invariants Iη, Iu and H(η,u) remain constant is an indication of the accuracy of our
numerical scheme.

The amplitude of the velocity is now turned up, so a=−0.5 and b= 8. The solution
emanating from this initial configuration blows up near Tend=14.7. The solution structure
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Figure 9: a=−0.5,b=5, the norms of the solution and the conserved quantities as functions of time.
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Figure 10: a=−0.5,b=8, snapshots of the solution.

is plotted at a sequence of times in Fig. 10. Notice that the solution blows up at the center
x=0, in accord with the symmetry of the initial data.

A closer look near the blow-up time is plotted in Fig. 11. There is a wave group
traveling in each direction. At the middle, the solution blows up, or rather, “blows down”
to be more precise.

For this case, an even smaller value, ∆t = 0.0002 is used and the number of modes
is raised to 600×28 to be sure of keeping the solution under control in the face of very
large gradients. It is worth noting that the condition 1+η(x,0)≥ α> 0 which is the case
when a=−.5 does not ensure that 1+η(x,t)>0 for all t>0, nor does it imply the solution
remains bounded for all t>0.

Another case exhibiting blowup is plotted in Fig. 12. Here, the parameters are a=−5
and b= 5. A common structure near the blowup point seems to appear here also. This
is consistent with the idea that there is a family of similarity structures which emerge, at
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Figure 11: a=−0.5,b=8, solutions near the blowup time; a closer look.
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Figure 12: Snapshots of waves with a=−5,b=5.

least near the blowup point. However, it is clear from the evolution of the profiles that
the similarity structure does not extend globally in space. For while η concentrates near
x= 0, the two positive wings are seen to spread, which is not consistent with (3.2). The
same kind of local similarity structure was observed for the blowup in the generalized
Korteweg-de Vries equation (see Fig. 7 in [8]), but it was proved in [11] that the similarity
cannot extend to the entire solution (see also Fig. 10 in [8]).
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