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a b s t r a c t

In this article, we study a viscous asymptotical model equation for water waves

ut + ux − βutxx + ν


D

1
2 u + F −1(i | ξ |

1
2 sgn(ξ)u(ξ))


+ γ uux = 0

proposed in Kakutani and Matsuuchi (1975) [6]. Theoretical questions including the
existence and regularity of the solutions will be answered. Numerical simulations of its
solutions will be carried out and the effects of various parameters will be investigated. We
will also predict the decay rate of its solutions towards the equilibrium.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Modeling the effect of viscosity on gravity waves is a challenging issue. Researches on the subject have been going on
for centuries, but have intensified during last decade. For example, [1,2] have derived, independently, asymptotical models
for long gravity waves on viscous shallow water. Numerical and theoretical investigations on related equations have been
carried out in [3–5]. In this article we will go back in history and study the model equation that appeared in the seminal
article of Kakutani and Matsuuchi [6], but in its regularized (or BBM) form

ut + ux − βutxx + ν

D

1
2 u + F −1(i|ξ |

1
2 sgn(ξ)u(ξ))


+ γ uux = 0. (1)

The effect of the viscous layer is modeled by a nonlocal term that acts as dissipation and dispersion, as revealed by the linear
dispersion analysis [6]. From the linear dispersion analysis (see also [5]), this model is equivalent to those quoted above at
leading orders. Thesemodels are generalizations of thewell-known Korteweg–de Vries (KdV) and Benjamin–Bona–Mahony
(BBM) equations, in which the viscosity is not considered.
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The purpose of the article is to study the Kakutani–Matsuuchi equation and to compute numerically the decay rate of
its solutions towards equilibrium. In Eq. (1), ν is the viscosity parameter (as in the original Navier–Stokes equations, up to
some normalization), β and γ are parameters devoted to balance or unbalance the effects of the geometric dispersion and
the nonlinearity. Here and in the sequel D = (−∆)

1
2 is the fractional dissipation operator, and the sign function is defined

in the usual way as sgn(ξ) = 1 if ξ > 0, sgn(0) = 0, and sgn(ξ) = −1 if ξ < 0.
Three different models have been derived in [6] according to a competition between geometrical dispersion (the term

βutxx) and dispersion provided by the viscous boundary layer (the nonlocal term). Denoting k as the wave number of the
long wave, the different regimes read as follows [6]

• if ν ≪ k5, we are back to KdV type equations and the viscosity effects can be neglected;
• if ν ∼ k5, there is a balance between the geometrical and the viscous dispersion and the equation reads

ut + ux + βuxxx + ν

D

1
2 u + F −1(i|ξ |

1
2 sgn(ξ)u(ξ))


+ γ uux = 0, (2)

or, equivalently, in the BBM form (1);
• if ν ≫ k5, only the viscosity really matters and we have

ut + ux + νD
1
2 u + νF −1


i|ξ |

1
2 sgn(ξ)u(ξ)


+ γ uux = 0. (3)

The issue of analyzing the decay rate for solutions to dispersive-dissipative equations was first addressed in the
pioneering work [3] for the KdV–Burgers equation. The Kakutani–Matsuuchi equation differs since both dissipation and
dispersion are modeled by non-local pseudo-differential operators. The decay rate for a general class of dispersive-
dissipative equations with nonlocal operators was addressed in [4,7]; the method is very interesting and takes part of
renormalization group methods. Unfortunately, the Kakutani–Matsuuchi equation does not belong to that class whose
dissipations read Db for b > 1.

This article is organized as follows. In Section 2, we address some theoretical issues about the initial value problem for
Eqs. (2) and (3), andwe prove an energy equality that shows that the solution decays to 0when t goes to+∞. Unfortunately
we are not able to prove that the solutions of the full equation decay at the same rate as the solutions to the linearized
equation, which is expected in this case. But it is interesting to note that if we consider a formally equivalent equation
which has a similar non-local term which is in time instead of in space, then we are able to prove the decay rate for the
non-linear equation (see [5] for detail). Hence we handle this issue numerically. In Section 3, we discuss carefully the issues
related to the space approximation of the PDE by spectral methods using Fourier expansions. In the last section, we analyze
numerically the decay rate of the solutions.

Let us introduce some notations. H1(R) or for short H1
x denotes the usual Sobolev space. Ḣα(R) or Ḣα

x is the space of
tempered distributions u such that Dαu belongs to L2(R). The Fourier transform of a function reads

u(ξ) = F (u)(ξ) =


R
u(x) exp(−ixξ)dx.

2. Some theoretical results about the Kakutani–Maatsuchi equation

Right now we shall consider the initial value problem of the Kakutani–Matsuuchi equation in its regularized long-wave
form (1) as

ut + ux − βutxx + ν1D
1
2 u + ν2F

−1

i|ξ |

1
2 sgn(ξ)u(ξ)


+ γ uux = 0, (4)

where β is a small parameter. This class of equation contains the KM equation for ν1 = ν2 and the Ott–Sudan equation for
ν2 = 0 [8]. We also write our equation in a synthetical way as follows

ut + ux − βutxx + ν1D
1
2 u + ν2D−

1
2 ux + γ uux = 0. (5)

For the sake of simplicity in notation, we will take ν1 = ν2 = γ = 1 unless they are specified.

2.1. β > 0

For the equations with β > 0, we will establish the following existence, uniqueness and regularity result.

Proposition 2.1. For any initial data u0 in H1(R), the Eq. (4) with β > 0 has a unique solution in C(0, +∞;H1(R)) ∩

L2(0, +∞; Ḣ
1
4 (R)).

Proof. To begin, we first consider the linear equation

ut − βutxx + Λu = 0, (6)
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where Λu = D
1
2 u + D−

1
2 ux + ux. Let A = (1 − β∆)−1Λ whose symbol is (1+isgn(ξ))|ξ |

1
2 +iξ

1+βξ2
, (6) reads ut + Au = 0 and can be

solved in Fourier space withu(t, ξ) = exp

−t (1+isgn(ξ))|ξ |

1
2 +iξ

1+βξ2

u0(ξ). Sinceexp


−t
(1 + isgn(ξ))|ξ |

1
2 + iξ

1 + βξ 2

 ≤ 1,

the linear evolution semi-group e−tA is continuous on any Sobolev space Hk(R). Now, for the nonlinear Eq. (4) which reads

ut + Au = (1 − β∆)−1∂x


u2

2


,

we seek amild solution. This amounts to solve a fixed point problem in the Duhamel’s form

u(t) = exp(−tA)u0 −

 t

0
exp((s − t)A)(1 − β∆)−1∂x


u2

2


ds. (7)

This task is easy since (1 − β∆)−1∂x is a smoothing operator that maps H1(R) into H1(R) (and even H2(R)). Set R =

2∥u0∥H1(R), we shall prove that for t small enough the map

T (u) = exp(−tA)u0 −

 t

0
exp((s − t)A)(1 − β∆)−1∂x


u2

2


ds, (8)

maps BH1
x
(0, R), the closed ball centered at 0 with radius R, into itself and is a strict contraction in the complete metric space

C(0, t; BH1
x
(0, R)). Since |ξ |

1+βξ2
≤

1
2
√

β
,exp((s − t)A)(1 − β∆)−1∂x


u2

2


H1
x

≤
1

4
√

β
∥u2

∥H1
x

≤
1

2
√

β
∥u∥2

H1
x
, (9)

yields

∥T (u)∥H1
x

≤ ∥u0∥H1
x

+

 T

0

1
2
√

β
∥u(s)∥2

H1
x
ds
 ≤

R
2

+
R2T
2
√

β
. (10)

Therefore for RT ≤
√

β, T maps the ball BH1
x
(0, R) into itself, and the Banach space C(0, t; BH1

x
(0, R)) into itself as well. The

proof for T being a strict contraction is similar and is omitted. Hence we have a localmild solution. Thismild solution is also
a weak solution in the distribution sense since the map t → (1 − β∆)−1∂x


u2
2


is continuous with values in H1(R).

To prove that this local solution extends to a global solution we prove some a priori estimates on the solution. The idea
is to regularize the initial datum, approximating u0 with functions in the Schwartz class, to compute some energy equalities
on these family of approximate solutions and to pass to the limit to prove the energy estimate for u0 in H1

x ; once again, the
process is standard and omitted for the sake of conciseness. We just indicate how to derive formally the energy estimates.

Multiply the Eq. (5) by u and integrate over R to obtain, since


R(ux + D−
1
2 ux + uux)udx = 0 and

1
2

d
dt

(∥u∥2
L2x

+ β∥ux∥
2
L2x

) + ∥D
1
4 u∥2

L2x
= 0, (11)

that

∥u(t)∥2
L2 + β∥ux(t)∥2

L2 + 2
 t

0
∥D

1
4 u(s)∥2

L2x
ds = ∥u0∥

2
L2x

+ β∥∂xu0∥
2
L2x

. (12)

Hence the solution cannot blow up in H1(R) in finite time and the proof of the proposition is complete. �

Remark 2.2. For more regular initial data, say for initial data u0 in H2(R), we can prove similarly that there exists a unique
global solution u(t, x) in C(0, +∞;H2(R)).

Remark 2.3. Energy equality (12) shows that the solution decays in a H1 equivalent norm that reads
√
E with E =

∥u(t)∥2
L2

+ β∥ux(t)∥2
L2
. In fact E is a Lyapunov function which decays along the trajectories and that is constant only if

u(t, x) = C = 0. Therefore all solutions converge to 0 when t goes to the infinity.
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2.2. Case β = 0

The equationwithβ = 0 is difficult to handle directly bymodernmethods (S. Vento, personal communication). Therefore
we will use a limiting argument by letting β → 0+ to construct a solution to

ut + ux + D
1
2 u + D−

1
2 ux + uux = 0, (13)

supplemented with initial data u0 in H1(R). The drawback of this method is that the result requires some smallness
assumption on the gradient of initial data u0.

Proposition 2.4. There exists a constant c > 0 such that for any u0 in H1(R) with ∥∇u0∥L2(R) ≤ c, there exists a unique global
solution u to the Eq. (13) (Eq. (4) with β = 0) that belongs to L∞(0, +∞;H1(R)) and that satisfies the energy equality for any
t ≥ 0

∥u(t)∥2
L2 + 2

 t

0
∥D

1
4 u(s)∥2

L2x
ds = ∥u0∥

2
L2x

. (14)

Proof. The proof is divided into three steps.
Step 1: existence proof. We begin with some a priori estimates for smooth solutions to (4). Considering u0 in H2(R) and
using Remark 2.2, there exists a solution u(t, x) ∈ C(0, +∞;H2(R)). Multiplying (4) with −2uxx and integrating by parts,
one obtains

d
dt


∥ux∥

2
L2x

+ β∥uxx∥
2
L2x


+ 2∥D

5
4 u∥2

L2x
= −


R
u3
xdx. (15)

Now using the Gagliardo–Nirenberg inequality

∥φ∥
3
L3x

≤ c1∥φ∥L2x
∥D

1
4 φ∥

2
L2x

, (16)

with φ = ux,


R u3
xdx
 can be bounded from above by c1∥ux∥L2x

∥D
5
4 u∥2

L2x
. Therefore

d
dt


∥ux∥

2
L2x

+ β∥uxx∥
2
L2x


≤


c1∥ux∥L2x

− 2


∥D
5
4 u∥2

L2x
. (17)

Assume now that u0 satisfies c1∥(u0)x∥L2x
< 2. Then if c1∥ux(t)∥L2x

≤ 2, ∥ux∥
2
L2x

+ β∥uxx∥
2
L2x

is decreasing with respect to t .

Hence for β small enough depending on u0 such that ∥(u0)x∥
2
L2x

+ β∥(u0)xx∥
2
L2x

≤
2
c1

the estimate c1∥ux(t)∥L2x
≤ 2 is valid as

long as the solution exists. Therefore we have a bound in L∞(0, +∞;H1(R)) that does not depend on β . Going back to the
equation we have

ut = (1 − β∆)−1


−Λu −
1
2
∂x(u2)


.

Since (1 − β∆)−1 is bounded as an operator in any Sobolev space Hs
x , it is easy to see that ut remains in a bounded set

of L∞(0, +∞;H−1(R)) uniformly in β . Let uβ connote this solution. In order to pass the limit β → 0, we first prove the
following.

Lemma 2.5. Fix T > 0. Consider a sequence uβ bounded in L∞(0, T ;H1R) such that uβ
t remains bounded in L∞(0, T ;H−1(R)).

Then there exists a subsequence that converges strongly in C(0, T ; L2loc,x).

Proof. Consider a sequence of smooth cut-off functions θn that satisfy θn = 1 for |x| ≤ n and whose support is included in
Kn = [−n−1, n+1]. For any given n the sequence θnuβ is bounded in X = {v ∈ L∞(0, T ;H1

0 (Kn)); vt ∈ L∞(0, T ;H−1(Kn))}.
The embedding X ⊂ C(0, T ; L2(Kn)) is compact (see [9]). Then by the Cantor diagonal process we can extract a subsequence
that converges in C(0, T ; L2loc,x). �

Applying this compactness argument allows us to pass to the limit in the nonlinear term. Actually, for any test function
φ in the Schwartz class, we can pass to the limit in

R
uβ
t (1 − β∆)φdx +


R
uβ(D

1
2 − D−

1
2 ∂x − ∂x)φdx =


R
(uβ)2φxdx. (18)

Hence we have a weak solution to the equation that belongs to L∞(0, +∞;H1(R)). The energy inequality (14) is obtained
from (12) by a limiting argument.
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Step 2: uniqueness proof. Consider w = u − v which is the difference between two solutions of (13) that satisfy
c1 maxt ∥ux∥ ≤ 2. Then w satisfies

wt + Λw + ∂x


u + v

2
w


= 0. (19)

Multiply this equality by w and integrate by parts to obtain

d
dt

∥w∥
2
L2x

+ 2∥D
1
4 w∥

2
L2x

= −
1
2


R
(ux + vx)w

2dx. (20)

Using Cauchy–Schwarz and Sobolev embedding H
1
4
x ⊂ L4x we have

∥w∥
2
L4x

≤ c2(∥w∥
2
L2x

+ ∥D
1
4 w∥

2
L2x

),

and then12


R
(ux + vx)w

2dx
 ≤ c2 max(∥ux∥L∞t L2x

, ∥vx∥L∞t L2x
)(∥w∥

2
L2x

+ ∥D
1
4 w∥

2
L2x

). (21)

Therefore if u0 (and v0) satisfies max(c1, c2)∥u0∥L2x
< 2 we infer that

d
dt

∥w∥
2
L2x

≤ max(c1, c2)∥w∥
2
L2x

, (22)

and then by the Gronwall lemma

∥u(t) − v(t)∥2
L2x

≤ exp(max(c1, c2)t)∥u0 − v0∥
2
L2x

. (23)

This implies uniqueness.
Step 3: relaxing the assumption on u0 in the existence proof. Using the uniqueness result, we can relax the assumption u0
in H2

x used in the existence process. For any u0 in H1
x , such that ∥∇u0∥L2x

is small enough, we modify this initial condition to
construct the approximating sequence. Since u belongs to L∞

t H1
x and ut to L∞

t H−1
x , u is continuous in t with values in L2(R)

(see Lemma II 3.2 in [10]) and due to Strauss theorem (see Lemma II 3.3 in [10]) u is weakly continuous in t with values in
H1(R). Going back to energy equality (14) that reads for 0 ≤ t0 < t

∥u(t)∥2
L2 + 2

 t

t0
∥D

1
4 u(s)∥2

L2x
ds = ∥u(t0)∥2

L2x
, (24)

we observe that the map t → ∥u(t)∥H1
x
is continuous and therefore u is strongly continuous in t with values in H1(R). �

2.3. Decay rate when viscous terms lead the dynamic (β = 0, γ = 0)

From the energy equality (24) in the section above, it transpires that the solution decays to 0when time goes to+∞ since
t → ∥u(t)∥2

L2x
is a Lyapunov function that is constant only if u = 0. At this stage we are not able to compute theoretically the

decay rate for the solutions, butwe surmise that the linear part of the equationmonitors the decay rate since the nonlinearity
is asymptotically weak (see [11]).

We now address the decay rate issue for solutions to the linearized equation

ut + ux + D
1
2 u + D−

1
2 ux = 0.

Using Fourier transform and Plancherel identity, we have

∥u(t)∥L2(R) =


1
2π


R
e−2t|ξ |

1
2
|u0(ξ)|2dξ

 1
2

≤ c∥u0∥L∞ t−1. (25)

Therefore, the L2-norm of the linearized equation decays like t−1. Analogously

∥u(t)∥L∞(R) ≤
1
2π


R
e−t|ξ |

1
2
|u0(ξ)|dξ ≤ c∥u0∥L∞ t−2. (26)

3. Boundary effects on the decay rates

To compute numerically the decay rate of solutions of a dispersive dissipative equation on the whole line, a finite space
interval is often used with the assumption that values of the solution at the boundary are negligible. For wave equations,
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including dispersive conservative equations, it is well known that we have to perform the computations on a large enough
interval. This is because the nonlocal term in the linear differential operator tends to spread out the solution on the whole
line (and then boundary conditions matter), and the nonlinear term mixes frequencies in Fourier space.

Even with a large enough interval, the boundary conditions do matter in many circumstances. For example, it is known
that KdV like equations on the periodic torus do not have the same dispersive properties as the same equation on the whole
line. In the sequel we emphasize a difficulty related to the dissipation term, which provides polynomial decay towards
equilibrium on the whole line and exponential decay towards the mean value in the periodic setting. This last difficulty
occurs even for the linear equation and has a strong effect on how one collects data in the numerical simulation.

After fixing a large enough interval, say with size L, one assumes the solution at the boundary is negligible, the
computation is then carried out for t → +∞ to obtain the decay rate for the solution. But when t → +∞, the solution
at the boundary may not be negligible and the computed rate of decay is no longer an accurate approximation to the decay
rate of the solution on the whole line. Therefore, there is a balance between the computational interval (large enough) and
the time T (not infinitely large) where the data for obtaining decay rate of solutions to the whole line problem are collected
(see Section 4.3 for more detail). When the data are indeed collected from t → +∞, the decay rate for the solution to the
periodic boundary value problem could be obtained with a change of code since the equilibrium solution is the mean value,
instead of 0.

We now perform a rigorous analysis for the following linear problem (with ν = 1 and β = γ = 0 in (1)) that reads

ut + ux + D
1
2 u + D−

1
2 ux = 0; (27)

with initial condition

u(x, 0) = u0(x), x ∈ R. (28)

Proposition 3.1. We consider a smooth initial data u0 that is compactly supported, say in [−1, 1]. Let u(t) be the solution
of (27)–(28). Consider also the solution U(t) to Eq. (27) on the periodic box (L > 1) [−L, L], supplemented with initial condition
u0. Then there exists a constant C that depends on u0 such that∥u(t)∥2

L2(R)
− ∥U(t)∥2

L2([−L,L])

 ≤
C
L


1 +

1
t2


. (29)

Remark 3.2. Since the expected decay rate for ∥u(t)∥2
L2(R)

is t−2 (say for t ≥ T ) from the linear analysis (25), then L has to
be chosen large enough, such that L ≫ T 2, for ∥U(t)∥2

L2([−L,L])
and ∥u(t)∥2

L2(R)
to have the same decay rate. It is worth to

compare this error estimate with the case for the heat equation. For the heat equation, the error estimate (29) is the same
and the expected decay rate for ∥u(t)∥2

L2(R)
is t−

1
2 . Therefore the corresponding requirement for L would be L ≫ T

1
2 . That

means roughly that if a computational domain with L = 10 is enough to the heat equation, then a domain with L = 104 is
needed for the Kakutani–Matsuuchi operator. For people that prefer to think of computing in fixed boxes, but with various
viscosity parameters, we remind that there exist a relationship between ν∆ on [0, 1] and ∆ on [0, L] that reads νL2 = 1
with heat equation. For Kakutani–Matsuuchi operator the scaling is νL

1
2 = 1.

Remark 3.3. The same results apply also if we do not assume that u0 is compactly supported but in the Schwartz class such
that the following estimate is valid

|u0(x)| ≤ ce−2|x|. (30)

Actually, this provides us with a new error term that is as small as exp(−L) and that does not alter the result. For the
sake of conciseness, we omit the computations that are standard. The assumption (30) amounts to assume that the Fourier
transform of u0 has compact support, due to the Paley–Wiener-Schwartz theorem. This particular case is consistent with
the choice of initial data chosen for the numerical simulation performed in the next section.

Proof of Proposition 3.1. Since we are interested in the L2 decay estimate, the skew-symmetric part of the linear operator
ux+D−

1
2 ux, does not play a role (see formula (25) for instance).We therefore analyze the solutions of the dissipative equation

ut + D
1
2 u = 0; u(x, 0) = u0(x), x ∈ R. (31)

Here we have assumed ν = 1 without loss of generality since L and ν are related by a scaling relation.
Let us introduce the periodic function, that is a carbon copy of u0,

U0(x) =


j∈Z

u0(x + 2jL). (32)
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Due to the Poisson summation formula, its Fourier coefficient

Uk
0 =

1
2L

 L

−L
U0(x) exp


−

ikπx
L


dx (33)

satisfies Uk
0 =

1
2Lu0

 kπ
L


whereu0 is the Fourier transform of u0.

Let us recall that solving the PDE with periodic boundary conditions and initial data U0 amounts to computing

U(t)(x) = U(t, x) =


k∈Z

e−t


kπ
L Uk

0e
iπkx
L . (34)

On the one hand, using the Plancherel formula, we have that

∥u(t)∥2
L2(R)

=
1
2π


R
e−2t|ξ |

1
2
|u0(ξ)|2dξ . (35)

On the other hand, from (31), (34) and Parseval identity,

∥U(t)∥2
L2(−L,L) =


k∈Z

1
2L

e−2t| kπL |
1
2
|u0


kπ
L


|
2. (36)

Therefore, if ε = | ∥u(t)∥2
L2(R)

− ∥U(t)∥2
L2(−L,L)

|, then

ε =

 1
2π


R
e−2t|ξ |

1
2
|u0(ξ)|2dξ −


k∈Z

1
2L

e−2t
 kπL  12 u0


kπ
L

2
 , (37)

which is the approximation error of the integral by the rectangle formula.

Let φ(ξ) = e−2t|ξ |
1
2
|u0(ξ)|2, we will bound ε =


k∈Z εk using

εk =


 (k+1)π

L

kπ
L


φ(ξ) − φ


kπ
L


dξ

 ≤
c
L
min(∥φ∥L∞(Ik), L

−1
∥φ′

∥L∞(Ik)).

For k = 0,

ε0 ≤
c
N

; (38)

and for k ≠ 0,

εk ≤ cL−2 exp


−t


|k|π
L


1 + t


L

|k|π


. (39)

We then have
k≠0

εk ≤ 2cL−2
+∞
k=1

exp


−t


kπ
L


1 + t


L
kπ


. (40)

Therefore
k≠0

εk ≤ 2cL−2


+∞

0
exp


−t


xπ
L


1 + t


L
xπ


dx ≤ 2c̃L−2


L
t2

+ L


. (41)

Gathering (38) and (41) completes the proof of the proposition. �

4. Numerical study

4.1. The numerical scheme

We describe in this subsection the numerical scheme for simulating solutions of (1).
For the time discretization, a semi-implicit Crank–Nicholson-leapfrog method (with the first step computed by a semi-

implicit backward Euler method) is used in order to have a conservative scheme if ν = β = γ = 0 (for more details,
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see [12]). More precisely, let δt be the time step and tn = nδt for n ∈ N, the scheme can be written, for n ≥ 1

(1 − β∆)
un+1

− un−1

2δt
+ νGn(u) +

1
2
(un+1

x + un−1
x ) + γ unun

x = 0, (42)

where un represents the numerical approximation of u(tn, ·) and u0 is the initial data u0. The dissipative and dispersive term
Gn(u) at time tn with Gn(u) = (D

1
2 u + F −1(i|ξ |

1
2 sgn(ξ)u(ξ)))n is approximated by

Gn(u) =
1
2
D

1
2 (un−1

+ un+1) + F −1

1
2
i|ξ |

1
2 sgn(ξ)(un−1(ξ) +un+1(ξ))


. (43)

For the space discretization, a Fourier discretization is implemented, so Fast Fourier Transforms can be used. Therefore, the
periodic boundary condition with large L, which is the length of the computational domain, is used.

The fully discretized problem can be written, withu(ξ) denoting the Fourier transform of u at the frequency ξ , for n ≥ 1

(1 + βξ 2)(un+1
−un−1) + νδt|ξ |

1
2 (1 + isgn(ξ))(un−1

+un+1) + iδtξ

un+1
+un−1

+ 2γ FFT


(un)2

2


= 0 (44)

at time tn = nδt , and for ξ =
2Π
L j, −N

2 ≤ j ≤
N
2 where N is the number of modes used in the simulation.

4.2. Validation of the scheme

In order to validate the numerical method used in the sequel, we will follow the ideas of Chen [12]. This technique
consists of neglecting the viscous term in Eq. (4), and computing numerically the solution of this equation with a known
exact solitary-wave solution. With ν1 = ν2 = 0, β = γ = 1, Eq. (4) reads

ut + ux − utxx + uux = 0.

Let u(x, t) = φ(x − pt), φ satisfies

( p − 1)φ′
− pφ′′′

− φφ′
= 0.

Using Lemma 1 in [13], namely αη′
− βη′′′

− ηη′
= 0 admits a solution η = 3α sech2 1

2


α
β
x

, one finds explicit solutions

u(x, t) = φ(x − pt) = 3( p − 1) sech2


1
2


p − 1
p

(x − pt)


. (45)

The one with p = 2 is used for our testing.
For an interval of length L = 400 with N = 800 mode, a time step δt = 0.01, the computed solution has ∥u(T , ·)∥L∞

equal to 3.00005 at T = 50 while the explicit solution has ∥uex(T , ·)∥L∞ equal to 3. The maximum difference between the
computed solution u(T , ·) and uex(T , ·) at T = 50, ∥uex(T , ·) − u(T , ·)∥L∞ is equal to 1.17 × 10−4. By halving the size of δt
to 0.005, ∥uex(T , ·)−u(T , ·)∥L∞ decreased to 2.91×10−5. Therefore, the numerical scheme is validated for non-dissipative
equation and it is second order in time as expected. It has a spectral accuracy in space.

4.3. The influence of the computational domain and other computational parameters

Since the solution is expected to decay in the form of O(ta), namely ∥u(t, ·)∥L2x
≈ Ctα2 or ∥u(t, ·)∥L∞x ≈ Ctα∞ for t large,

the ratios

R2 =

log
∥u(t,·)∥

L2x
∥u(t−δ1,·)∥L2x

log t
t−δ1

, and R∞ =

log
∥u(t,·)∥L∞x

∥u(t−δ2,·)∥L∞x

log t
t−δ2

are expected to approach respectively to the decay rates α2 and α∞ as t → ∞.
To predict the decay rate α2, the ratio R2 was computed first for t ∈ [0, 50] with L = 400 (δ1 = 0.1, ν = 0.1, β and γ

equal to 1, δt = 10−2, h = 2×10−2). It was observed that theminimum value of R2 was−0.79 and R2 was not approaching
constant. By carrying the computation to T = 300, we found R2 approaching 0 instead of−1, the expected result (see Fig. 1).
The value of R2 made a turn at t close to 45, still with theminimum−0.79. This observation inspired the analysis performed
in Section 3 which made us realize that L has to be taken large enough and T should be taken in a range which depends on L.
The influence of L is then investigated in Fig. 1 for L = 400, 1000, 5000, 10 000, 20 000, 30 000. It is clear that for T = 300,
the L has to be larger than 20000 to obtain the correct rate of decay. If L is smaller than 1000, the boundary effect starts
to influence the result and the correct decay rate cannot be obtained. With L > 20 000, T from [100, 300] gives the best
approximation.

A similar plot is made for the L∞-norm but with δ2 = 10 which is much larger than δ1, see Fig. 2. If δ2 was the same as
δ1, the curves would have oscillations because the location of the mesh points. If the peak belongs to the mesh points, then
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Fig. 1. Ratio R2 versus the time t for numerical solutions computed on domains [0, L] for L ranging from 400 to 30000 (ν = 0.1, β = γ = 1).

Fig. 2. Ratio R∞ versus the time t for numerical solutions computed on domains [0, L] for L ranging from 400 to 30000 (ν = 0.1, β = γ = 1).

Table 1
Values of u(T=300,L)

∥u(T=300,·)∥L∞
for various values of Lwhich indicate the influence of

the boundary condition on the decay rate of the solution.

L u(T=300,L)
∥u(T=300,·)∥L∞

400 9.43 × 10−1

1000 8.39 × 10−1

5000 1.50 × 10−1

10000 5.73 × 10−2

20000 2.09 × 10−2

30000 1.15 × 10−2

the numerical L∞-norm is bigger than when the peak is not on the mesh points, even for the same solution. This fluctuates
then generates the oscillation on the curve when δ2 is small.

Since themain reason for the large L is the spread of the solution to the boundary, the solution on R is very different from
the solution on the bounded domain [0, L] for a small value of L, it is useful to know quantitatively the size of the solution
at the boundary. Table 1 presents the values of u(T ,L)

∥u(T ,·)∥L∞
for various values of L, where u(T , ·) is the solution computed on

the domain [0, L].
The results on Table 1 shows that u(T ,L)

∥u(T ,·)∥L∞
is decreasingwith L, and a ratio less than 10−2 seems to be sufficient to obtain

the good decay.
In summary, careful consideration needs to be taken for choosing L and T to find the decay rate of the solution for a

Cauchy problem with non-local operator. In many cases, numerous experiments have to be performed.

4.4. Decay rate for various values of the parameters

Since we can only prove analytically the decay rates for β = 0 and γ = 0, numerical simulations are performed
to compute the decay rates, both with the L2 and L∞ norm. In this computation, the domain of computation in space is
Ω = [0, 20 000], the space step of discretization is h = 2×10−2, the time step of discretization is δt = 10−2, and the initial
datum is the BBM soliton (45) with p = 2.
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Fig. 3. Ratio R2 versus the time t for various values of parameters β and γ (ν = 0). The three curves overlap each other, so there is no dissipation if ν = 0.

Fig. 4. Ratio R∞ versus the time t for various values of parameters β and γ (ν = 0). The first and the third curves overlap each other because the initial
datum provides a soliton in the third case.

Fig. 5. Ratio R2 versus the time t for various values of parameters β and γ (ν = 1). It shows that the non-local term provides dissipation.

The ratios R2 and R∞ versus the time t are plotted in Figs. 3 and 4 for ν = 0. It shows that if ν = β = γ = 0 (wave
equation), the scheme is able to observe that this equation is conservative, both in the L2 and L∞ norms. For all the caseswith
ν = 0, the decay rate for L2-norm is 0. There is decay in L∞ when the dispersion term is not balanced by the nonlinear term.
Figs. 5 and 6 are for ν = 1, which predict that when the viscosity occurs, the decay rate is equal to −1 in the L2 norm, and
to −2 in the L∞ norm. The values of the decay rate are presented in Table 2 where the data are the minimum values of R2(t)
and R∞(t). It shows that as predicted by the linear analysis, the non-local term does provide dissipation and dispersion.

4.5. Influence of the magnitude of the viscosity

In this subsection, numerical experiments are performed to study the influence of the viscosity on the decay rate. In
these simulations, the computational parameters are: L = 16 000, h = 2 × 10−2, δt = 10−2, T = 20, β = γ = 1. In these
experiments, the initial datum is the function (45) with p = 2, and shift around the point x0 = 8000.



Author's personal copy

M. Chen et al. / Nonlinear Analysis 75 (2012) 2883–2896 2893

Fig. 6. Ratio R∞ versus the time t for various values of parameters β and γ (ν = 1), so the viscosity also provides dispersion.

Table 2
Decay rate of the solution u(t, ·) versus the time.

Viscosity ν Dispersive term β Non linear term γ L2decay rate L∞decay rate

0 0 0 10−14 10−3

0 1 1 10−14 0.01
1 0 0 −0.98 −1.94
1 0 1 −0.92 −2.00
1 1 0 −1.00 −1.91
1 1 1 −0.97 −1.95

Fig. 7. Ratio R2 versus the time t for ν ranging from 0.1 to 1.5.

Fig. 8. Ratio R∞ versus the time t for ν ranging from 0.1 to 1.5.

Figs. 7 and 8 show that if the viscosity is small (ν equal to 0.1), a large time is required to obtain the correct decay rate.
When the viscosity increases, the expected decay rates −1 for the L2 norm and −2 for the L∞ norm can be obtained with
relatively small t . When t increases more, the curve starts to going up, due to the boundary influence described in the
previous section.
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Fig. 9. Solutions for the viscosity ν ranging from 0 to 20.

Fig. 10. Cumulative influence of ν1 and ν2 on a computed solution with β = γ = 1, at time t = 50 for various viscosities: ν1 = ν2 = 0 (dashed line) and
ν1 = ν2 = 0.1 (solid line).

The solutions at t = 0.5 for equations with various ν between 0 and 20 are plotted in Fig. 9. As expected, there is more
damping for larger ν. In addition, one observes that the velocity of the wave also increases with the viscosity.

4.6. Relative influence of the two terms in the viscosity

In this subsection, the viscosity in (1) is split into two parts:

G(u) = ν1D
1
2 u + ν2F

−1

i|ξ |

1
2 sgn(ξ)u(ξ)


(46)

in order to study the relative influence of each part.
By taking ν1 = ν2 = 0.1, we computed the solution at T = 50 again with the same initial data (x0 = 100), which

is plotted with a solid line in Fig. 10. For comparison, the solutions without the non-local dispersive and dissipative terms
(ν1 = ν2 = 0) are also plotted with the dashed line. The dissipative effect of the terms is quite clear. The peak of the solution
drops from 3 to 0.3545, and the L2-norm of the solution drops from 5.8259 to 1.5266.

Now looking at the effect of each individual term, we first take ν1 = 0 and ν2 = 0.1 and the solution is plotted in Fig. 11.
The term D−

1
2 ux actually speeds up the propagation. Here, the L2-norm of the solution remains almost a constant.

The case with ν1 = 0.1 and ν2 = 0 is also investigated. The solution is plotted in Fig. 12 which shows the D
1
2 u slows the

propagation down. With equal constants, this shows that the dissipation D
1
2 u has a stronger effect on the solution than the

dispersive D−
1
2 u term. Here, the L2-norm of the solution drops from 5.8259 to 1.444.

Figs. 13 and 14 shows that the equation is conservative in both two norms. The L2-norm is conserved if ν1 = 0 and has a
decay rate −1 when ν1 = 1. For L∞-norm, the solution decays when either ν1 and/or ν2 is nonzero.

4.7. Conclusion

In this section, we have discussed the influence of the size of the domain. A large enough domain is required to provide
the accurate decay estimates for solutions on the whole line. In addition, the numerical simulations are carried out and the
results show that the nonlocal viscose term provides dissipation and the term ‘‘D−

1
2 ux’’ in the viscosity terms also provides



Author's personal copy

M. Chen et al. / Nonlinear Analysis 75 (2012) 2883–2896 2895

Fig. 11. Influence of ν2 on computed solution with β = γ = 1, ν1 = 0 at time t = 50 for various viscosities: ν2 = 0 (dashed line) and ν2 = 0.1 (solid
line).

Fig. 12. Influence of ν1 on computed solution with β = γ = 1, ν2 = 0 at time t = 50 for various viscosities: ν1 = 0 (dashed line) and ν1 = 0.1 (solid
line).

Fig. 13. Ratio R2 versus the time t for the viscosities’ coefficients ν1 and ν2 equal to 0 and 1. The first and third (resp. the second and the fourth) curves
overlap each other, this figure shows that the parameter ν1 is more significant on the L2 decay of the solution.

dispersion. This numerical study also predicts the decay rates of the solutions for the whole system which include the
nonlinear term |u|ux and the term −utxx, which are O

 1
t


in the L2 norm and O

 1
t2

in the L∞ norm, a result which has

not been proved theoretically until now.
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Fig. 14. Ratio R∞ versus the time t for the viscosities’ coefficients ν1 and ν1 equal to 0 and 1. The two parameters ν1 and ν2 act on the L∞ decay of the
solution.
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