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Abstract

Considered herein are certain Boussinesq systems with the presence of large
surface tension. The existence and stability of solitary waves are established by
using techniques introduced earlier by Buffoni [7] and Lions [9, 10].

1 Introduction

The four-parameter family of Boussinesq systems
{

ηt + ux + (ηu)x + auxxx − bηxxt = 0,
ut + ηx + uux + cηxxx − duxxt = 0,

(1.1)

is introduced in [4] (generalized to include the surface tension in [8]) to describe the
motion of small-amplitude long waves on the surface of an ideal fluid under the force of
gravity. All the variables are scaled with length scale h0 and time scale

√
h0/g, where g

is the gravitational constant and h0 (scaled to 1) the undisturbed average water depth.
The quantity η(x, t) is the deviation of free surface with respect to the undisturbed
state, and η(x, t)+ 1 corresponds to the total depth of the liquid at (x, t), while u(x, t)
is the dimensionless horizontal velocity field at height θ, where 0 ≤ θ ≤ 1. From the
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derivation of (1.1), the parameters a, b, c, d are not independently specified but satisfy
the consistency condition

a + b + c + d =
1

3
− τ , (1.2)

where τ is the surface tension coefficient. If a0 connotes a typical wave amplitude and
λ a typical wavelength, the condition of “small amplitude and long wavelength” just
mentioned amounts to

α =
a0

h0

<< 1, β =
h2

0

λ2
<< 1,

α

β
=

a0λ
2

h3
0

≈ 1. (1.3)

Systems (1.1) are first-order approximations in α and β to Euler’s equations, justified
rigorously by Bona, Colin and Lannes in [6]. We refer the readers to the papers [4] and
[5] for further discussion about the derivation and well-posedness of these systems.

These systems are free of the presumption of unidirectionality that is the hallmark
of KdV-type equations. One therefore expects that these Boussinesq systems will have
more intrinsic interest than the one-way models on account of their considerably wider
range of potential applicability. Because dissipation is ignored in the derivation of
(1.1) and the overlying Euler equations are Hamiltonian, it is expected that some of
the systems in (1.1) will likewise possess a Hamiltonian form. One finds indeed that
whenever b = d, the functional

H(η, u) =
1

2

∫ ∞

−∞

(
− cη2

x − au2
x + η2 + (1 + η)u2

)
dx (1.4)

serves as a Hamiltonian and the systems have the following conserved quantities
∫ ∞

−∞
u(x, t)dx,

∫ ∞

−∞
η(x, t)dx, I(η, u) =

∫ ∞

−∞

(
ηu + bηxux

)
dx (1.5)

along with H(η, u) (see Remark 4.1 in [5]).
In this manuscript, the existence and stability of solitary waves of the system (1.1)

with
b = d > 0, a, c < 0, ac > b2 (1.6)

are studied. It is noted that condition (1.6) implies a + b + c + d < 0 and therefore
τ > 1

3
, which corresponds to systems with large surface tension. The special properties

of this class of systems include established global well-posedness and previously stated
conserved quantities which enable the use of the technique of constrained global min-
imization. For general system (1.1) with a, b, c, d satisfying b = d > 0 and a, c < 0,
the existence of solitary-wave solutions can be proved, which includes the case with
zero surface tension. However, the stability of the solitary-wave solutions cannot be
obtained for this general case.
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Consideration is given to the initial-value problem. In the context of (1.1) and
(1.6), one imagines being provided with an initial wave profile, say at t = 0,

(η(x, 0), u(x, 0)) = (φ(x), ψ(x)), (1.7)

for x ∈ R which is very close to a traveling solitary wave solution (η(x, t), u(x, t)) =
(η(x−ωt), u(x−ωt)) of system (1.1) with ω being a fixed positive constant. One then
inquires into the subsequent evolution under (1.1). This presumes that the initial-value
problem (1.1) is a well-posed problem so that a unique solution (η(x, t), u(x, t)) departs
from (φ(x), ψ(x)). A summary of what is needed regarding the well-posedness issue
will be provided in the next section.

The stability established in this manuscript is often regarded as “set stability”, that
is, the set of certain constrained minimizers is stable. For r > 0, denote

Br = {η(x) ∈ H1(R)
∣∣ ‖η‖H1(R) ≤ r} and Br = {η(x) ∈ H2(R)

∣∣ ‖η‖H2(R) ≤ r}.
(1.8)

For µ > 0, define a real number Hr,µ to be

Hr,µ = inf
(η,u)

{H(η, u)
∣∣ (η, u) ∈ Br ×H1(R) and I(η, u) = 2µ}.

The set of minimizers for Hr,µ is defined to be

D(r, µ) =
{
(η, u) ∈ Br ×H1(R)

∣∣ H(η, u) = Hr,µ and I(η, u) = 2µ
}

, (1.9)

while a minimizing sequence forHr,µ is any sequence {(ηn, un)} ∈ Br×H1(R) satisfying

I(ηn, un) = 2µ, for all n and lim
n→∞

H(ηn, un) = Hr,µ.

For (f, g) ∈ H1(R)×H1(R), denote

dist((f, g), D(r, µ)) = inf
(η,u)∈D(r,µ)

{‖(f, g)− (η, u)‖H1×H1}.

The precise statement of the result is as follows:

Theorem 1.1. (Existence) There exist an r0 > 0 and a µ0 > 0 (which depends on r0),
such that for r ∈ (0, r0) and µ ∈ (0, µ0), the set of minimizers D(r, µ) is non-empty and
dist

(
(ηn, un), D(r, µ)

) → 0 for every minimizing sequence {(ηn, un)} ∈ Br ×H1(R).

Theorem 1.1 shows the set of minimizers is in the space H2(R)×H1(R). By a boot-
strapping argument, it can be shown that the minimizers are in Hm+1(R)×Hm(R) for
any m > 1, which implies that the minimizers decay to zero at infinity.
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For the large surface tension case, the Euler equations have solitary-wave solutions
whose first-order approximations are the solitary-wave solutions of the KdV equation.
However, the relationship between the minimizers obtained in this paper and the KdV
solitary-wave solutions or the solitary-wave solutions of Euler equations is not well
understood. Although it is most likely that the minimizers here are approximations
to the solitary-wave solutions of Euler equations, and KdV solitary-wave solutions are
approximations to the solutions in the set of minimizers, there are no rigorous proofs
for that.

The stability result for the set of minimizers is the consequence of the above theorem
(see Theorem 5.2) which reads

Theorem 1.2. (Stability) There exist an r0 > 0 and a µ0 > 0 (which depends on r0)
such that if r ∈ (0, r0) and µ ∈ (0, µ0), the set D(r, µ) is stable. That is, for any ε > 0,
there exists a δ > 0 such that if

(φ, ψ) ∈ Br ×H2(R), dist
(
(φ, ψ), D(r, µ)

)
< δ,

and if
(
η(x, t), u(x, t)

)
is a solution of (1.1)-(1.2)-(1.6) with initial data (φ, ψ) and if

η(x, t) ∈ Br for t ≥ 0, then

dist
(
(η(·, t), u(·, t)), D(r, µ)

)
< ε for all t ∈ [0,∞).

Remark 1.3. Here, we note that the initial data are in H2(R)×H2(R) and the stability
result is in H1(R)×H1(R). A stronger result would be the stability of the solitary wave
(f(x− ct), g(x− ct)), i.e, for a fixed ε > 0, there is a corresponding δ > 0 such that

‖(φ, ψ)− (f, g)‖H1 ≤ δ implies

inf
y∈R

‖(η(·+ y, t), u(·+ y, t))− (f, g)‖H1 ≤ ε, (1.10)

for all t > 0. However, being unable to obtain the uniform bounds of solutions in
H2(R) with respect to t as well as to determine whether the set D(r, µ) consists only
of a singleton prevents us from obtaining the more desirable form of stability (1.10).
Nevertheless, such stability result is fairly common and sometimes the best possible for
complicated problems (see [11] and [7]). To the best of our knowledge, our stability
result is the first one for any Boussinesq systems.

Remark 1.4. Generally speaking, a Boussinesq system is much simpler to analyze
than the Euler equations and the solutions of the Boussinesq system for the parameters
in some regions exist globally. However, the Boussinesq system is derived from the
Euler equations under the condition of small amplitude and long-wave length and some
features of the Boussinesq system are very different from those of the Euler equations.
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For example, in the momentum functional I of (1.5), the order of the derivative is one,
while the order in the Euler equation is one half (see [7]). The higher order derivative
causes a big problem for our case, when the estimates of the minimizers are obtained
and the convergence of the minimizing sequences is proved.

The manuscript is organized as follows. Section 2 provides a brief summary of rele-
vant known results for the Boussinesq systems. In Section 3, some necessary estimates
for functionals are given. Section 4 gives the existence proof of minimizers of H(η, u)
with I(η, u) = 2µ. In Section 5, the stability of the set of minimizers is obtained.
Section 6 is an appendix which provides proofs that are left unproved in the previous
sections.

The standard notations are used. For 1 ≤ p < ∞, Lp is the usual Banach space
of measurable functions on R with norm given by ‖f‖Lp = (

∫∞
−∞|f |p dx)1/p. The

space L∞ consists of the measurable, essentially bounded functions f on R with norm
|f |∞ = ess supx∈R|f(x)|. For s ∈ R, the L2-based Sobolev space Hs = Hs(R) (see

[1]) is the set of all tempered distributions f on R whose Fourier transforms f̂ are
measurable functions on R satisfying

‖f‖2
Hs =

∫ ∞

−∞
(1 + |k|2 + · · ·+ |k|2s)|f̂(k)|2 dk < ∞.

2 Review of the Boussinesq Systems

As expected, prior to a discussion of stability as formulated above in terms of pertur-
bations of the initial data, there should be a theory for the initial-value problem itself.
Local existence and continuous dependence on initial data have been studied in [5]
for numerous cases of (1.1). In order to extend the local result to a global one, some
kind of control on the norms is needed in the energy estimates. Whenever b = d, the
systems (1.1) admit the conservation laws (1.4) and (1.5) which allow one to obtain
the control needed. Moreover, in this case, the systems (1.1) with (1.6) can be written
as

∂t

[
η
u

]
= J grad H(η, u),

where the operator J is defined as

J =

[
0 (I − b∂2

x)
−1∂x

(I − b∂2
x)
−1∂x 0

]
,

and grad H stands for the gradient or Euler derivative, computed with respect to the
L2×L2-inner product, of the functional H. Because the operator J is skew-adjoint, H
can be seen as a Hamiltonian for the systems.
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Because none of the conserved quantities is composed only of positive terms, they
do not on their own provide the a priori information one needs to conclude the global
existence of solutions to the initial-value problem. However, a time-dependent relation-
ship can be coupled with the invariance of the Hamiltonian to give suitable information
leading to a global existence theory. The global existence needed in this manuscript
has been established in [5] as follows.

Theorem 2.1. Let s ≥ 1 and suppose (φ, ψ) ∈ Hs(R)×Hs(R) is such that

inf
x∈R
{1 + φ(x)} > 0 and |H(φ, ψ)| < |c|1/2.

Then the solution (η, u) of (1.1)-(1.7)-(1.6) exists and is in C(R+; Hs(R))×C(R+; Hs(R)).
Moreover, the H1−norm of both η and u is uniformly bounded in t and 1 + η(x, t) ≥
1− |H(φ,ψ)|√

|c| = α > 0.

Remark 2.2. The constants r0 and µ0 in Theorems 1.1-1.2 will be chosen such that

r0 < 1 and µ0 <
1

2
|c| 12

which gives the conditions for the global existence of the solution

inf
x∈R
{1 + φ(x)} > 0 and |H(φ, ψ)| < |c|1/2

using the facts that
‖φ(x)‖L∞ ≤ ‖φ(x)‖H1 ≤ r0 < 1

and H(φ, ψ) ≤ 2µ ≤ 2µ0 (see Lemma 3.8).

3 Estimates of Functionals

By a solitary wave solution we shall mean a solution (η, u) of (1.1) of the form

η(x, t) = η(x− ωt) and u(x, t) = u(x− ωt) (3.1)

where ω > 0 denotes the speed of the wave. In what follows, we require that η,
u ∈ H1(R), ‖η‖H1 ≤ 1 and restrict ourselves to the case (1.6).

Let ξ = x − ωt and substitute the form of the solution (3.1) into (1.1), integrate
once and evaluate the constants of the integrations using the fact that η, u ∈ H1(R),
one sees that (η, u) must satisfy

cηξξ + η − ωu + bωuξξ +
1

2
u2 = 0,

auξξ + u− ωη + bωηξξ + ηu = 0.
(3.2)
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It is worth to mention that traveling wave solutions are critical points of minimization
problem on H(η, u) with constraint I(η, u) = 2µ and the Lagrange multiplier is the
phase speed of the waves.

To prove existence and stability of a traveling wave, we use the idea introduced by
Buffoni [7] which makes use of two conserved quantities associated with the system,
namely I(η, u) and H(η, u). We first fix η and minimize H(η, u) with respect to u using
the constraint I(η, u) = 2µ for some µ > 0. Substituting the minimizer uη intoH(η, u),
the problem becomes finding the minimizer for H(η) = H(η, uη) without constraints.
The last step will be to show that the original minimization problem is equivalent to
this two-step approach. We will use x as the independent variable when there is no
confusion.

We now carry out the steps in details. First, fix an η ∈ Br (later, we use Br ⊂ Br)
where r < 1 according to Remark 2.2 and minimize H(η, u) with respect to u under
the condition I(η, u) = 2µ for some 0 < µ < |c|1/2/2. Denote the minimum by uη(x)
and let λη be the corresponding Lagrange multiplier; uη(x) and λη satisfy

a(uη)xx + uη + ηuη = λη(η − bηxx). (3.3)

The function uη and λη can be expressed explicitly in terms of µ and η. From (3.3), it
follows that

uη = ληG
−1(η)

(
η − bηxx

)
, (3.4)

where
G(η) = a∂xx + (1 + η). (3.5)

Substituting (3.4) into I(η, u) and using the constraint I(η, uη) = 2µ, one obtains

2µ = λη

∫ ∞

−∞

(
ηG−1(η)

(
η − bηxx

)
+ bηx[G

−1(η)
(
η − bηxx

)
]x

)
dx

and
λη =

µ

L1(η)
(3.6)

with

L1(η) =
1

2

∫ ∞

−∞

(
η − bηxx

)
G−1(η)

(
η − bηxx

)
dx, (3.7)

after integration by parts once. Substituting (3.4) and (3.6) into H, we have by using
(3.3) and (3.6) that

H(η, uη) =
1

2

∫ ∞

−∞

(− cη2
x + η2

)
dx +

1

2

∫ ∞

−∞

(
η − bηxx

)
ληuηdx . (3.8)
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The second step is to find the minimizers of H(η) for fixed 0 < µ < |c|1/2/2 and η ∈ Br

where r < 1, with no constraints, where

H(η) := H(η, uη) = L0(η) +
µ2

L1(η)
, (3.9)

with L1(η) defined in (3.7),
∫∞
−∞(η − bηxx)uη dx = 2µ and

L0(η) =
1

2

∫ ∞

−∞
(−cη2

x + η2)dx. (3.10)

The concentration compactness theory developed in [10, 9, 2, 3] will be the center
piece of the arguments. We start by studying L1(η) which requires the investigation
of the operator G(η).

Lemma 3.1. Let G(η) = a∂xx +(1+ η) with a < 0, η ∈ Br where r < 1. Then G−1(η)
maps L2(R) to H2(R) and

(i) (boundedness) ‖G−1(0)f‖L2 ≤ ‖f‖L2, ‖G−1(η)f‖H1 ≤ C‖f‖L2 , where C depends
on r and a, for any f ∈ L2(R);

(ii) (symmetry)

∫ ∞

−∞
fG(η)gdx =

∫ ∞

−∞
gG(η)fdx for any f and g in H1(R), and

∫ ∞

−∞
fG−1(η)g dx =

∫ ∞

−∞
gG−1(η)f dx, for any f and g in L2(R);

(iii) (positivity)

∫ ∞

−∞
fG(η)f dx ≥ 0, for any f in H1(R), and

∫ ∞

−∞
fG−1(η)f dx ≥ 0,

for any f in L2(R);

(iv)

∫ ∞

−∞
fG−1(0)f dx =

∫ ∞

−∞

|f̂ |2
1− a|k|2dk ≤ ‖f‖2

L2, for any f in L2(R),

where the derivatives of f may be considered in a generalized sense.

Proof. In the following, we let h = G−1(η)f , which gives f = ahxx +(1+η)h. The first
part of (i) can be obtained by transforming it into the Fourier space. For the second
part, from

‖h‖2
H1 =

∫ ∞

−∞

(
h2

x + h2
)
dx ≤ 1

min(α,−a)

∫ ∞

−∞

(− ah2
x + (1 + η)h2

)
dx

≤ 1

min(α,−a)

∫ ∞

−∞
(ahxx + (1 + η)h)hdx ≤ 1

min(α,−a)
‖f‖L2‖h‖H1
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with α defined in Theorem 2.1, one obtains (i).
The first part in (ii) is obtained by integration in parts and the second part is

obtained by noticing

∫ ∞

−∞
fG−1(η)gdx =

∫ ∞

−∞
(ahxx + (1 + η)h)G−1(η)gdx =

∫ ∞

−∞
G(η)h(G−1(η)g)dx

=

∫ ∞

−∞
hG(η)(G−1(η)g)dx =

∫ ∞

−∞
hgdx =

∫ ∞

−∞
gG−1(η)fdx.

The statement in (iii) follows from the fact that

∫ ∞

−∞
fG−1(η)f dx =

∫ ∞

−∞

(
− ah2

x + (1 + η)h2
)
dx ≥ 0.

The statement in (iv) comes from G(0) = a∂xx + 1 and f = ahxx + h, then

∫ ∞

−∞
fG−1(0)fdx =

∫ ∞

−∞
fhdx =

∫ ∞

−∞
(−ah2

x + h2)dx

=

∫ ∞

−∞
(−a|k|2 + 1)|ĥ|2dk =

∫ ∞

−∞

|f̂ |2
1− a|k|2dk.

We now study in detail the structure of L1(η) for η small. Letting η ∈ Br and

w = G−1(η)(η − bηxx), (3.11)

one sees that

L1(η) =
1

2

∫ ∞

−∞
wG(η)wdx, (3.12)

which is positive from Lemma 3.1 (iii). We split L1(η) into three parts consisting of
quadratic, cubic and higher-order terms in η respectively by starting from splitting w
into three parts. From (3.11),

(a∂xx + (1 + η))w = (η − bηxx),

G(0)w = η − bηxx − ηw,

and therefore
w = G−1(0)(η − bηxx)−G−1(0)(ηw). (3.13)
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With G−1(0) being a linear bounded operator, (3.13) can be used to give an expansion
of w in terms of η. Specifically, letting w1(η) = G−1(0)(η−bηxx) and using the equation
(3.13) twice, one has

w =w1 −G−1(0)

(
η
(
w1 −G−1(0)(ηw)

))

=w1 −G−1(0)(ηw1) + G−1(0)

(
ηG−1(0)(ηw)

)

=w1(η) + w2(η) + w3(η)

where w2 := −G−1(0)(ηw1) and w3 := G−1(0)

(
ηG−1(0)(ηw)

)
. The following Lemma

gives a relation between the terms w1, w2 and w3.

Lemma 3.2. If
w = G−1(η)(η − bηxx) = w1 + w2 + w3, (3.14)

one has

G(0)w1 = η − bηxx, G(0)w2 = −ηw1, G(0)w3 = −η(w2 + w3). (3.15)

Proof. The first two equalities in (3.15) are the definitions. For the third equality,
applying G(0) on (3.13), G(0)w+ηw = G(0)w1, it is deduced after using the definition
of w2 that

G(0)w3 = −ηw1 − ηw2 − ηw3 −G(0)w2 = −η(w2 + w3).

Substituting (3.14) into (3.12), noticing that G(η) = G(0) + η, and grouping them
in terms of the order in η, one finds

L1(η) =
1

2

∫ ∞

−∞
(w1 + w2 + w3)(G(0) + η)(w1 + w2 + w3)dx

=L1,0(η) + L1,1(η) + L1,2(η) ,

(3.16)

where

L1,0(η) =
1

2

∫ ∞

−∞
w1G(0)w1dx =

1

2

∫ ∞

−∞

(bk2 + 1)2

(1− ak2)
|η̂|2dk ≥ 0,

L1,1(η) =
1

2

∫ ∞

−∞
− ηw2

1dx ,

L1,2(η) =
1

2

∫ ∞

−∞
(w2G(0)w2 + w2G(0)w3)dx

=
1

2

∫ ∞

−∞
(w2G(0)w2 − ηw1w3)dx,

(3.17)

10



with the use of self-adjointness of G(0) and last two equalities of (3.15) to simplify the
terms in L1,2.

Lemma 3.3. For any η ∈ H1(R), there exist positive constants C1, C2, C3 and C4 such
that,

(i) ‖w1‖2
L2 ≤

∫ ∞

−∞

(1 + bk2)2

(1− ak2)2
|η̂|2dk ≤ C1‖η‖2

L2, ‖w1‖H1 ≤ C2‖η‖H1 ;

(ii) ‖w2‖L2 ≤ ‖η‖H1‖w1‖L2, ‖w2‖H1 ≤ C3‖η‖2
H1;

(iii) if η ∈ B 1
2
, ‖w3‖L2 ≤ 2‖η‖H1‖w2‖L2 ;

(iv) if η ∈ Br with r < r0 and r0 ≤ 1
2
min{1,−a}, ‖w3‖H1 ≤ C4‖η‖3

H1 ;

(v) if η ∈ Br0 with r0 chosen in (iv), then ‖w1(η)‖H1 , ‖w2(η)‖H1 , and ‖w3(η)‖H1 are
bounded by a constant.

Proof. From the expression w1(η) = G−1(0)(η− b ηxx), one obtains the first part of (i)
with the use of Fourier transform. Notice now that

min{1,−a}‖w1‖2
H1 ≤

∫ ∞

−∞
(−a(w1)

2
x + w2

1)dx =

∫ ∞

−∞
w1(η)(η − bηxx)dx

≤ ‖w1(η)‖L2‖η‖L2 + b‖(w1)x‖L2‖ηx‖L2 ≤ max{1, b}‖w1‖H1‖η‖H1 .

From this, the second part of (i) is implied with C2 =
max{1, b}

min{1,−a} .

Similarly, as w2(η) = −G−1(0)(ηw1), Lemma 3.1 (i) implies

‖w2‖L2 ≤ ‖ηw1‖L2 ≤ ‖η‖H1‖w1‖L2

and with a use of (i), one derives that

min{1,−a}‖w2‖2
H1 ≤

∫ ∞

−∞
(−a(w2)

2
x + w2

2)dx =

∣∣∣∣
∫ ∞

−∞
w2(η)ηw1(η)dx

∣∣∣∣
≤ ‖w2(η)‖L2‖ηw1(η)‖L2 ≤ ‖w2(η)‖L2‖η‖H1‖w1(η)‖L2 ≤ C2‖w2‖H1‖η‖2

H1

which gives (ii), with C3 =
C2

min{1,−a} .

From Lemma 3.2, namely w3 = −G−1(0)[η(w2 + w3)], one therefore has

‖w3‖L2 ≤ ‖η(w2 + w3)‖L2 ≤ ‖η‖H1‖w2‖L2 + ‖η‖H1‖w3‖L2 .
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So

‖w3‖L2 ≤ ‖η‖H1

1− ‖η‖H1

‖w2‖L2 ≤ 2‖η‖H1‖w2‖L2 . (3.18)

Similarly,

min{1,−a}‖w3‖2
H1 ≤

∫ ∞

−∞
(−a(w3)

2
x + w2

3) dx =

∣∣∣∣
∫ +∞

−∞
w3G(0)w3 dx

∣∣∣∣

=

∣∣∣∣
∫ ∞

−∞
ηw2(η)w3(η)dx +

∫ ∞

−∞
ηw2

3(η)dx

∣∣∣∣ ≤ ‖η‖H1‖w2(η)‖L2‖w3(η)‖L2

+ ‖η‖H1‖w3(η)‖2
L2 ≤ C3‖w3(η)‖L2‖η‖3

H1 + ‖w3(η)‖2
L2‖η‖H1 .

from which one obtains that

(min{1,−a} − ‖η‖H1)‖w3(η)‖2
H1 ≤ C3‖w3(η)‖H1‖η‖3

H1 .

Choosing r0 ≤ 1
2
min{1,−a}, one has

‖w3‖H1 ≤ C4‖η‖3
H1

with C4 = 2C3

min{1,−a} . Since r0 < 1 and η ∈ Br0 ,

max{‖w1(η)‖H1 , ‖w2(η)‖H1 , ‖w3(η)‖H1} ≤ r0 max{C2, C3, C4}
.

Lemma 3.4. For η ∈ H1(R), let

H0(η) = L0(η) +
µ2

L1,0(η)
.

Then

(i) H0(η) ≥ 2µ > 0, and

(ii) there exists a sequence {ηα}α∈(0,1) in H1(R) with lim
α→0

‖ηα‖2
H1 = 2µ such that

lim
α→0

H0(ηα) = 2µ.

Proof. Notice first that ac ≥ b2 from (1.6) implies−a−c ≥ 2b since (a+c)2 ≥ 4ac ≥ 4b2.
Therefore for any k, (−ck2 + 1)(−ak2 + 1) ≥ (bk2 + 1)2, and it follows from (3.10) and
(3.17) that

L0(η)

L1,0(η)
=

∫ ∞

−∞
(−ck2 + 1)|η̂|2dk

∫ ∞

−∞

(bk2 + 1)2

−ak2 + 1
|η̂|2dk

≥ 1.

12



Consequently, one has by using Cauchy-Schwartz inequality,

H0(η) = L0(η) +
µ2

L1,0(η)
≥ 2

√
µ2L0(η)

L1,0(η)
≥ 2µ > 0.

For (ii), let f be a function in H1(R) with

∫ ∞

−∞
f 2(x)dx = 1. Let ηα = Af(αx), where

A2 = 2µα (this α is not related to the small parameter defined in (1.3)) and we study
limα→0H0(ηα). It is observed that

L0(ηα) =
A2

2

∫ ∞

−∞

[
− cα2

(
f ′(αx)

)2
+ f 2(αx)

]
dx = µ− µ

∫ ∞

−∞
cα2k2|f̂ |2dk −→ µ

as α → 0, which also yields that limα→0 ‖ηα‖2
H1 = 2µ by replacing −c = 1. Now for

the term L1,0(ηα), by changing variable y = αx,

∫ ∞

−∞
ηα(x)G−1(0)ηα(x)dx = 2µ

∫ ∞

−∞
f(y)(aα2∂yy + 1)−1f(y)dy = 2µ

∫ ∞

−∞

|f̂ |2
1− aα2k2

dk

= 2µ

∫ ∞

−∞
|f̂ |2dk + 2µ

∫ ∞

−∞

aα2k2|f̂ |2
1− aα2k2

dk = 2µ + 2µ

∫ ∞

−∞

aα2k2|f̂ |2
1− aα2k2

dk.

Using the same technique, it shows

L1,0(ηα) =
1

2

∫ ∞

−∞
w1G(0)w1dx =

1

2

∫ ∞

−∞

(
ηα − b(ηα)xx

)
G−1(0)

(
ηα − b(ηα)xx

)
dx

= µ

∫ ∞

−∞
|f̂ |2 (1 + bk2α2)2

1− ak2α2
dk = µ +

∫ ∞

−∞
|f̂ |2 (1 + bk2α2)2 − 1 + ak2α2

1− ak2α2
dk → µ

as α → 0. Consequently,
lim
α→0

H0(ηα) = 2µ.

To establish the lower and upper bounds for L1,0,L1,1 and L1,2 in Lemma 3.6, the
following inequalities are needed.

Lemma 3.5. Let η ∈ H1(R) with ‖η‖H1 ≤ 1/2. Then

|L1,1(η)|+ |L1,2(η)| ≤ ‖η‖H1(1 + ‖η‖H1 + 2‖η‖2
H1)L1,0(η).
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Proof. From Lemma 3.3 (i) and the first equation in (3.17), we have

‖w1‖2
L2 ≤ 2L1,0(η). (3.19)

Therefore

|L1,1(η)| =
∣∣∣∣
1

2

∫ ∞

−∞
ηw2

1dx

∣∣∣∣ ≤
1

2
‖η‖H1‖w1‖2

L2 ≤ ‖η‖H1L1,0(η).

The first term in L1,2(η) (defined in (3.17)) can be bounded by using Lemma 3.1
(iv) and (3.19), namely

1

2

∫ ∞

−∞
w2G(0)w2dx =

1

2

∫ ∞

−∞
(ηw1)G

−1(0)(ηw1)dx ≤ 1

2
‖ηw1‖2

L2

≤ 1

2
‖η‖2

H1‖w1‖2
L2 ≤ ‖η‖2

H1L1,0(η) .

From Lemma 3.3 (ii), (iii), the second term is bounded by

1

2
|
∫ ∞

−∞
ηw1w3dx| ≤ 1

2
‖η‖H1‖w1‖L2‖w3‖L2

≤ ‖η‖2
H1‖w1‖L2‖w2‖L2 ≤ ‖η‖3

H1‖w1‖2
L2 ≤ 2‖η‖3

H1L1,0(η).

The lemma is obtained by combining above inequalities.

The upper and lower bounds on H(η) are given in the next lemma. It is worth to
note that the upper bound is for information only and is not used in the rest of the
paper.

Lemma 3.6. There exists an r0 with 0 < r0 ≤ 1/2 such that for 0 < ‖η‖H1 < r0, one
has

1

2
min{−c, 1}‖η‖2

H1 ≤ H(η) ≤ 1

2
max{−c, 1}‖η‖2

H1 + 4µ2 max{1,−a}
(min{1, b})2‖η‖2

H1

. (3.20)

Proof. The left inequality is true because (3.9) and L1(η) ≥ 0 from Lemma 3.1 (iii).
Using Lemma 3.5, it is possible to find 0 < r0 ≤ 1/2 such that when 0 < ‖η‖H1 < r0,
one has

|L1,1(η)|+ |L1,2(η)| ≤ L1,0(η)

2
. (3.21)

Consequently, from (3.17),

L1(η) ≥ L1,0(η)− |L1,1(η)| − |L1,2(η)| ≥ 1

2
L1,0(η) ≥ 1

4

(min{1, b})2

max{1,−a}‖η‖
2
H1 > 0 (3.22)

which leads to the advertised bounds.
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The following Lemma is used in Lemma 3.8 which establishes an upper bound on
the minimization of H(η) in terms of µ.

Lemma 3.7. For any f ∈ H1(R) and for any 0 < µ < 1

∣∣∣∣2µ2L1,1(f(µ2x)) +

∫ ∞

−∞
f 3(x)dx

∣∣∣∣ ≤ Cµ2‖f‖3
H1

where C =
2|a + b|√−a

+
(a + b)2

−a
.

Proof. From the definition of L1,1(η) and a change of variable y = µ2x, one finds

2µ2L1,1(f(µ2x)) = −
∫ ∞

−∞
f

{
(1 + aµ4∂xx)

−1(1− bµ4∂xx)f

}2

dx = −
∫ ∞

−∞
f 3(x)dx

+ 2(a + b)µ4

∫ ∞

−∞
f 2(1 + aµ4∂xx)

−1fxxdx− (a + b)2µ8

∫ ∞

−∞
f [(1 + aµ4∂xx)

−1fxx]
2dx

by noticing

(1 + aµ4∂xx)
−1(1− bµ4∂xx)f = f − (a + b)µ4(1 + aµ4∂xx)

−1fxx.

Therefore
∣∣∣∣2µ2L1,1(f(µ2x)) +

∫ ∞

−∞
f 3(x)dx

∣∣∣∣
≤ 2|a + b|µ4‖f‖2

H1‖(1 + aµ4∂xx)
−1fxx‖L2 + (a + b)2µ8‖f‖H1‖(1 + aµ4∂xx)

−1fxx‖2
L2 .

(3.23)

Since
∥∥∥∥
√−aµ2

(
(aµ4∂xx + 1)−1fx

)∥∥∥∥
2

L2

=

∫ ∞

−∞

−aµ4k2

(1− aµ4k2)2
|f̂(k)|2dk ≤ ‖f‖2

L2 ,

one has
‖√−aµ2(aµ4∂xx + 1)−1fxx‖2

L2 ≤ ‖fx‖2
L2 ≤ ‖f‖2

H1 ,

which yields the conclusion of the lemma by applying it in (3.23).

The next lemma gives an upper bound for the minimization of H(η).

Lemma 3.8. There exists a µ0, where 2µ0 + 2µ5
0 ≤ 1

4
and for any µ < µ0, there exists

a function g ∈ H1(R) such that ‖g‖2
H1 = 2µ + 2µ5, and H(g) < 2µ−C0µ

5/2, where the
constant C0 is positive and independent of µ.
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Proof. Let f be a function in H1(R) with

∫ ∞

−∞
f 2(x)dx =

∫ ∞

−∞
f 2

xdx = 1,

∫ ∞

−∞
f 3(x)dx <

0, which gives ‖f‖H1 =
√

2. Let g(x) = Af(µ2x) where A2 = 2µ3. Then

‖g‖2
H1 = 2

∫ ∞

−∞
(µ5f 2

x + µf 2)dx = 2µ + 2µ5 = O(µ).

The requirement on µ0 guarantees that g ∈ B 1
2

and µ0 < 1. Thus, Lemma 3.3(iii) and
Lemma 3.7 are valid.

We now start the computation of H(g) term by term.

L0(g) = µ− µ5

∫ ∞

−∞
cf 2

x(x)dx = µ− cµ5,

L1,0(g) =
1

2

∫ ∞

−∞
(g − bgxx)G

−1(0)(g − bgxx)dx

=
1

2

A2

µ2

∫ ∞

−∞
(f − bµ4fyy)(aµ4∂yy + 1)−1(f − bµ4fyy)dy

= µ + µ

∫ ∞

−∞

(1 + bµ4k2)2 − 1 + aµ4k2

1− aµ4k2
|f̂ |2dk,

which leads to
|L1,0(g)− µ| ≤ Cµ5 ≤ Cµ3.

The next term in L1(g) reads

L1,1(g) = A3L1,1(f(µ2x)) = 2
3
2 µ

9
2L1,1(f(µ2x)).

Using Lemma 3.7,

|L1,1(g) +
√

2µ
5
2

∫ ∞

−∞
f 3(x)dx| ≤

√
2µ

5
2

∣∣∣∣2µ2L1,1(f(µ2x)) +

∫ ∞

−∞
f 3(x)dx

∣∣∣∣ ≤ Cµ
9
2 ≤ Cµ3.

For L1,2, one has, by using Lemma 3.3 (i), (ii) and (iii), ‖w3(g)‖L2 ≤ C‖g‖3
H1 . Hence,

by Lemma 3.3(i)

|L1,2(g)| = 1

2

∣∣∣
∫ ∞

−∞
(w2G(0)w2 − gw1w3)dx

∣∣∣ =
1

2

∣∣∣
∫ ∞

−∞

(
(gw1)G

−1(0)(gw1)− gw1w3

)
dx

∣∣∣

≤ 1

2

∣∣∣
∫ ∞

−∞
g2w2

1dx
∣∣∣ +

1

2

∣∣∣
∫ ∞

−∞
gw1w3dx

∣∣∣

≤ 1

2
‖g‖2

L4‖w1‖2
L4 +

1

2
‖gx‖

1
2

L2‖g‖
1
2

L2‖w1‖L2‖w3‖L2

≤ C(‖g‖2
L4‖w1‖H1‖w1‖L2 + ‖gx‖

1
2

L2‖g‖
1
2

L2‖g‖4
H1)

≤ C(‖g‖2
L4‖g‖2

H1 + ‖gx‖
1
2

L2‖g‖
9
2

H1).
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From the construction of g(x), one has ‖g‖H1 = O(
√

µ) , ‖gx‖L2 = O(µ
5
2 ) , and

‖g‖L4 = o(µ), it is concluded L1,2(g) ≤ Cµ3. With those calculations at hand, it is
deduced that

L1(g) = µ

{
1−

√
2µ3/2

∫ ∞

−∞
f 3(x)dx + O(µ2)

}
,

and therefore
µ2

L1(g)
= µ

{
1 +

√
2µ3/2

∫ ∞

−∞
f 3(x)dx

}
+ O(µ3)

because L1(g) is continuous with respect to µ. Consequently, one obtains

H(g) = 2µ +
√

2µ5/2

∫ ∞

−∞
f 3(x)dx + O(µ3).

Hence, there is a µ0 with 0 < µ0 ≤ 1/2 such that for 0 < µ < µ0, one has

‖g‖2
H1 = 2µ(1 + µ4), (3.24)

and
H(g) < 2µ− C0µ

5/2

where the positive constant C0 depends on f (and µ0) but not on µ.

4 Convergence of Minimizing Sequences

We now investigate the minimization problem for any r with 0 < r < r0 ≤ 1/2, and
any µ with µ < µ0 ≤ 1/2 and µ < r2/4 such that Lemmas 3.6 and 3.8 hold and the
function g is in Br. Define a real number

c̃(µ) = inf
{η∈Br,‖η‖H1 6=0}

{
H(η) = L0(η) +

µ2

L1(η)

}

and let
C(µ) = {η ∈ Br \ {0}|H(η) = c̃(µ)}

be the set of minimizers of H. A sequence {ηn} ∈ Br \ {0} is called a minimizing se-
quence if lim

n→∞
H(ηn) = c̃(µ). It follows from Lemma 3.8 that c̃(µ) < 2µ−C0µ

5/2. From

now on it is always assumed that Lemmas 3.1-3.8 hold. We now prove the following
two lemmas which will lead to the proof the fact that c̃(µ) is strictly subadditive.

Lemma 4.1. For r ∈ (0, r0) and µ ∈ (0, µ0), let {ηn} ∈ Br \ {0} be a minimizing
sequence. Then there exist positive constants Ci, i = 5, 6, 7 (may depend on µ) and a
positive integer N such that for all n ≥ N ,
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(i) L1,0(ηn) ≥ C5 > 0,

(ii) ‖ηn‖2
H1 ≤ C6µ,

(iii) L1,1(ηn) + L1,2(ηn) ≥ C7 > 0.

Proof. For (i), taking a subsequence {ηnk
} if necessary, suppose to the contrary that

L1,0(ηnk
) → 0. This implies that ‖ηnk

‖H1 → 0 from (3.22). Using (3.21), one has

|L1(η)| ≤ |L1,0(η)|+ |L1,1(η)|+ |L1,2(η)| ≤ 3

2
|L1,0(η)|.

Therefore L1(ηnk
) → 0 and consequently H(ηnk

) →∞, which contradicts with c̃(µ) <
2µ− C0µ

5/2.
Since there exists an N , such that for n > N , H(ηn) < 2µ, Lemma 3.6 then yields

(ii) with C6 =
4

min{1,−c} .

From Lemma 3.4, one can see that

µ2

L1,0(ηn)
− µ2

L1,0(ηn) + L1,1(ηn) + L1,2(ηn)

= H0(ηn)−H(ηn) ≥ 2µ− (2µ− C0µ
5/2) = C0µ

5/2.

Therefore from

L1,1(ηn) + L1,2(ηn) ≥ C0µ
1/2L1,0(ηn)

(
L1,0(ηn) + L1,1(ηn) + L1,2(ηn)

)

and (3.21), one obtains

L1,1(ηn) + L1,2(ηn) ≥ C0

2
µ1/2L2

1,0(ηn) ≥ C0

2
C2

5µ
1/2 = C7 > 0.

Lemma 4.2. There exists a µ0(r) > 0 such that for σ > 1 and µ > 0 satisfying
σµ < µ0(r), one has c̃(σµ) < σc̃(µ).

Proof. Let {ηn} be a minimizing sequence for c̃(µ), that is

lim
n→∞

H(ηn) = c̃(µ) and ‖ηn‖H1 ≤ r.

From Lemma 4.1, ‖ηn‖2
H1 ≤ C6µ for n ≥ N . Now, to study c̃(σµ) one considers the

sequence {√σηn}. Because

‖√σηn‖2
H1 ≤ σC6µ ≤ C6µ0(r),
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by requiring µ0(r) ≤ r2

4C6
, we have {√σηn} ∈ Br/2 ⊂ Br for n ≥ N . Therefore, for

n ≥ N ,
c̃(σµ) ≤ L0(

√
σηn) + (σµ)2/L1(

√
σηn).

Now if one can show that

1

L1(
√

σηn)
≤ 1

σL1(ηn) + C7(σ3/2 − σ)
(4.1)

with C7 > 0 defined in Lemma 4.1, then

L0(
√

σηn) + (σµ)2/L1(
√

σηn)

≤ σL0(ηn) + (σµ)2
( 1

σL1(ηn)
− C7(σ

3/2 − σ)

σL1(ηn)(σL1(ηn) + C7(σ3/2 − σ))

)

≤ σc̃(µ)− σµ2 C7(σ
3/2 − σ)

L1(ηn)(σL1(ηn) + C7(σ3/2 − σ))
.

Since |L1(ηn)| ≤ 3
2
|L1,0(ηn)| ≤ C‖ηn‖2

H1 by letting n →∞ and noticing that L1(ηn) is
bounded and positive, one obtains that the limit of the last term is strictly negative
and therefore arrives at

c̃(σµ) < σc̃(µ),

the desired strict inequality of the lemma.
We now start the proof of (4.1), or equivalently, because the denominators are

positive,

L1,1(
√

σηn) + L1,2(
√

σηn) ≥ σ(L1,1(ηn) + L1,2(ηn)) + C7(σ
3/2 − σ) .

From the forms of L1,1 and L1,2, one has by using (3.17) and Lemma 4.1 (iii),

L1,1(
√

σηn) + L1,2(
√

σηn)− σ(L1,1(ηn) + L1,2(ηn)) = (σ3/2 − σ)
(L1,1(ηn) + L1,2(ηn)

)

+ L1,2(
√

σηn)− σ3/2L1,2(ηn) ≥ C7(σ
3/2 − σ) + L1,2(

√
σηn)− σ3/2L1,2(ηn).

So the only thing remaining to show is that L1,2(
√

σηn)− σ3/2L1,2(ηn) ≥ 0 for n ≥ N .
Denote η̃n =

√
σηn, w1(η̃n) = w̃1 =

√
σw1, w2(η̃n) = w̃2 = σw2 and w3(η̃n) = w̃3.

Using (3.17) and Lemma 3.2, one can see that

L1,2(η̃n)−σ3/2L1,2(ηn)

=
1

2

∫ ∞

−∞

(
σ2w2G(0)w2 + σw2G(0)w̃3 − σ

3
2

(
w2G(0)w2 + w2G(0)w3

))
dx

=
1

2

∫ ∞

−∞

(
(σ2 − σ

3
2 )w2G(0)w2 − σw2η̃n(w̃2 + w̃3) + σ

3
2 w2ηn(w2 + w3)

)
dx

19



=
1

2

∫ ∞

−∞

[
(σ2 − σ3/2)w2G(0)w2 − (σ5/2 − σ3/2)ηnw2

2 − σ3/2ηnw2(w̃3 − w3)
]
dx

≥ 1

2

{
(σ2 − σ3/2)‖w2‖2

L2 − (σ5/2 − σ3/2)‖ηn‖H1‖w2‖2
L2

− σ3/2‖ηn‖H1‖w2‖L2‖w̃3 − w3‖L2

}
.

Using Lemma 3.1(i), Lemma 3.3 (iii) and the fact that η̃n ∈ B r
2
⊂ B 1

2
, one has

‖w̃3 − w3‖L2 = ‖G−1(0)
(
η̃n(w̃2 + w̃3)

)−G−1(0)
(
ηn(w2 + w3)

)‖L2

≤ ‖η̃n(w̃2 + w̃3)− ηn(w2 + w3)‖L2

≤ ‖η̃n(w̃3 − w3) + η̃n(w̃2 − w2)‖L2 + ‖(η̃n − ηn)(w2 + w3)‖L2

≤ ‖η̃n‖H1‖w̃3 − w3‖L2 + ‖η̃n‖H1‖w̃2 − w2‖L2 + (
√

σ − 1)(‖w3‖L2 + ‖w2‖L2)‖ηn‖H1

≤ 1

2
‖w̃3 − w3‖L2 + (σ − 1)

√
σ‖ηn‖H1‖w2‖L2 + 2(

√
σ − 1)‖ηn‖H1‖w2‖L2 .

Therefore

‖w̃3 − w3‖L2 ≤ 2(σ3/2 +
√

σ − 2)‖ηn‖H1‖w2‖L2 ≤ 4(σ3/2 − 1)‖ηn‖H1‖w2‖L2 .

Consequently, from Lemma 4.1, one arrives at

L1,2(η̃n)− σ3/2L1,2(ηn)

≥ 1

2

{
(σ2 − σ3/2)‖w2‖2

L2 − (σ5/2 − σ3/2)‖ηn‖H1‖w2‖2
L2 − 4σ3/2(σ3/2 − 1)‖ηn‖2

H1‖w2‖2
L2

}

≥ (σ2 − σ3/2)

2
‖w2‖2

L2

{
1− σ5/2 − σ3/2

σ2 − σ3/2
‖ηn‖H1 − 4σ3/2(σ3/2 − 1)

σ2 − σ3/2
‖ηn‖2

H1

}

≥ (σ2 − σ3/2)

2
‖w2‖2

L2

{
1− 2σ1/2‖ηn‖H1 − 12σ‖ηn‖2

H1

}

≥ (σ2 − σ3/2)

2
‖w2‖2

L2(1− 2
√

C6

√
µ0(r)− 12C6µ0(r)) ≥ 0

by noticing
σ2 − σ

σ2 − σ3/2
≤ 2,

σ3/2 − 1

σ1/2 − 1
≤ 3σ and by requiring µ0(r) to satisfy

1− 2
√

C6

√
µ0(r)− 12C6µ0(r) ≥ 0. (4.2)

Therefore, by choosing µ0(r) ≤ r2

4C6
satisfying (4.2), the lemma is proved.
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Corollary 4.3. With the same µ0(r) as in Lemma 4.2, for µ1, µ2 > 0 with µ1 + µ2 <
µ0(r), one has

c̃(µ1 + µ2) < c̃(µ1) + c̃(µ2).

Proof. If µ1 6= µ2, we assume µ1 > µ2 without loss of generality. Using Lemma 4.2
twice, one has

c̃(µ1 + µ2) = c̃
(
µ1(1 +

µ2

µ1

)
)

< (1 +
µ2

µ1

)c̃(µ1) = c̃(µ1) +
µ2

µ1

c̃(µ1)

= c̃(µ1) +
µ2

µ1

c̃(
µ1

µ2

µ2) < c̃(µ1) + c̃(µ2).

If µ1 = µ2, then

c̃(µ1 + µ2) = c̃(2µ1) < 2c̃(µ1) = c̃(µ1) + c̃(µ2).

Let ηn ∈ Br be a minimizing sequence and consider the associated concentration
function ρn(x) = −c(η′n)2 + η2

n. As ‖ηn‖H1 < r for all n, we can extract a subsequence
which we again denote as ηn, so that

β = lim
n→∞

∫ ∞

−∞
ρn(x)dx

exists. Define a sequence of nondecreasing function Mn : [0,∞) → [0, β] as follows

Mn(s) = sup
y∈R

∫ y+s

y−s

(−c|η′n|2 + |ηn|2)dx = sup
y∈R

∫ y+s

y−s

ρn(x)dx.

As Mn(s) is a uniformly bounded sequence of nondecreasing function in s, one can show
that it has a subsequence, which we still denote as Mn, that converges point-wisely to
a nondecreasing limit function M(s) : [0,∞) → [0, β]. Let

β0 = lim
s→∞

M(s) :≡ lim
s→∞

lim
n→∞

Mn(s) = lim
s→∞

lim
n→∞

sup
y∈R

∫ y+s

y−s

ρn(x)dx.

Then 0 ≤ β0 ≤ β.
Lions’ Concentration Compactness Lemma [9, 10] shows that there are three pos-

sibilities for the value of β0:

• Case 1: (Vanishing) β0 = 0. Since M(s) is non-negative and non-decreasing, this

is equivalent to saying M(s) = lim
n→∞

Mn(s) = lim
n→∞

sup
y∈R

∫ y+s

y−s

ρn(x)dx = 0 for all

s < ∞, or
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• Case 2: (Dichotomy) β0 ∈ (0, β), or

• Case 3: (Compactness) β0 = β, which implies that there exists {yn}n=1 ∈ R
such that ρn(· + yn) is tight, namely, for all ε > 0, there exists s < ∞ such that∫ yn+s

yn−s

ρn(x)dx ≥ β − ε.

Lemma 4.4. (Vanishing cannot occur.) There exists a γ > 0 such that

lim
n→∞

Mn

(
1

2

)
= lim

n→∞
sup
y∈R

∫ y+1/2

y−1/2

ρn(x)dx ≥ γ.

Therefore
β0 ≥ γ > 0.

Proof. Suppose that lim
n→∞

sup
y∈R

∫ y+1/2

y−1/2

ρn(x)dx = 0. Let Ij = [j − 1/2, j + 1/2]. On Ij,

one can see that,

(sup
x∈Ij

|ηn(x)|)2 ≤ C

∫

Ij

(η′n(s))2 + (ηn(s))2 ds ≤ C sup
y∈R

∫ y+1/2

y−1/2

ρn(x)dx −→ 0,

as n → ∞. From the expressions of L1,1 and L1,2 in (3.17) and Lemma 3.3, it is
deduced that

|L1,1(ηn) + L1,2(ηn)|

=
1

2

∣∣∣∣∣
∞∑

j=−∞

∫

Ij

−ηnw
2
1(ηn) + w2(ηn)G(0)w2(ηn)− ηnw1(ηn)w3(ηn)dx

∣∣∣∣∣

≤ 1

2

∞∑
j=−∞

sup
x∈Ij

|ηn|
∫

Ij

(∣∣∣w2
1(ηn)

∣∣∣ +
∣∣∣w1(ηn)w2(ηn)

∣∣∣ +
∣∣∣w1(ηn)w3(ηn)

∣∣∣
)

dx

≤ C

√
sup
y∈R

∫ y+1/2

y−1/2

ρn(x)dx

×
∫ ∞

−∞

(∣∣∣w2
1(ηn)

∣∣∣ +
∣∣∣w1(ηn)w2(ηn)

∣∣∣ +
∣∣∣w1(ηn)w3(ηn)

∣∣∣
)

dx

≤ C‖ηn‖2
H1

√
sup
y∈R

∫ y+1/2

y−1/2

ρn(x)dx.
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Upon letting n →∞, one arrives at L1,1(ηn) +L1,2(ηn) → 0, a contradiction to (iii) in
Lemma 4.1. Consequently, it follows that

β0 = lim
s→∞

M(s) ≥ M(1/2) = lim
n→∞

Mn(1/2) ≥ γ > 0.

We now turn our attention to the possibility of having dichotomy, that is 0 < β0 <
β. Assume 0 < β0 < β, we will construct two sequences ρ1,n, ρ2,n ≥ 0 with properties
stated in the lemma below, and prove this will lead to a contradiction with the strict
subadditivity proved in Corollary 4.3.

Given any ε > 0, for all sufficiently large values of s, one has

β0 − (ε/2) < M(s) ≤ M(2s) ≤ β0. (4.3)

Suppose for the moment that a large value of s has been chosen so that (4.3) holds.
Then one can choose N large enough that

β0 − ε ≤ Mn(s) ≤ Mn(2s) ≤ β0 + ε

for all n ≥ N . Hence for each n ≥ N , there exists a yn such that

∫ yn+s

yn−s

ρn(x)dx ≥ β0 − ε and

∫ yn+2s

yn−2s

ρn(x)dx ≤ β0 + ε.

Now choose a function φ ∈ C∞
0 [−2, 2] such that φ = 1 on [−1, 1] with 0 ≤ φ ≤ 1,

and let ψ ∈ C∞(R) satisfy φ + ψ = 1 on R. For each s ∈ R, let φs(x) = φ(x
s
) and

ψs(x) = ψ(x
s
) and define

η1,n(x) = φs(x− yn)ηn(x) and η2,n(x) = ψs(x− yn)ηn(x). (4.4)

Set
ρ1,n = −c(η′1,n)2 + η2

1,n and ρ2,n = −c(η′2,n)2 + η2
2,n.

Notice that both η1,n and η2,n depend on s (which has been chosen for the moment
large enough so that (4.3) holds) and hence so do ρ1,n and ρ2,n. One can verify the
following

Lemma 4.5. For every ε > 0, there exist S and N large enough such that for n ≥ N
and s ≥ S,

(a)

∣∣∣∣
∫ ∞

−∞
ρ1,n(x)dx− β0

∣∣∣∣ ≤ 2ε,
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(b)

∣∣∣∣
∫ ∞

−∞
ρ2,n(x)dx− (β − β0)

∣∣∣∣ ≤ 2ε,

(c)

∣∣∣∣
∫ ∞

−∞

(
ρn(x)− (ρ1,n(x) + ρ2,n(x))

)
dx

∣∣∣∣ ≤ 4ε .

Proof. The proof follows the same way used in [3].

(a) Consider

∫ ∞

−∞
ρ1,n(x)dx =

∫ ∞

−∞
[−c(η′1,n)2 + η2

1,n]dx

= −c

∫ ∞

−∞
φ2(

x− yn

s
)
(
η′n(x)

)2
dx +

∫ ∞

−∞
φ2(

x− yn

s
)η2

n(x)dx

− c
1

s2

∫ ∞

−∞
[φ′(

x− yn

s
)ηn(x)]2dx− c

2

s

∫ ∞

−∞
φ′(

x− yn

s
)φ(

x− yn

s
)ηn(x)η′n(x)dx

≤
∫ yn+2s

yn−2s

ρn(x)dx + C/s ,

(4.5)

where the constant C is positive and independent of n and s. By choosing s large
enough, one can guarantee that C/s ≤ ε. Then

∫ ∞

−∞
ρ1,n(x)dx ≤

∫ yn+2s

yn−2s

ρn(x)dx + ε ≤ β0 + 2ε. (4.6)

On the other hand, from (4.5) one has

∫ ∞

−∞
ρ1,n(x)dx ≥

∫ yn+s

yn−s

ρn(x)dx− C/s ≥ β0 − 2ε. (4.7)

Combining (4.6) and (4.7) there obtains statement (a).

(b) Consider

∫ ∞

−∞
ρ2,n(x)dx =

∫ ∞

−∞
[−c(η′2,n)2 + η2

2,n]dx

= −c

∫ ∞

−∞
ψ2(

x− yn

s
)
(
η′n(x)

)2
dx +

∫ ∞

−∞
ψ2(

x− yn

s
)η2

n(x)dx

− c
1

s2

∫ ∞

−∞
[ψ′(

x− yn

s
)ηn(x)]2dx− c

2

s

∫ ∞

−∞
ψ′(

x− yn

s
)ψ(

x− yn

s
)ηn(x)η′n(x)dx

≤
∫ yn−s

−∞
ρn(x)dx +

∫ ∞

yn+s

ρn(x)dx + C̃/s
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where the positive constant C̃ is independent of n and s. By choosing s large enough,
one can guarantee that C̃/s ≤ ε/2. Then

∫ ∞

−∞
ρ2,n(x)dx ≤

∫ yn−s

−∞
ρn(x)dx +

∫ ∞

yn+s

ρn(x)dx + ε/2

=

∫ ∞

−∞
ρn(x)dx−

∫ yn+s

yn−s

ρn(x)dx + ε ≤ β − β0 + 2ε.

(4.8)

Again, on the other hand,
∫ ∞

−∞
ρ2,n(x)dx ≥

∫ yn−2s

−∞
ρn(x)dx +

∫ ∞

yn+2s

ρn(x)dx− C̃/s ≥ β − β0 − 2ε. (4.9)

Combining (4.8) and (4.9) there derives statement (b).

Statement (c) follows from (a) and (b) and an application of the triangular inequal-
ity.

Lemma 4.6. Dichotomy cannot occur either, namely β0 /∈ (0, β)

Proof. For µ < µ0(r), let {ηn} be a minimizing sequence. Consider two sequences
{η1,n} and {η2,n} defined in (4.4). Suppose dichotomy happens. Define

D :≡ L1(η1,n) + L1(η2,n).

From Lemma 4.5, ‖η1,n‖H1 ≥ c0 > 0, ‖η2,n‖H1 ≥ c0 > 0, which implies L1(η1,n) ≥ c1 >
0 and L1(η2,n) ≥ c1 > 0 due to (3.22), and D > 0, where c0, c1 are independent of n.
Let

µ1 = µ
L1(η1,n)

D
, µ2 = µ

L1(η2,n)

D
.

Using the facts that µ1, µ2 > 0 and µ1 + µ2 = µ < µ0(r), one can see that

c̃(µ1) + c̃(µ2) ≤
{

1

2

∫ ∞

−∞

(− c(η′1,n)2 + η2
1,n

)
dx +

µ2
1

L1(η1,n)

}

+

{
1

2

∫ ∞

−∞

(− c(η′2,n)2 + η2
2,n

)
dx +

µ2
2

L1(η2,n)

}

=
1

2

∫ ∞

−∞

(− c(η′1,n)2 + η2
1,n

)
dx +

µ2

D2
L1(η1,n)

+
1

2

∫ ∞

−∞

(− c(η′2,n)2 + η2
2,n

)
dx +

µ2

D2
L1(η2,n). (4.10)

Taking subsequences if necessary, Lemma 4.5 implies that for all n,
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(a)

∣∣∣∣
∫ ∞

−∞
ρ1,n(x)dx− β0

∣∣∣∣ ≤ 2/n,

(b)

∣∣∣∣
∫ ∞

−∞
ρ2,n(x)dx− (β − β0)

∣∣∣∣ ≤ 2/n,

(c)

∣∣∣∣
∫ ∞

−∞

(
ρn(x)− (ρ1,n(x) + ρ2,n(x))

)
dx

∣∣∣∣ ≤ 4/n.

Moreover, we have the following Claim, which will be proved in Appendix 6.1.
Claim: For all n ≥ 0, by taking subsequences if necessary, ηn, η1,n and η2,n satisfy

∣∣∣∣L1(ηn)−
(
L1(η1,n) + L1(η2,n)

)∣∣∣∣ ≤ (C/n),

where C is a constant independent of n.
Then, using the fact that L1(ηn) ≥ C‖ηn‖2

H1 , there follows

c̃(µ1) + c̃(µ2) ≤ 1

2

∫ ∞

−∞

(− c(η′n)2 + η2
n

)
dx +

µ2

L1(η1,n) + L1(η2,n)
+ 4/n

≤ 1

2

∫ ∞

−∞

(− c(η′n)2 + η2
n

)
dx +

µ2

L1(ηn)− C/n
+ 4/n

≤ 1

2

∫ ∞

−∞

(− c(η′n)2 + η2
n

)
dx +

µ2

L1(ηn)

[
1 + O

(
C

nL1(ηn)

)]
+ 4/n

≤ 1

2

∫ ∞

−∞

(− c(η′n)2 + η2
n

)
dx +

µ2

L1(ηn)
+ O

(
n−1

) (‖ηn‖−2
H1 + 1

)
.

Upon letting n →∞ and noticing that lim
n→∞

∫ ∞

−∞
ρndx = β, one arrives at

c̃(µ1) + c̃(µ2) ≤ c̃(µ) = c̃(µ1 + µ2),

a contradiction to the strict subadditivity condition proved in Corollary 4.3.

Now, Lions’ Concentration Compactness Principle guarantees that the minimizing
sequence is compact (possibly up to translation). However, because of the special
variational form H(η) in (3.9), we are unable to extract a subsequence {ηnk

} such that
ηnk

(· + yk) → η strongly in H1(R). Therefore, we need to consider the minimizing
sequence in H2(R). All of the H1(R)−bounds we established earlier are unaffected
since H2-bound certainly implies H1-bounds.
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For r > 0, let Br be defined in (1.8) and define a real number

c0(µ) = inf
{η∈Br,‖η‖H2 6=0}

{
H(η) = H0(η) = L0(η) +

µ2

L1(η)

}

and let
C0(µ) = {η ∈ Br \ {0} | H0(η) = c0(µ)}

be the set of minimizers of H0. A sequence {ηn} ∈ Br \ {0} is called a minimizing
sequence if lim

n→∞
H0(ηn) = c0(µ).

The following shows that Lemma 3.8 is still valid when the function g is taken to
be in H2(R).

Lemma 4.7. There exists a µ0 where 2(µ0 + µ5
0 + µ9

0) ≤ 1
4

and for any µ < µ0, there

exists a function g ∈ H2(R) such that ‖g‖2
H2 = 2(µ+µ5+µ9), and H0(g) < 2µ−C̃0µ

5/2,

where the positive constant C̃0 does not depend on µ.

Proof. Let f be a function in H2(R) such that
∫∞
−∞f 3(x)dx < 0 and

∫ ∞

−∞
f 2(x)dx =

∫ ∞

−∞
f 2

x(x)dx =

∫ ∞

−∞
f 2

xx(x)dx = 1.

Let g(x) = Af(µ2x) where A2 = 2µ3. Then

‖g‖2
H2 = 2

∫ ∞

−∞
(µ9f 2

xx + µ5f 2
x + µf 2)dx = 2(µ + µ5 + µ9) = O(µ).

The rest of the arguments in Lemma 3.8 remains unchanged.

Hence as before, for r < r0 ≤ 1/2, µ < µ0 ≤ 1/2 and µ < r2/4, we can obtain
that the minimizing sequence has a subsequence that is compact. Now, we use the
concentration compactness to show the minimizer is attained.

Theorem 4.8. Let a, c < 0 and b > 0 be real numbers such that ac > b2. For
r ∈ (0, r0) and µ ∈ (0, µ0(r)), let {ηn} ⊂ Br \ {0} be a minimizing sequence. Then
there exist a subsequence {ηnk

}, a sequence of points {yk} in R and η ∈ Br \ {0} such
that ηnk

(·+ yk) → η strongly in H1(R) and H(η) = c0(µ).

Proof. Let η̃nk
(x) denote ηnk

(x + yk) for x ∈ R. Lions’ concentration compactness
principle guarantees that the minimizing sequence is compact, that is for every k ∈ N,
there exists sk ∈ R such that for all sufficiently large n

∫ sk

−sk

ρ̃n(x)dx > β − 1

k
. (4.11)
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Since ‖η̃n‖H2 ≤ C, hence by compact embedding of H2(Ω) ⊂ H1(Ω) for any bounded
Ω, some subsequence η̃nk

−→ converges strongly in H1[−sk, sk] norm to a limit function
η ∈ H1[−sk, sk] satisfying

∫ sk

−sk

(−cη2
x + η2)dx > β − 1

k
. (4.12)

Using (4.11) and (4.12) together with the fact that
∫∞
−∞ρ̃n(x)dx = β, one can assert

that some subsequence of {η̃n} (denoted again by {η̃n} in the following) converges in
H1(R) norm to a nonzero function η ∈ H1(R) satisfying

∫∞
−∞(η2

x + η2)dx = β.
We proceeds now to show that the minimum is indeed attained at η. In Appendix

6.2, we prove the following,

lim
n→∞

‖w1(η̃n)− w1(η)‖H1 = 0, lim
n→∞

‖w2(η̃n)− w2(η)‖H1 = 0,

lim
n→∞

‖w3(η̃n)− w3(η)‖L2 = 0, (4.13)

and
lim

n→∞
‖G−1(η)(η − bηxx)−G−1(η̃n)(η̃n − bη̃nxx)‖H1 = 0. (4.14)

Notice that since η is a weak limit of η̃n in a Hilbert space H2(R), η ∈ H2(R). It
follows from (3.21), (4.13) and (4.14) that

|{L1,1(η̃nk
) + L1,2(η̃nk

)
}− {L1,1(η) + L1,2(η)

}| ≤ C|L1,0(η̃nk
− η)|.

Therefore, L1,1(η̃nk
) + L1,2(η̃nk

) converges to L1,1(η) + L1,2(η). Consequently,

c0(µ) ≤ 1

2

∫ ∞

−∞

(− c(η′)2 + η2
)

+
µ2

L1,0(η) + L1,1(η) + L1,2(η)

= lim
k→∞

{
1

2

∫ ∞

−∞

(− c(η̃′nk
)2 + η̃2

)
+

µ2

L1,0(η̃nk
) + L1,1(η̃nk

) + L1,2(η̃nk
)

}
= c0(µ)

which shows that the minimum is attained at η.

Denote η(x) found in Theorem 4.8 for the critical point of H(η) in Br by η0(x).
Obviously, η0(x) ∈ Br, since η0(x) is the limit of a weakly convergent sequence in Br.
However, one problem is that η0(x) may lie on the boundary of Br (i.e. the critical
points η of H(η) satisfy ‖η‖H2 = r), which means that c0(µ) may depend on r if
we minimize H(η) in Br. We show that this will not happen, that is, if µ satisfies
the conditions for two different r, c0(µ) will be same, which implies that c0(µ) is
independent of r.
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First, for r > 0 and 0 < ε < 1/2, we define

Br,ε = {η(x) ∈ H2(R)
∣∣ ε‖ηxx‖2

L2 + ‖ηx‖2
L2 + ‖η‖2

L2 ≤ r2},
Lε(η) = ε‖ηxx‖2

L2 + L0(η),

and a real number

cε(µ) = inf
{η∈Br,ε,‖η‖H2 6=0}

{
Hε(η) = Lε(η) +

µ2

L1(η)

}

with
Cε(µ) = {η ∈ Br,ε \ {0} | Hε(η) = cε(µ)}

being the set of minimizers of Hε(η). A sequence {ηn,ε} ∈ Br,ε \ {0} is called a mini-
mizing sequence if lim

n→∞
Hε(ηn,ε) = cε(µ). Notice that since H2(R) ⊂ H1(R) hence the

following Lemma holds just like before with straightforward modifications.

Lemma 4.9. Let

Hε,0(η) = Lε(η) +
µ2

L1,0(η)
.

Then

(i) Hε,0(η) ≥ 2µ > 0, and

(ii) there exists a sequence {ηα} in H2(R), lim
α→0

‖ηα‖2
H2 = lim

α→0
‖ηα‖2

H1 = 2µ such that

lim
α→0

Hε,0(ηα) = 2µ.

Now we show that if µ satisfies the conditions for two different r, c0(µ) will be same,
which implies that c0(µ) is independent of r.

Theorem 4.10. c0(µ) is independent of r and the minimizer η ∈ Br satisfies ‖η‖H2 ≤
C
√

µ for some constant C independent µ, r. c0(µ) only depends upon µ if µ satisfies
µ ≤ µ0(r).

This theorem will be proved in Appendix 6.3.
Finally, we show that the minimization problem of H(η) in Br is the same as the

minimization problem of H(η, u) (defined in (1.4)) in Br ×H1(R). For r ∈ (0, r0) and
µ ∈ (0, µ0(r)), consider the following two problems

inf
{H(η, u)

∣∣ (η, u) ∈ Br ×H1(R), I(η, u) = 2µ
}

= A, (4.15)

and
min
η∈Br

min
u∈H1(R)

{H(η, u)
∣∣ I(η, u) = 2µ

}
= B. (4.16)
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We prove that A = B and (4.15) is attained, namely D(r, µ) (defined in (1.9) with
Hr,µ = A) is non-empty and the minimizing sequence converges to D(r, µ).

Clearly, B ≥ A. Suppose now that H(ηi, ui) → H(η, u) = A with (ηi, ui) ∈
Br × H1(R) and H(ηi, ui) is nonincreasing, which is always possible by choosing a
subsequence. For each fixed ηi ∈ Br, a non-trivial minimizer u∗i = u(ηi) ∈ H1(R) for{H(ηi, u)

∣∣I(ηi, u) = 2µ
}

exists. Since for each i,

H(ηi, u
∗
i ) ≤ H(ηi, ui),

it yields
B ≤ min

ηi∈Br

H(ηi, u
∗
i ) ≤ inf

(ηi,ui)∈Br×H1(R)
H(ηi, ui) = A. (4.17)

Therefore, it is concluded that B = A.

5 Stability for the Set of Minimizers

In this section, we show the set of minimizers D(r, µ) is stable under the small pertur-
bation of initial data near D(r, µ).

Theorem 5.1. D(r, µ) is non-empty and for every minimizing sequence {(ηk, uk)} ⊂
Br ×H1(R), there is a subsequence, denoted again by {(ηk, uk)}, such that

dist
(
(ηk, uk), D(r, µ)

) → 0.

Proof. For r ∈ (0, r0) and µ ∈ (0, µ0(r)), let ηn ∈ Br \ {0} be a minimizing sequence
for C0(µ). Due to Theorem 4.8, after possible translations and taking a subsequence
if necessary, {ηn} can be assumed to converge in H1(R) to some η ∈ C0(µ). Let
the Lagrange multiplier λ = ληn and u∗n = u(ηn) be defined as in (3.6) and (3.4)
respectively. One wants to show first that

u∗n → u∗ = u(η) in H1(R).

As ηn converges to η strongly in H1(R), it follows that lim
n→∞

L1(ηn) = L1(η) because of

Lemma 3.6. Consequently, (3.6) implies that lim
n→∞

ληn = λ. Using (3.4), one has

‖u∗ − u∗n‖H1 ≤ ‖λG−1(η)(η − bηxx)− λG−1(ηn)(ηn − b(ηn)xx)‖H1

+ ‖λG−1(ηn)(ηn − b(ηn)xx)− ληnG−1(ηn)(ηn − b(ηn)xx)‖H1

≤ sup |λ|‖G−1(η)(η − bηxx)−G−1(ηn)(ηn − b(ηn)xx)‖H1

+ ‖G−1(ηn)(ηn − b(ηn)xx)‖H1|λ− ληn |.
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Thus
lim

n→∞
‖u∗n − u∗‖H1 = 0.

A straightforward calculation now confirms that

∣∣H(η, u∗)−H(ηn, u∗n)
∣∣ =

∣∣∣∣
1

2

∫ ∞

−∞
(−cη2

x − cu2
x + η2 + u2 + ηu2)dx

− 1

2

∫ ∞

−∞
(−c((ηn)′)2 − c((u∗n)′)2 + η2

n + (u∗n)2 + ηn(u∗n)2)dx

∣∣∣∣ → 0

(5.1)

as n →∞. Thus A = B in (4.15) and (4.16) implies (η, u∗) ∈ D(r, µ).
Moreover, for a minimizing sequence {(ηn, un)} of H(η, u), we can construct u∗n

satisfying (4.17). Then, taking a subsequence if necessary, we have η, u∗ such that
(ηn, u

∗
n) → (η, u∗) in Br × H1(R) satisfying (5.1). By the definition of G(η) in (3.5),

the self-adjointness of G(η) and (5.1), it is straightforward to check that there exists a
C > 0 such that as n → +∞,

C‖un − u∗n‖2
H1 ≤

∫ ∞

−∞
(un − u∗n)G(ηn)(un − u∗n)dx

=

∫ ∞

−∞
(unG(ηn)un + u∗nG(ηn)u∗n)dx− 2

∫ ∞

−∞
unG(ηn)u∗ndx

=

∫ ∞

−∞
(unG(ηn)un + u∗nG(ηn)u∗n)dx− 4ληnµ

=

∫ ∞

−∞
(unG(ηn)un − u∗nG(ηn)u∗n)dx

=H(ηn, un)−H(ηn, u∗n) → 0

which implies (ηn, un) → (η, u∗) ∈ D(r, µ) or dist
(
(ηn, un), D(r, µ)

) → 0 as n →∞.

One can now establish the stability of D(r, µ) based upon Theorem 5.1.

Theorem 5.2. There exists an r0 > 0 such that for r ∈ (0, r0) and µ ∈ (0, µ0(r)), the
following statement is true: For any ε > 0, there exists a δ > 0 such that if

(φ, ψ) ∈ Br ×H2(R), dist
(
(φ, ψ), D(r, µ)

)
< δ,

and if
(
η(x, t), u(x, t)

)
is a solution of (1.1)-(1.2)-(1.6) satisfying η(x, t) ∈ Br with all

t ∈ R+ for the initial data (φ, ψ), then

dist
(
(η(·, t), u(·, t)), D(r, µ)

)
< ε for all t ∈ [0,∞).
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Proof. Suppose to the contrary that there exist a sequence (η0,n, u0,n) ∈ Br × H2(R)
and a sequence (µn) ∈ R such that

dist
(
(η0,n, u0,n), D(r, µ)

)
< 1/n , I(η0,n, u0,n) = 2µn,

and

dist
(
(ηn(·, tn), un(·, tn)), D(r, µ)

) ≥ ε and I(ηn(·, tn), un(·, tn)) = 2µn,

for some tn ∈ [0,∞) and ηn(·, tn) ∈ Br. Since dist
(
(η0,n, u0,n), D(r, µ)

) → 0, using
a subsequence if necessary, there is a sequence (η̃n, ũn) ∈ D(r, µ) such that ‖η0,n −
η̃n‖H1 + ‖u0,n− ũn‖H1 → 0 as → +∞. Since it is obvious that (η̃n, ũn) is a minimizing
sequence of H(η, u) in D(r, µ), by Theorem 5.1, there is a subsequence, again denoted
by the same notation, that converges to (η, u∗) ∈ D(r, µ) in H1 norm. Therefore,

‖η0,n − η‖H1 + ‖u0,n − u∗‖H1 → 0, µn → µ, I(η0,n, u0,n) → I(η, u∗) = 2µ

and
lim

n→∞
H(

ηn(·, tn), un(·, tn)
)

= lim
n→∞

H(η0,n, u0,n) = H(η, u∗) = c̃(µ).

Upon letting η̄n :≡ ηn(tn) and ūn :≡ (µ/µn)un(tn), we obtain that for large n,

dist
(
(η̄n, ūn), D(r, µ)

) ≥ ε/2, lim
n→∞

H(η̄n, ūn) = c̃(µ)

and I(η̄n, ūn) = 2µ, a contradiction to Theorem 5.1. Thus, the proof is completed.

6 Appendices

6.1 Proof of the Claim in the proof of Lemma 4.7

Here, we need to show that for n ≥ 1 the sequences ηn, η1,n and η2.n, (taking subse-
quences if necessary), satisfy

∣∣L1(ηn)− (L1(η1,n) + L1(η2,n)
)∣∣ ≤ C/n (6.1)

for some constant C independent of n.
First, we prove the following:
Consider G(0)u = f(x) where f(x) satisfies

∫ yn−s

yn−2s

|f(x)|2dx +

∫ yn+2s

yn+s

|f(x)|2dx ≤ ε . (6.2)
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If f1 = φs(x − yn)f(x) = φsf(x), f2 = ψs(x − yn)f(x) = ψsf(x) and u1 = G−1(0)f1,
u2 = G−1(0)f2, then

‖ψs(x− yn)u1‖H2 + ‖φs(x− yn)u2‖H2 ≤ C(ε + (‖f‖L2/|s|))

where |s| ≥ S0 for some fixed S0 independent of ε, yn and f .

Proof. Here, we denote φs = φs(x− yn), ψs = ψs(x− yn) and C as a constant indepen-
dent of ε, f, yn. Note that ‖u1‖H2 + ‖u2‖H2 ≤ C‖f‖L2 . By the definition of G(0) in
(3.5),

G(0)(ψsu1) = ψsG(0)u1 + aψsxxu1 + 2aψsxu1x = ψsf1 + aψsxxu1 + 2aψsxu1x . (6.3)

By a similar proof in Lemma 3.3, we have that

‖ψsu1‖H2 ≤ C(‖ψsf1‖L2 + ‖ψsxxu1‖L2 + ‖ψsxu1x‖L2 . (6.4)

Since ‖ψsx‖L2 ≤ C/|s| and ψsf1 is zero for |x− yn| ≥ 2s or |x− yn| ≤ s, then by (6.2)
the estimate follows immediately. A similar proof holds for φsu2.

If f = η − bηxx, then by u1 + u2 = w1 defined in (3.15), we can multiply (3.15) by
ψsu1 and use integration by parts to obtain

‖ψsu1‖H1 ≤ C(‖ψsη1‖H1 + |s|−1) , (6.5)

where η1 = φsη, η2 = ψsη. A similar one holds for φsu2.
Now, we study L1(η). Recall that

L1(η) = L1,0(η) + L1,1(η) + L1,2(η)

where

L1,0(η) =
1

2

∫ ∞

−∞
w1G(0)w1dx =

1

2

∫ ∞

−∞

(bk2 + 1)2

(1− ak2)
|η̂|2dk > 0,

L1,1(η) =
1

2

∫ ∞

−∞
− ηw2

1dx,

L1,2(η) =
1

2

∫ ∞

−∞
(w2G(0)w2 + w2G(0)w3)dx =

1

2

∫ ∞

−∞
(w2G(0)w2 − ηw1w3)dx,

and w1, w2, w3 are defined in (3.15). One proceeds to prove the Claim by taking care
of L1(η) term by term. Note that

w1(ηn) =w1(η1,n) + w1(η2,n) = (φs + ψs)w1(η1,n) + (φs + ψs)w1(η2,n)
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=φsw1(η1,n) + ψsw1(η2,n) + ψsw1(η1,n) + φsw1(η2,n)

where the last two terms are small in L2 using (6.5). Since ηn and its first order
derivative satisfy (6.2),

‖w1(ηn)− (φsw1(η1,n) + ψsw1(η2,n))‖L2 ≤ C(ε + |s|−1)

Thus, by using a similar proof of Lemma 3.3, it is obtained that

L1,0(ηn) =

∫ +∞

−∞
w1(η − bηxx)dx =

∫ +∞

−∞
(w1η + w1xbηx)dx

=

∫ +∞

−∞
((φs + ψs)(w1(η1,n) + w1(η2,n))(η1,n + η2,n)

+ b(φs + ψs)(w1(η1,n) + w1(η2,n))x(η1,n + η2,n)x)dx

=

∫ +∞

−∞
(w1(η1,n)η1,n + w1(η2,n)η2,n + bw1x(η1,n)(η1,n)x

+ bw2x(η2,n)(η2,n)x)dx + O(ε + |s|−1)

= L1,0(η1,n) + L1,0(η2,n) + O(ε + |s|−1) .

Here, the terms with a factor φsψs in front of ηn or ηn,x are of order ε because of (6.2)
for ηn.

The next term to be considered is L1,1. Using a similar proof again, we have

L1,1(ηn) =

∫ ∞

−∞
− ηnw2

1(ηn)dx = −
∫ ∞

−∞
(η1,n + η2,n)[(φs + ψs)(w1(η1,n) + w1(η2,n))]2dx

= −
∫ ∞

−∞

(
(η1,n + η2,n)

(
(φsw1(η1,n))2 + (ψsw1(η2,n))2

))
dx + O(ε + |s|−1)

= −
∫ ∞

−∞

(
η1,n(φsw1(η1,n))2 + η2,n(ψsw1(η2,n))2

)
dx + O(ε + |s|−1)

= −
∫ ∞

−∞

(
η1,nw1(η1,n)2 + η2,nw1(η2,n)2

)
dx = L1,1(η1,n) + L1,1(η2,n) + O(ε + |s|−1) .

Considered next is the first term in L1,2. A straightforward calculation gives
∫ ∞

−∞
w2(ηn)G(0)w2(ηn)dx

=

∫ ∞

−∞

{
− a

(
(φs + ψs)G

−1(0)
(
(φs + ψs)ηnw1(ηn)

))2

x

+

(
(φs + ψs)G

−1(0)
(
(φs + ψs)ηnw1(ηn)

))2}
dx
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=

∫ ∞

−∞

{
− a

(
φsG

−1(0)
(
φsηnw1(ηn)

))2

x

+

(
φsG

−1(0)
(
φsηnw1(ηn)

))2}
dx

+

∫ ∞

−∞

{
− a

(
ψsG

−1(0)
(
ψsηnw1(ηn)

))2

x

+

(
ψsG

−1(0)
(
ψsηnw1(ηn)

))2}
dx

+ O(ε + |s|−1)

=

∫ ∞

−∞

{
− a

(
G−1(0)

(
φsηnw1(φsηn)

))2

x

+

(
G−1(0)

(
φsηnw1(φsηn)

))2}
dx

+

∫ ∞

−∞

{
− a

(
G−1(0)

(
ψsηnw1(ψsηn)

))2

x

+

(
G−1(0)

(
ψsηnw1(ψsηn)

))2}
dx

+ O(ε + |s|−1)

=

∫ ∞

−∞
w2(η1,n)G(0)w2(η1,n)dx +

∫ ∞

−∞
w2(η2,n)G(0)w2(η2,n)dx + O(ε + |s|−1) . (6.6)

For the last term in L1,2, since w1(ηn) = w1(η1,n) + w1(η2,n) + O(ε + |s|−1) and
ηn = η1,n + η2,n, we have

∫ +∞

−∞
ηnw1(ηn)w3(ηn)dx =

∫ +∞

−∞
(η1,nw1(η1,n) + η2,nw1(η2,n)) w3(ηn)dx + O(ε + |s|−1) .

Moreover, from the definition of w2(η), (6.4), (6.5) and the proof of Lemma 3.3, we
obtain

w2(ηn) =G−1(0)(−ηnw1(ηn)) = G−1(0)(−η1,nw1(η1,n)− η2,nw1(η2,n)) + O(ε + |s|−1)

=w2(η1,n) + w2(η2,n) + O(ε + |s|−1).

By the definition of w3 in (3.15), it is obtained that

G(0)w3(ηn) = −ηnw2(ηn)− ηnw3(ηn) , and G(0)w3(ηjn) = −ηj,nw2(ηj,n)− ηj,nw3(ηj,n)

for j = 1, 2. Also,

G(0)φsw3(η2,n) =φsG(0)w3(η2,n) + O(|s|−1)(w3(η2,n) + w3x(η2,n))

=− φs

(
η2,nw2(η2,n)− η2,nw3(η2,n)

)
+ O(|s|−1)(w3(η2,n) + w3x(η2,n)) .

Since the H1-norm of φsη2,n is less than ε, by a similar proof of Lemma 3.3 (iv), we
have that

‖φsw3(η2,n)‖2
H1 ≤ C(ε + |s|−1) .

A similar calculation holds for ψsw3(η1,n). Let w = w3(ηn)−w3(η1,n)−w3(η2,n). Then

G(0)w = −ηnw2(ηn) + η1,nw2(η1,n) + η2,nw2(η2,n)
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− ηnw3(ηn) + η1,nw3(η1,n) + η2,nw3(η2,n)

= −ηnw − ψsηnw3(η1,n)− φsηnw3(η2,n)

+ (−ηnw2(ηn) + η1,nw2(η1,n) + η2,nw2(η2,n)). (6.7)

Note that last three terms in (6.7) are of order O(ε + |s|−1). Again, by using a
similar proof of Lemma 3.3 (iv), we obtain

‖w‖2
H1 ≤ C(ε + |s|−1) ,

which implies

∫ +∞

−∞
ηnw1(ηn)w3(ηn)dx =

∫ +∞

−∞

(
η1,nw1(η1,n) + η2,nw1(η2,n)

)

×
(
w3(η1,n) + w3(η2,n)

)
dx + O(ε + |s|−1) .

Then, by a similar inequality as (6.4) again, we have

∫ +∞

−∞
ηnw1(ηn)w3(ηn)dx =

∫ +∞

−∞

(
η1,nw1(η1,n)w3(η1,n) + η2,nw1(η2,n)w3(η2,n))

)
dx

+ O(ε + |s|−1) . (6.8)

Combining (6.6) and (6.8) yields

L1,2(ηn) = L1,2(η1,n) + L1,2(η2,n) + O(ε + |s|−1) .

Now, if we choose s large enough and a subsequence of ηn if necessary, (6.1) is obtained.

6.2 Proof of (4.13) and (4.14)

Here, we first prove the following,

(1) lim
n→∞

‖w1(ηn)− w1(η)‖H1 = 0, (2) lim
n→∞

‖w2(ηn)− w2(η)‖H1 = 0,

(3) lim
n→∞

‖w3(ηn)− w3(η)‖L2 = 0,

where, for simplicity, we write ηn = η̃n.
Recall that

w1(η) = G−1(0)(η − bηxx), w2(η) = −G−1(0)(ηw1(η)),

w3(η) = −G−1(0)[η(w2(η) + w3(η))].
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To prove (1), for a minimizing sequence {ηn} ∈ Br \ {0}, Lemma 3.3 assures that
‖wi(ηn)‖H1 ≤ Ci, i = 1, 2, 3. Notice now that if one lets G−1(0)(ηnxx − ηxx) = gn, then

∫ ∞

−∞
(−ag2

nx + g2
n)dx = −

∫ ∞

−∞
gnx(ηnx − ηx)dx ≤ ‖gnx‖L2‖ηnx − ηx‖L2 → 0

as n → ∞. Thus, lim
n→∞

‖G−1(0)(ηnxx − ηxx)‖H1 = 0. Similarly, one can show that

lim
n→∞

‖G−1(0)(ηn − η)‖H1 = 0. Consequently,

lim
n→∞

‖w1(ηn)− w1(η)‖H1 = lim
n→∞

‖G−1(0)[(ηn − η)− b(ηnxx − ηxx)]‖H1

≤ lim
n→∞

‖G−1(0)(ηn − η)‖H1 + b lim
n→∞

‖G−1(0)(ηnxx − ηxx)‖H1 = 0.

For (2), let G−1(0)[ηnw1(ηn)− ηw1(η)] = hn. Then

∫ ∞

−∞
(−ah2

nx + h2
n)dx = −

∫ ∞

−∞
hn[ηnw1(ηn)− ηw1(η)]dx

≤ ‖hn‖L2‖w1(ηn)‖H1‖ηn − η‖L2 + ‖hn‖L2‖η‖H1‖w1(ηn)− w1(η)‖L2 → 0

as n →∞. Consequently, one concludes that

lim
n→∞

‖w2(ηn)− w2(η)‖H1 = 0.

For (3), using the definition of w3, one has that

‖w3(ηn)− w3(η)‖L2 =
∥∥∥G−1(0)

(
[ηnw2(ηn)− ηw2(η)] + [ηnw3(ηn − ηw3(η)]

)∥∥∥
L2

≤ ‖ηnw2(ηn)− ηw2(η)‖L2 + ‖w3(ηn)‖H1‖ηn − η‖L2 + ‖η‖H1‖w3(ηn)− w3(η)‖L2

which implies that

‖w3(ηn)− w3(η)‖L2 ≤ 2

(
‖ηnw2(ηn)− ηw2(η)‖L2 + ‖w3(ηn)‖H1‖ηn − η‖L2

)
→ 0

as n →∞, since

‖ηnw2(ηn)− ηw2(η)‖L2 ≤ ‖w2(ηn)‖H1‖ηn − η‖L2 + ‖η‖H1‖w2(ηn)− w2(η)‖L2 → 0

as n →∞. Thus (4.13) is proved.
Next, we show

lim
n→∞

‖G−1(η)(η − bηxx)−G−1(ηn)(ηn − bηnxx)‖H1 = 0.
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Notice first that lim
n→∞

H(ηn) = lim
n→∞

(
L0(ηn) +

µ2

L1(ηn)

)
= H(η). Let w = G−1(η)(η −

bηxx). Since lim
n→∞

‖ηn − η‖H1 = 0, we have

lim
n→∞

L1(ηn) = lim
n→∞

∫ ∞

−∞

(
− aw2

x(ηn) + (1 + ηn)w2(ηn)

)
dx

=

∫ ∞

−∞

(
− aw2

x(η) + (1 + η)w2(η)

)
dx = L1(η).

From (3.14), (3.15) and (4.13), one can show that

lim
n→∞

∫ ∞

−∞
(1 + ηn)w2(ηn)dx =

∫ ∞

−∞
(1 + η)w2(η)dx.

Thus, it follows that

lim
n→∞

∫ ∞

−∞
w2

x(ηn)dx =

∫ ∞

−∞
w2

x(η)dx.

Therefore, lim
n→∞

‖w(ηn)‖H1 = ‖w(η)‖H1 , which implies that w(ηn) converges to w(η) in

H1−norm. Consequently,

lim
n→∞

‖w(ηn)− w(η)‖H1 = lim
n→∞

‖G−1(η)(η − bηxx)−G−1(ηn)(ηn − bηnxx)‖H1 = 0.

6.3 Proof of Theorem 4.10

One can use a concentration function ρε(η) = ε(ηxx)
2− c(ηx)

2 + η2 and apply a similar
argument used in Lemmas 4.4–4.6 to show that there is a minimizing sequence {ηn,ε(x)}
that is compact with Hε(ηn,ε) → cε(µ) for µ ≤ µ0(r) and

∫ +∞
−∞ ρn,ε(x)dx → βε. By the

same proof as in Theorem 4.8, one has ηn,ε(x) → ηε(x) weakly in H2(R) and strongly
in H1(R), which implies that as n → +∞,

L0(ηn,ε) +
µ2

L1(ηn,ε)
→ L0(ηε) +

µ2

L1(ηε)
.

Now, for a fixed ε > 0,

Hε(ηε) ≤ lim inf
n→+∞

ε‖(ηn,ε)xx‖2
L2+ lim

n→+∞

(
L0(ηn,ε) +

µ2

L1(ηn,ε)

)
= lim inf

n→+∞
Hε(ηn,ε) ≤ Hε(ηε)

Thus, (ηn,ε)xx → (ηε)xx strongly in L2, which yields ηn,ε → ηε strongly in H2(R). Hence,
Hε(ηε) = cε(µ) and ηε ∈ Cε(µ). Moreover, ηε lies inside of Br,ε if µ is small enough.
Therefore, ηε satisfies that Lε(ηε) ≤ 2µ and

L′ε(ηε) =
µ2

L2
1(ηε)

L′1(ηε) .
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Multiply above equation by ηε and integrate it to have

∫ ∞

−∞
L′ε(ηε)ηεdx =

µ2

L2
1(ηε)

∫ ∞

−∞
L′1(ηε)ηεdx

or

2Lε(ηε) =
µ2

L2
1(ηε)

(
2L1(ηε) + ‖ηε‖2

H1O(
√

µ)
)

,

because ‖ηε‖H1 ≤ C
√

µ with C independent of ε and µ. The above equation gives

2µ ≥ cε(µ) = Lε(ηε) +
µ2

L1(ηε)
=

µ2

L1(ηε)

(
1 +

1

L1(ηε)
(L1(ηε) + ‖ηε‖2

H1O(
√

µ))

)
,

which yields
µ

L1(ηε)
≤ 1 + C

√
µ (6.9)

for some constant C independent of ε and µ. From this, the following is obtained.

Claim: If ηε ∈ Cε(µ), then there exists a positive constant C independent of ε such
that

‖ηε‖H2 ≤ C
√

µ.

Proof. Because ηε ∈ Cε(µ), one has L′ε(ηε) =
µ2

L2
1(ηε)

L′1(ηε) whence L′ε(ηε) = εηε,xxxx +

cηε,xx + ηε. For f, g ∈ H2(R), denote the inner-product of f and g by
〈
f, g

〉
. Then

〈
µ2

L2
1(ηε)

L′1(ηε), cηε,xx + ηε

〉
=

〈
L′ε(ηε), cηε,xx + ηε

〉

=

∫ ∞

−∞

(−cε(ηε,xxx)
2 + ε(ηε,xx)

2 + (cηxx + η)2
)
dx. (6.10)

As ηε ∈ Cε(µ), it follows that ‖ηε‖2
H1 ∼ O(µ), which implies by Lemmas 3.1–3.3 that

〈
L′1(ηε), cηε,xx + ηε

〉
=

〈
L′1,0(ηε), cηε,xx + ηε

〉
+ ‖ηε‖2

H2O(
√

µ)

=

∫ ∞

−∞

(bk2 + 1)2(−ck2 + 1)

(1− ak2)
|η̂ε|2dk + ‖ηε‖2

H2O(
√

µ)

Therefore, from (6.10) we obtain that

∫ ∞

−∞

(−cεk6 + εk4 + (−ck2 + 1)2
) |η̂ε|2dk
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=
µ2

L2
1(ηε)

(∫ ∞

−∞

(bk2 + 1)2(−ck2 + 1)

(1− ak2)
|η̂ε|2dk + ‖ηε‖2

H2O(
√

µ)

)

From above equality and (6.9), it is obtained that
∫ ∞

−∞

(
(−ck2 + 1)

(1− ak2)

(
(−ck2 + 1)(1− ak2)− (bk2 + 1)2)

)) |η̂ε|2dk

≤ C‖ηε‖2
H1 + ‖ηε,xx‖2

L2O(
√

µ)

which gives (
ac− b2 −O(

√
µ)

) ‖ηε,xx‖2
L2 ≤ C‖ηε‖2

H1 ≤ Cµ .

Since ac − b2 > 0, we can choose µ small enough so that ac − b2 − O(
√

µ) > 0 and
then ‖ηε,xx‖2

L2 ≤ Cµ. By combining the estimates of ηε in H1(R), we have ‖ηε‖H2 ≤
C
√

µ.

Now, let ηε be the minimizer with ‖ηε‖H2 ≤ C
√

µ of Hε(η) in Br,ε found above.
Then, for µ small enough, ηε ∈ Br. Also,Hε(ηε) = cε(µ) orH0(ηε) = cε(µ)−ε‖ηε,xx‖2

L2 ≥
c0(µ). On the other hand, since η0 ∈ Br ⊂ Br,ε for small ε,Hε(η0) ≥ cε(µ), which implies
that c0(µ) = H0(η0) ≥ cε(µ) − ε‖η0,xx‖2

L2 . Therefore, limε→0 cε(µ) = c0(µ). Hence, as
ε → 0, ηε is a minimizing sequence of H0(η) and ‖ηε‖H2 ≤ C

√
µ ≤ r/2 for µ small.

By a similar argument as in the proof of Theorem 4.9, it is obtained that for some
subsequence of ηε (still denoted by ηε) ηε → η̃0, as some sequence of ε goes to zero,
with ‖η̃0‖H2 ≤ r/2 and H0(η̃0) = H(η̃0) = c0(µ). Thus, after r > 0 is small and chosen,
then c0(µ) is independent of r if µ ≤ µ0(r) and at least one minimizer η̃0 of H(η) is
a true minimizer and does not lie on the boundary of Br with ‖η̃0‖H2 ≤ C

√
µ, which

implies that c0(µ) is independent of r if µ ≤ µ0(r).
Now, for an arbitrary minimizer η of H0(η) in Br, since c0(µ) is dependent of r, we

can assume that η is an interior point of Br. Therefore, by a similar proof as that of
the above claim with ε = 0, we can have ‖η‖H2 ≤ C

√
µ. The proof is completed.
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