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Abstract

We consider a Boussinesq system which describes three-dimensional
water waves in fluid layers with a depth small with respect to the wave
length. We prove the existence of a large family of bifurcating bi-periodic
patterns of travelling waves, which are non symmetric with respect to the

direction of propagation. Up to now, the existence of bifurcating asym-
metrical bi-periodic travelling wave is still an open problem for the Euler
equation (potential flow, without surface tension).

Here the lattice of wave vectors is spanned by two vectors k1,k2 of
non equal lengths, and the direction of propagation of the waves is close
to the critical one (solution of the dispersion equation). The wave pattern
may be understood at main order as the superposition of two plane waves
of different amplitudes, respectively propagating along directions k1 and
k2.

Our class of non symmetric waves bifurcates from a 3-dimensional
set of parameters which come from the components of the two basic wave
vectors, constrained by the dispersion equation. Here we are able to escape
from the small divisor problem in restricting the study with one rationality

condition relating the bifurcation set and the direction of propagation
close to the critical direction. However, we need to solve a problem of lack
of smoothness with respect to the propagation direction, of the pseudo-
inverse of the linearized operator. The rationality condition influences
mildly the domain of existence of the bifurcating waves. This theory also
applies when the lattice is built with wave vectors k1, k2 of equal lengths
with the bisector direction as the critical propagation direction. In such a
case, the parameter set is two-dimensional and there is still one rationality
condition for the bifurcating asymmetrical waves which propagate in a
direction making a small angle with the bisector of k1, k2.

Examples of wave patterns for k1, k2 of equal or different length,
with various amplitude ratios along the two basic wave vectors, and with
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various angles between the traveling direction and the critical direction,
are shown in the last section of the paper.

1 Introduction

We consider the following Boussinesq system

ηt + ∇ · v + ∇ · (ηv) − 1

6
∆ηt =0,

vt + ∇η +
1

2
∇(v · v) − 1

6
∆vt =0,

(1)

which was put forward by Bona, Colin, Lannes [2], and describe small-amplitude
and long wavelength (the depth is small with respect to wave length) gravity
waves of an ideal, incompressible liquid. Here the horizontal coordinate x and
time t are scaled by h0 and

√
h0/g, with g being the acceleration of gravity

and h0 being the average water depth. The elevation of waves η(x, t) and the
horizontal velocity v(x, t) at the level of

√
2/3h0 of the depth of the undisturbed

fluid, are scaled by h0 and
√

gh0 respectively. The derivation of (1) is similar
to its one-dimensional version, which is given in detail in [1].

We are interested in travelling waves of constant velocity c which have a
periodic horizontal pattern in x ∈ R2. In the paper [6] we considered diamond
patterns Γ spanned by wave vectors k1,k2 having the same length and proved
the existence of symmetric solutions, propagating in the direction of the bisector
of the wave vectors, bifurcating from 0, for which the amplitudes ε1 and ε2 along
the basic wave vectors are equal. On the system above we managed to apply
a Lyapunov-Schmidt method, impossible to manage on the physical problem
ruled by the full Euler equations without surface tension, due to a small divisor
problem (see [7]).

In the present work we consider asymmetrical waves as experimentally shown
by Hammack et al in [5]. Assuming the presence of surface tension, asymmetri-
cal waves were theoretically obtained with the full Euler equation by Craig and
Nicholls in [3] (numerically sketched on page 631) in using Lyapunov Schmidt
reduction, and by Groves and Haragus in [4], with the use of spatial dynamics
theory. As in [3] and [4] these waves may result from a choice of pattern Γ
spanned by two wave vectors k1,k2 having different lengths. They may also
result from a pattern Γ spanned by two wave vectors k1,k2 having the same
length, but with different amplitudes ε1, ε2 along these basic waves vectors. Our
main result is given in Theorem 3. In both cases, to avoid a small divisor prob-
lem, we restrict the study with one rationality condition between the bifurcation
set and the direction of propagation w close to the critical direction (given by the
dispersion relation). This condition influences mildly the domain of existence
of the bifurcating waves in allowing an existence domain of the order (ln s)−1,
where s is the denominator of a rational number close to the ratio of lengths of
the projections of k1 and k2 along the critical propagation direction. In the case
when the waves propagate in the critical direction our restriction only bears on
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the rationality of the ratio of the projections of k1 and k2 on this direction. This
theory also applies when the lattice is built with wave vectors k1, k2 of equal
lengths with the bisector direction as the critical propagation direction. In such
a case, the parameter set is two-dimensional and there is still one rationality
condition for the bifurcating asymmetrical waves which propagate in a direction
making a small angle w with the bisector of k1, k2.

Despite the non smoothness in the wave angle parameter w of the linear
pseudo-inverse operator (see Lemma 2) , we are able to use a Lyapunov-Schmidt
method for solving the bifurcation problem. This corresponds in solving a still
open situation on the physical problem originally ruled by Euler equations,
without surface tension. We show in the last section several patterns of traveling
asymmetrical waves computed with the explicit expression of the elevation for
the terms of order 1 and 2 in amplitudes (ε1, ε2).

2 Position of the problem

We are looking for solutions of system (1) under the form of 2-dimensional
travelling waves, i.e. η and v are functions of x − ct, where x = (x1, x2) ∈ R2,
and c is the velocity of the travelling wave, which plays the role of a parameter.
For these solutions, the system (1) reads as

∇ · (v + ηv) − c · ∇(η − 1

6
∆η) = 0,

∇(η +
1

2
(v · v)) − c · ∇(v − 1

6
∆v) = 0,

(2)

where we assume that curl(v) = 0, as it is shown to be consistent in [6]. We
consider in what follows periodic solutions with Fourier expansions of the form

η(x) =
∑

k∈Γ

ηkeik·x,

v(x) =
∑

k∈Γ

vkeik·x,
(3)

where Γ is a lattice of the plane defined by two noncolinear vectors k1,k2. This
means that

k ∈ Γ : k = (k1, k2) = n1k1 + n2k2, n1, n2 ∈ Z, (4)

and since the unknown (η,v) is such that curl(v) = 0, we have

vk × k = 0.

For simplicity, we require v0 = 0, η0 = 0, so the averages of the elevation η and
of the horizontal velocity are set to be zero. One might treat the nonzero case
as for the symmetric doubly periodic wave pattern (c.f. [6]), but this introduces
3 additional parameters which appear to not change the results qualitatively.
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Let us define the basis {k1,k2} of the lattice Γ :

k1 = l1(1, τ1), k2 = l2(1,−τ2), lj , τ j > 0, j = 1, 2

where τ j = tan θj . We then have for k = (k1, k2) = n1k1 + n2k2

k1 = n1l1 + n2l2, k2 = n1τ1l1 − n2τ 2l2. (5)

The lattice Γ makes a diamond pattern if we choose k1,k2 symmetric with
respect to the x1 axis, making an angle ±θ with this axis. In such a case, we
have

l1 = l2
def
= l,

τ1 = τ 2
def
= τ ,

θ1 = θ2
def
= θ.

Now we define the Sobolev space

Hp
\\

def
= {u =

∑

k∈Γ

ukeik·x ∈ Hp{R2/Γ′},

where Γ′ is the lattice of periods defined by

Γ′ = {n1λ1 + n2λ2 ∈ R2; λj · kn = 2πδjn, j, n ∈ {1, 2}, (n1, n2) ∈ Z2}. (6)

Observe that any u ∈ Hp
\\ is invariant under the shift

σ : x 7→ x + λj .

The scalar product in Hp
\\ is the usual scalar product of the Sobolev space Hp

on a periodic domain (parallelogram built with λ1 and λ2). We notice that
lj has to be chosen small enough for the consistence of the Boussinesq model,
where the horizontal wave lengths |λj | should be large with respect to 1 (which
is the depth at rest of the fluid layer). The basic function space in our study is

Gp
def
= {U = (η,v) ∈ Hp

\\}3 ∩ {curl(v) = 0} ∩ {η0 = 0, v0 = 0},

and we reformulate the system (2) in the form

LcU + GN (U, U) = 0, (7)

where,

LcU =

(
∇ · v − c · ∇(η − 1

6∆η)
∇η − c · ∇(v − 1

6∆v)

)
, (8)

N (U, U) = (
1

2
(v · v), ηv), G(g, f) = (∇ · f ,∇g).
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It is clear that the linear maps

Lc : Gp → Gp−3, p ≥ 3

G : Gp → Gp−1, p ≥ 1

are bounded, and that the quadratic map

N : Gp → Gp, p ≥ 2

is bounded (p ≥ 2 is there for having the product of two functions of Hp
\\ in

Hp
\\). Moreover, with the Hermitian scalar product of {H0

\\}3, we have after
integration by parts, that for any U1 and U2 ∈ Gp, p ≥ 3 (second identity valid
for p ≥ 1)

〈LcU1, U2〉H0 = − 〈U1,LcU2〉H0 ,

〈GU1, U2〉H0 = − 〈U1,GU2〉H0 .
(9)

The system (7) possesses important symmetries. By defining the bounded
linear operators Tv, S0 as follows

(TyU)(x) = U(x + y),

(S0U)(x) = (η(−x),v(−x)),

it is clear that we have the following commutation properties

TyLc =LcTy, TyN (U, U) = N (TyU, TyU), TyG = GT y,

S0Lc = −LcS0, S0N (U, U) = N (S0U,S0U), S0G = −GS0,
(10)

the first set of properties results from the invariance of the original system under
the translations of the plane, while the second set comes from the reversibility
of the original system.

In the case when the lattice Γ has a diamond structure, the wave vectors
k1,k2 being symmetric with respect to the x1− axis, then we have an additional
symmetry: let us define the symmetry S1 by

(S1U)(x) = (η(x̂), v̂(x̂)),

where x̂ is the symmetric vector of x with respect to the x1− axis: x̂ = (x1,−x2).
It is clear that in the case when the velocity c of the wave is colinear to the x1−
axis, we have the following additional commutation properties

S1Lc = LcS1, S1N (U, U) = N (S1U,S1U), S1G = GS1. (11)

3 Study of the linearized operator

We start with the study of the linearized system

LcU = P, (12)
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where
U = (η,v), P = (q,p) ∈ Gl, l ≥ 0.

The vector function p and scalar function q are periodic with Fourier series

p(x, t) =
∑

k∈Γ

pkeik·x, p0 = 0, pk × k = 0,

q(x, t) =
∑

k∈Γ

qkeik·x, q0 = 0,
(13)

and we get for k ∈ Γ

−(1 +
1

6
|k|2)(c · k)ηk + k · vk = − iqk,

kηk − (1 +
1

6
|k|2)(c · k)vk = − ipk.

(14)

Define

∆(k, c) = (1 +
1

6
|k|2)2(c · k)2 − |k|2, (15)

the linearized operator Lc has a nontrivial kernel in Gl if there exists a pair
(k0, c0) satisfying

∆(k0, c0) = 0 and k0 6= 0. (16)

If ∆(k, c) 6= 0, the solution of (14) reads

ηk = i
(1 + 1

6 |k|2)(c · k)qk + k · pk

∆(k, c)
, (17)

vk = i
(1 + 1

6 |k|2)(c · k)pk + qkk

∆(k, c)
, (18)

where we notice that
curl(vkeik·x) = 0.

If k = 0, v0 = η0 = 0.
If (k · c) = 0 and k 6= 0, a special case of (17,18) leads to

ηk = −i
k · pk

|k|2 , vk = −ik
qk
|k|2 (19)

If ∆(k, c) = 0, k 6= 0, when (pk, qk) satisfies the compatibility condition

sgn(k · c)k · pk + |k|qk = 0, (20)

the solution reads

ηk = i sgn(k · c) qk
|k| + |k|β

vk = sgn(k · c)kβ
(21)
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where β is arbitrary in C.
For having a chance to obtain bifurcating solutions we need to have a non-

trivial kernel for the operator Lc for critical values of the parameters. Hence
we need to study the set of k in the plane, satisfying ∆(k, c) = 0 for a given
velocity c, where k belongs to the lattice Γ. We do not restrict the generality
in assuming that c = c0 = c0(1, 0). The basic wave vectors k1,k2 need to be
solutions of

∆(kj , c0) = 0, j = 1, 2. (22)

This means that

c2
0 =

1 + τ 2
j

{1 +
l2
j

6 (1 + τ2
j )}2

, j = 1, 2 (23)

i.e

1

c2
0

=

(
cos θ1 +

l21
6 cos θ1

)2

=

(
cos θ2 +

l22
6 cos θ2

)2

, 0 < θj < π/2, (24)

which leads to the relationship (automatically satisfied when we choose a dia-
mond lattice Γ)

6(cos θ1 − cos θ2) =
l22

cos θ2
− l21

cos θ1
, (25)

which indicates that, for fixed angles θ1, θ2, the point (l1, l2) (close to 0) needs
to belong to a hyperlola in the plane. The critical set in the 4-dimensional
space (τ 1, τ 2, l1, l2) is a 3-dimensional hypersurface (restricted to the quadrant
τ1, τ2, l1, l2 > 0. When Γ is a diamond lattice, we only have two parameters
(τ , l) for the critical set.

Replacing k by n1k1 + n2k2 in the equation ∆(k, c0) = 0, we obtain.

(1 +
1

6
|n1k1 + n2k2|2)|c · (n1k1 + n2k2)| = |n1k1 + n2k2|, (26)

or more precisely

0 =

(
1 +

1

6
{(n1l1 + n2l2)

2 + (n1τ1l1 − n2τ 2l2)
2}

)2

c2
0(n1l1 + n2l2)

2+

− {(n1l1 + n2l2)
2 + (n1τ 1l1 − n2τ 2l2)

2},
(27)

where we already know the solutions

(n1, n2) = (±1, 0), (0,±1).

It is now important to know how many solutions (n1, n2) does (26) have.
Let us assume that the scalars l1 and l2 are such that

l1
l2

=
r0

s0
∈ Q+, (28)
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where r0, s0 are mutually prime. This assumption allows to avoid c0 · k to be
small for large |k|, when c0 · k 6= 0. Indeed, we have

c0 · k = c0(n1l1 + n2l2) =
c0l2
s0

(n1r0 + n2s0),

i.e.

|c0 · k| ≥
c0l2
s0

for any (n1, n2) 6= 0 in Z2 such that c0 · k 6=0. It is then clear that, for |k| > K
where

K =
9s0

c0l2
,

and for any (n1, n2) 6= 0 in Z2 (even when c0 · k = 0), we have the estimate

∣∣∣∣(1 +
1

6
|k|2)|c0 · k| − |k|

∣∣∣∣ >
1

2
|k|,

which provides a lower bound for |∆(k, c0)|. Notice that when Γ is a diamond
lattice, we have l1 = l2 = l and s0 = 1.

In satisfying the identity (23), the critical set in the 4-dimensional space
of parameters (τ 1, τ 2, l1, l2) is a 3-dimensional hypersurface. Expressing c0 in
function of τ 1, l1, for a fixed couple (n1, n2), the equation (27) represents a 2-
dimensional sub-manifold, for instance (τ 1, τ 2) in function of (l1, l2). Then the
intersection with a condition (28) provides a curve and if we are able to avoid, for
all possible values of (n1, n2), to sit on these curves in the 3-dimensional critical
hypersurface, except (n1, n2) = (±1, 0), (n1, n2) = (0,±1), then the dimension
of the kernel is just 4. Now, we have (proved below with the estimate (43))

|k| ≥ d1(n
2
1 + n2

2)
1/2.

This shows that k ∈ Γ such that |k| < K, leads to

(n2
1 + n2

2)
1/2 <

K

d1
,

where d1 satisfies (43). In choosing a region in the parameter space where
d1 > δ > 0, i.e. l1 and l2 outside a small ball, we only have a finite number of
possible (n1, n2). Hence it is easy to avoid to sit on this finite number of curves
on the 3-dimensional manifold given by (23).

More generally, if we do not consider the restriction (28), for the ratio l1/l2,
the set of relations (27) is denumerable for all (n1, n2) ∈ Z2, which makes a denu-
merable set of 2-dimensional sub-manifolds of the 3-dimensional critical hyper-
surface. Then, there is a full measure set of choice of parameters (τ 1, τ 2, l1, l2)
in the 3-dimensional hypersurface, such that none of relations (27) is satisfied,
except for (n1, n2) = (±1, 0), (n1, n2) = (0,±1). Finally, a general choice of
parameters provides no solution of (26) except ±k1,±k2.
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Assume that (c0, lj , τ j), j = 1, 2 are such that ±kj , j = 1, 2 are the only non-
trivial solutions in Γ of (26) (the general case) and let us define the eigenvectors
ξ±kj

by

Lc0ξ±kj
= 0, c0 = (c0, 0),

ξ±kj
= (

√
1 + τ 2

j , 1, (−1)j+1τ j)e
±ikj ·x (29)

then we observe that with the Hermitian scalar product in {H0
\\}3 the compat-

ibility condition (20) reads

〈P, ξ±kj
〉H0 = 0. (30)

Moreover in operating the symmetries, we have

Tyξ±kj
= ξ±kj

e±ikj ·y, S0ξ±kj
= ξ±kj

= ξ∓kj
. (31)

In the case when the lattice Γ has a diamond structure, the wave vectors
k1,k2 being symmetric with respect to the x1− axis, we have in addition the
following symmetry property

S1ξ±k1
= ξ±k2

. (32)

The above calculations (see [6] for the complete proof of estimates) show

that we are able to define an operator L̃−1
c0

, which is the pseudo-inverse of Lc0 ,
mapping Gp into Gp+1 for any p ≥ 0, solving (12) with c0 = (c0, 0), provided
the compatibility condition (20) is satisfied, and such that

U = L̃−1
c0

P,

{L̃−1
c0

P}k = Uk = (ηk,vk),

where

• {L̃−1
c0

P}k = (ηk,vk) is given by (17), (18) for ∆(k, c0) 6= 0 i.e. for k 6=
±k1,±k2, and k 6= 0,

• {L̃−1
c0

P}0 = 0, for k = (0, 0),

• for k = ±kj we set (see (21))

{L̃−1
c0

P}±kj
= (± i

2

q±kj

|kj |
,− i

2

±kjq±kj

|kj |2
),

so that L̃−1
c0

P is orthogonal, in {H0
\\}3, to the four-dimensional space

E =span{ξ±kj
; j = 1, 2}:

〈L̃−1
c0

P, ξ±kj
〉H0 = 0, j = 1, 2.

Notice that the pseudo-inverse operator L̃−1
c0

is defined here, even for P =
(q,p) not satisfying the compatibility condition (20).
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Lemma 1. Let c = c0(1, 0), l1
l2

= r0

s0
∈ Q+ and (c0, lj , τ j), j = 1, 2 satisfy (23)

and such that ±kj , j = 1, 2 are the only solution in Γ of (26). Then, for any
given

P = (q,p) ∈ Gp, p ≥ 0,

such that the compatibility conditions (30) hold, the general solution U = (η,v) ∈
Gp+1 of the system

Lc0U = P,

is given by
U = L̃−1

c0
P + Aξk1

+ Aξ−k1
+ Bξk2

+ Bξ−k2
, (33)

where

ξ±kj
= (

√
1 + τ2

j , 1, (−1)j+1τ j)e
±ikj ·x,

A, B ∈ C, and L̃−1
c0

is the bounded linear operator: Gp → Gp+1 ∩ {kerLc0}⊥H0

defined above, and we have

||L̃−1
c0

G||L(Gp) ≤ c. (34)

In what follows we need to consider the perturbed operator Lc0(1,w) = Lc0 +

wL(1) for w close to 0, where

L(1)U = −c0
∂

∂x2
(I − 1

6
∆)U.

Allowing w 6= 0 (which plays the role of a parameter) means that we intend to
find travelling waves moving not exactly in the direction of the x1− axis. We
shall see that this is linked with the ratio of amplitudes ε1, ε2 of the wave along
the basic wave vectors k1,k2. The perturbation wL(1) appears to be singular
as it leads to a small divisor problem when we invert Lc0(1,w), (contrary to the
inversion of Lc0 with our assumption (28)). Indeed, the ∆(k, c) in the denom-
inators of (17, 18) may become very small for large |k|. In what follows, we
control the smallness of ∆(k, c) in assuming a rationality condition. We show
the following

Lemma 2. Let c = c0(1, w), and fix δ ∈ (0, 1), then choose δ < τ 2 < δ−1,
l2 < δ and |w| ≤ δ

5 with

w =
r
s − l1

l2

τ1
l1
l2

+ τ 2
r
s

, r, s ∈ N. (35)

Assume (c0, lj , τ j), j = 1, 2 satisfy (23) and such that ±kj , j = 1, 2 are the only
solution in Γ of (26). Then, except for τ 2 in a small neighborhood of a finite set

τ
(p)
2 (τ 1, l1, l2) of cardinal at most O(ln s), the linear operator Lc has a bounded

inverse such that
||L̃−1

c G||L(Gl) ≤ c(s), l ≥ 0, (36)
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and for any q ≥ 0

L̃−1
c = L̃−1

c0
+

∑

1≤n≤q

(−w)n(L̃−1
c0

L(1))nL̃−1
c0

+ Rq(w), (37)

||Rq(w)||L(Gl,Gl−2(q+1)+1) ≤ |w|q+1γq+1c(s)

holds, where the linear operator L̃−1
c is computed in {kerLc0}⊥H0 , (L̃−1

c0
L(1))nL̃−1

c0
∈

L(Gl, Gl−2n+1) and γ > 0 is independent of s. The function c(s) is increasing,
bounded by γ ln s.

Remark: we observe that the dependancy in w of the operator L̃−1
c in

L(Gl, Gl+1) is wealky differentiable in 0. The formula (37) gives precisely the
loss of regularity of the successive derivatives in w at the origin (the loss is 2 at
each increasing order).

Proof: First, for any k = n1k1 + n2k2 , nj ∈ Z, we have in using (35)

l1(1 + τ1w)

l2(1 − τ2w)
=

r

s
∈ Q+.

Hence
c · k = c0l2(1 − τ 2w)(n1

r

s
+ n2)

and

|c · k| ≥ c0d

s
if c · k 6= 0, (38)

where d is such that
d ≤ l2|1 − τ 2w|.

In choosing w such that |w| ≤ δ
5 we can take

d =
4l2
5

.

Notice that if c · k = 0, we have (19) then

|ηk| + |vk| ≤
1

|k| (|qk| + |pk|). (39)

Now, if c · k 6= 0, we have

(1 +
1

6
|k|2)|c · k| − |k| ≥ |k|{ |k|c0d

6s
− 1}

and for |k| ≥ 7s
c0d we obtain

(1 +
1

6
|k|2)|c · k| − |k| ≥ |k|

6
.
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We then observe that

∆(k, c) = {(1 +
1

6
|k|2)|c · k| − |k|}{(1 +

1

6
|k|2)|c · k| + |k|}

≥ |k|
6
{(1 +

1

6
|k|2)|c · k| + |k|},

and (17, 18) leads to the estimate

|ηk| + |vk| ≤
6

|k| (|qk| + |pk|). (40)

We also observe that if |k||c · k| > 7, (40) holds.
It remains to study the region R of the plane (n1, n2) where

|k| ≤ 7s

c0d
, |k||c · k| ≤ 7, ∆(k, c) 6= 0, and c · k 6= 0. (41)

For estimating R, let us notice that |k|2 = (n1l1 + n2l2)
2 + (n1τ 1l1 − n2τ2l2)

2

is a positive definite quadratic form, hence

d2
1(n

2
1 + n2

2) ≤ |k|2 ≤ d2
0(n

2
1 + n2

2)

where

d2
1 =

1

2

(
(1 + τ 2

1)l
2
1 + (1 + τ 2

2)l
2
2

)
− 1

2

√
∆,

∆ =
(
(1 + τ 2

1)l
2
1 + (1 + τ 2

2)l
2
2

)2 − 4l21l
2
2(τ 1 + τ2)

2

(42)

and, since for a > 0, a −
√

a2 − b2 > b2/2a

d1 >
l1l2(τ 1 + τ2)

((1 + τ 2
1)l

2
1 + (1 + τ2

2)l
2
2)

1/2
. (43)

Hence the region R is included in the region A defined by

A =

{
(n1, n2) ∈ Z2; n2

1 + n2
2 <

(
7s

c0dd1

)2

, |n2 +
r

s
n1| ≤

7

c0dd1

√
n2

1 + n2
2

}
.

We can compute the area of A in the plane (n1, n2), in using polar coordinates

n1 = ρ cos θ, n2 = ρ sin θ,

ρ ≤ min

{(
7 cos θ0

c0dd1

)1/2

| sin(θ − θ0)|−1/2,
7s

c0dd1

}

where
tan θ0 = −r/s, θ0 ∈ (−π/2, 0).
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We then obtain by estimating 2
∫ π/2

φ ρ2(θ)dθ+4φ 7s
c0dd1

for large s, where ρ2(θ) =(
7 cos θ0

c0dd1

)
| sin θ|−1 and sin φ = cos θ0

s ,

Area(A) =
14 cos θ0

c0dd1
ln(

1

tan φ/2
) +

28s

c0dd1
sin−1(

cos θ0

s
)

∼ 14 cos θ0

c0dd1
ln s.

We notice that by construction, r/s is close to l1/l2, hence cos θ0 is close to
l2√
l21+l22

and the following estimate holds

cos θ0

dd1
≤ 5

(
(1 + τ 2

1)l
2
1 + (1 + τ 2

2)l
2
2

)1/2

4l1l2(l21 + l22)
1/2(τ 1 + τ2)

.

For τ 2 < δ−1 we have an estimate of c0 (see (23)) independant of τ 2 (then de-
pending on l2 and δ), which shows that Area(A) ≤ γ0(ln s) with γ0 independent
of s. Hence the number of points (n1, n2) lying in A is of order ln s.

It is useful in what follows to notice that for

|k|2 >
7l2d

2
0

l1c0dd1

then
n2k2 < 0. (44)

To see this, we look at the intersection of the curve (in polar coordinates) which
bounds the region A

ρ2 =
7 cos θ0

c0dd1
| sin(θ − θ0)|−1

with the n1 axis (θ = 0). The points of this curve such that θ0 < θ < 0 are such
that n1 > 0, n2 < 0. This shows that for points in the region of A such that

n2
1 + n2

2 >
7

c0dd1

s

r

n1 and n2 have opposite signs. Then for obtaining (44) we conclude in observing
that r/s is close to l1/l2, and k2 = n1l1τ 1 − n2l2τ2 has the sign of n1.

The equation

(1 +
1

6
|k|2)|c · k| − |k| = 0

is equivalent to writing (27) where we replace c2
0 by its expression (23) in function

of τ2, l2, which makes for every ”bad” couple (n1, n2) a polynomial equation of
degree 8 in τ2. Hence we cannot have more than 8 roots τ 2 > 0 for every ”bad”

couple (n1, n2). This makes a finite set of ”bad” values for τ 2 = τ
(p)
2 (τ 1, l1, l2) of

cardinal O(ln s). We then need to exclude little neighborhoods of these roots for
controlling the size of the inverse of (1+ 1

6 |k|2)|c ·k|−|k|. Let us exclude O(ln s)
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neighborhoods of these specific values of τ 2 and for insuring that it remains most
of good values for the (τ 2)

′s, we may choose, for each (n1, n2), neighborhoods
of exclusions of size O(η/ ln s) around every such root τ 2, with η << 1. Let us
show that outside these neighborhoods we have

∣∣∣∣(1 +
1

6
|k|2)|c · k| − |k|

∣∣∣∣ ≥
c|k|
ln s

, for large s. (45)

To show this, it is sufficient to show that the derivative of g(τ 2) defined by

g(τ2) = (1 +
1

6
|k|2)|c · k| − |k|

with respect to τ 2 at any root τ 0 of (27) is such that |g′(τ 0)| > c|k| for some c
independent of s. Indeed, an elementary computation gives

∂τ2 |c · k|
|c · k| |τ2=τ0 = − w

1 − τ0w
+ τ 0

6 − l22(1 + τ 2
0)

(1 + τ 2
0)(6 + l22(1 + τ 2

0)

hence

g′(τ 0) = |k|
{−n2l2k2

|k|2
( |k|2 − 6

|k|2 + 6

)
− w

1 − τ 0w
+ τ 0

6 − l22(1 + τ 2
0)

(1 + τ 2
0)(6 + l22(1 + τ 2

0)

}
.

For

|k| > M, M = max{ 7l2d
2
0

l1c0dd1
,
√

6}

the inequality (44) above shows that the first term on the right side is > 0.
Moreover, for τ2 < δ−1, and |w| < δ/5, we have

| w

1 − τ 2w
| <

δ

4

In taking l2 small enough, such that

l2 < 1, l2τ0 < 1

and since τ2 < δ−1, this is realized as soon as

l2 < δ < 1 (46)

we obtain l22(1 + τ 2
0) < 2, hence

6 − l22(1 + τ2
0)

(6 + l22(1 + τ2
0)

>
1

2
,

and it results that (recall that δ < τ 2 < 1/δ)

τ 0
6 − l22(1 + τ 2

0)

(1 + τ 2
0)(6 + l22(1 + τ2

0)
>

δ

2(1 + δ2)

14



which is independent of s. We notice that

4 > 2(1 + δ2)

hence

g′(τ 0) > |k|
{

δ

2(1 + δ2)
− δ

4

}
= c|k|, c > 0.

In the region R where
|k| ≤ M,

the number of points of the plane (n1, n2) is bounded by a finite number indepen-
dent of s. For avoiding the corresponding bad values of τ 2 near the corresponding
roots, we just need to avoid a fixed (independent of s) small η neiborhood of
this finite number of roots, since the minimal value of |g′(τ 0)| at these roots is
independent of s.

This ends the proof of the fact that in choosing τ 2 outside a small open set
of (δ, δ−1) and for |k| ≤ 7s

c0d we obtain (45). Finally we find a constant γ > 0
independent of s such that

|ηk| + |vk| ≤
γ ln s

|k| (|qk| + |pk|). (47)

Now collecting (39,40,47) we obtain an estimate valid for all k such that k 6=
±k1,±k2

|(1 +
1

6
|k|2)|c · k| − |k|| ≥ |k|

c(s)
,

and the required estimate (36) follows for L̃−1
c G. The property (9) and

Gξ±kj
= ±ilj

√
1 + τ 2

jξ±kj
(48)

imply that the subspace {kerLc0}⊥H0 is mapped into itself by G. Notice that the

dependancy in s of the bound of the linear operator L̃−1
c G is delicate to control,

since the dangerous values of (n1, n2) (for which we may have roots of (27)) are
large ones, and not so frequent in the set A.

For obtaining (37) we first observe that the subspace {kerLc0}⊥H0 is stable

under L(1) since we have the property (9) and

L(1)ξ±kj
= ±i(−1)jljτ j

√
1 + τ 2

jξ±kj
. (49)

Then, for F ∈ {kerLc0}⊥H0 , the equation

LcU = (Lc0 + wL(1))U = F

leads to

U = L̃−1
c0

F + U1,

LcU1 = −wL(1)L̃−1
c0

F,
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which leads to (37) for q = 0. Writing now

U1 = −wL̃−1
c0

L(1)L̃−1
c0

F + U2

LcU2 = w2L(1)L̃−1
c0

L(1)L̃−1
c0

F,

leads to (37) for q = 1. Then the result of (37) for any q follows.

4 Bifurcation equations

Let us set c = c0

1+µ (1, w), and rewrite equation (7) as

Lc0U + µGU + (1 + µ)GN (U, U) + wL(1)U = 0. (50)

Then we decompose U ∈ Gp as

U = X + V

where

X = Aξk1
+ Aξ−k1

+ Bξk2
+ Bξ−k2

∈ E,

〈V, ξ±kj
〉H0 = 0, j = 1, 2.

Observe that E ⊂ Gp for all p ≥ 0. The above decomposition is unique for
any p ≥ 0, hence the mapping U 7→ V defines a projection Q from Gp to
Gp ∩ {kerLc0}⊥H0 , which is orthogonal for p = 0. Now, we may observe that

QGX = 0, QGV = GV, p ≥ 1,

QL(1)X = 0, QL(1)V = L(1)V, p ≥ 3.

Assuming U ∈ Gp, p ≥ 3, we then obtain from (50) the following system

Lc0(1,w)V + µGV + (1 + µ)QGN (X + V, X + V ) =0, (51)

〈µGX + wL(1)X + (1 + µ)GN (X + V, X + V ), ξ±kj
〉 =0, j = 1, 2. (52)

We notice that (51) may be solved by the implicit function theorem in Gp ∩
{kerLc0}⊥H0 , for any p ≥ 3, with respect to V. Indeed, equation (51) is of the
form

Lc0(1,w)V + F(X, V, µ) = 0

in Gp−3, with F analytic in its arguments as a function from E×
(
Gp ∩ {kerLc0}⊥H0

)
×

R into Gp−1 ∩ {kerLc0}⊥H0 , satisfying

F(0, 0, µ) = 0, DV F(0, 0, 0) = 0,

and thanks to Lemma 2, the operator Lc0(1,w) has a bounded inverse from

Gp−1 ∩ {kerLc0}⊥H0 to Gp ∩ {kerLc0}⊥H0 , its bound being uniform in function

of w, provided that w satisfies (35), δ < τ 2 < δ−1, l2 < δ, and s is bounded by
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some fixed σ. Due to the bound of {L̃c0(1,w)}−1 found at Lemma 2 we need to
assume

|µ| ln σ << 1, ||X || lnσ << 1, (53)

in such a way that

||V ||2Gp
ln σ and |µ|||V ||Gp

ln σ << ||V ||Gp

and then obtain
||V || = O(||X ||2 ln σ). (54)

It then results that for A, B close enough to 0, and for w satisfying (35), δ <
τ2 < δ−1, l2 < δ, s ≤ σ, we obtain

V = V(A, A, B, B, µ, w) ∈ Gp ∩ {kerLc0}⊥H0

which is analytic in (A, A, B, B, µ), the dependancy in w being more subtle. In
fact V(A, A, B, B, µ, w) has in Gp∩{kerLc0}⊥H0 , p ≥ 3, an asymptotic expansion
in powers of w in the neighborhood of 0. To prove this, let us define

V0 = V(A, A, B, B, µ, 0),

V1 = V(A, A, B, B, µ, w) − V0.

Then V1 satisfies

0 =Lc0(1,w)V1 + wL(1)V0 + µGV1 + 2(1 + µ)QGN (X + V0,V1)

+ (1 + µ)QGN (V1,V1).
(55)

Since wL(1)V0 ∈ Gp−3 ∩ {kerLc0}⊥H0 , with a small norm, we can solve equation
(55) with respect to V1 in Gp−2 ∩ {kerLc0}⊥H0 , provided that p ≥ 5. Denoting
by V10 the value of the solution V1 when one replaces Lc0(1,w) by Lc0 , we can
set V1 = V10 + V2 and obtain V2 by the implicit function theorem in Gp−4 ∩
{kerLc0}⊥H0 , and so on. Now we have estimates of the form

||V0||Gp
≤ γc(σ)||X ||2,

||V1||Gp−2 ≤ γc(σ)|w|||X ||2,
||V2||Gp−4 ≤ γc(σ)|w|2||X ||2,

and so on. This proves the assertion on the asymptotic expansion in powers of w
(not converging in general) for V(A, A, B, B, µ, w) in any space Gp∩{kerLc0}⊥H0 ,
p ≥ 3 (notice that the choice of p is arbitrary, but we need to stop the expansion
at some order to insure the existence of the solution in some space Gp).

Now, we have the symmetry properties (10) of the basic equation (50) and
(31), and we also have easily

TyQ = QTy, S0Q = QS0.
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Then, the uniqueness of V , leads to the following properties:

TyV(A, A, B, B, µ, w) =V(Aeik1·y, Ae−ik1·y, Beik2·y, Be−ik2·y, µ, w),

S0V(A, A, B, B, µ, w) =V(A, A, B, B, µ, w).
(56)

More precisely, we have in any Gp ∩ {kerLc0}⊥H0 , p ≥ 3

V(A, A, B, B, µ, w) = − L̃−1
c0

QGN (X, X)

+ O((|µ| + |w|)||X ||2 + ||X ||3).
(57)

Now replacing V by V(A, A, B, B, µ, w) in the system of 4 equations (52), we
obtain in fact 2 complex equations, with their complex conjugates, of the form

h1(A, A, B, B, µ, w) = 0,

h2(A, A, B, B, µ, w) = 0,

where h1 is obtained with k1 in (52) and h2 with k2, and hj , j = 1, 2, is analytic
in (A, A, B, B, µ) and C l at the origin with respect to w (l is arbitrary). The
symmetry properties (10), (31) and (56) lead, for any y ∈ R2, to the following
relationships

h1(Aeik1·y, Ae−ik1·y, Beik2·y, Be−ik2·y, µ, w) =eik1·yh1(A, A, B, B, µ, w),

h2(Aeik1·y, Ae−ik1·y, Beik2·y, Be−ik2·y, µ, w) =eik2·yh2(A, A, B, B, µ, w),

h1(A, A, B, B, µ, w) = − h1(A, A, B, B, µ, w).

It results classically that

h1(A, A, B, B, µ, w) = iAg1(|A|2, |B|2, µ, w),

h2(A, A, B, B, µ, w) = iBg2(|A|2, |B|2, µ, w),

where g1 and g2 are real valued smooth functions of their arguments. When
B = 0 (or A = 0) one obtains plane waves, with basic wave vector k1 (or
k2), the direction of propagation being somewhat arbitrary (provided it is not
orthogonal to k1 (or k2). When AB 6= 0, one obtains the bi-periodic travelling
waves, which are the main object of our study. For concluding on their existence,
we need to solve the real system of two equations:

g1(|A|2, |B|2, µ, w) =0,

g2(|A|2, |B|2, µ, w) =0.
(58)

In the case when the lattice Γ has a diamond structure, and we choose
the x1− axis such that k1 and k2 are symmetric with respect to this axis, we
have the additional symmetry properties (11), and (32) which, thanks to the
uniqueness of V , and for w = 0 (i.e. when c is in the x1− direction), leads to

S1V(A, A, B, B, µ, 0) = V(B, B, A, A, µ, 0).
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This implies
h1(B, B, A, A, µ, 0) = h2(A, A, B, B, µ, 0),

hence finally
g1(|B|2, |A|2, µ, 0) = g2(|A|2, |B|2, µ, 0). (59)

The next section is devoted to the computation of the principal part of the
system (58), leading to the existence of non-symmetric travelling waves for (1).

5 Bifurcating solutions

We first notice that (57), with the symmetry properties (56), leads to

V =ζ2,0(A
2e2ik1·x + A

2
e−2ik1·x) + ζ0,2(B

2e2ik2·x + B
2
e−2ik2·x)+

+ ζ1,1(ABei(k1+k2)·x + ABe−i(k1+k2)·x)+

+ ζ1,−1(ABei(k1−k2)·x + ABe−i(k1−k2)·x) + h.o.t.

(60)

where

ζ2,0e
2ik1·x = −L̃−1

c0
GN (ξk1

, ξk1
),

ζ0,2e
2ik2·x = −L̃−1

c0
GN (ξk2

, ξk2
),

ζ1,1e
i(k1+k2)·x = −2L̃−1

c0
GN (ξk1

, ξk2
),

ζ1,−1e
i(k1−k2)·x = −2L̃−1

c0
GN (ξk1

, ξ−k2
),

the suppression of the projectionQ coming from the non resonance of 2k1, 2k2,k1±
k2 with ±kj , and where we notice that

GN (ξkj
, ξ−kj

) = 0, j = 1, 2.

We obtain

GN (ξk1
, ξk1

) =




2il1(1 + τ2

1)
3/2

il1(1 + τ 2
1)

iτ1l1(1 + τ2
1)



 e2ik1·x,

GN (ξk2
, ξk2

) =




2il2(1 + τ2

2)
3/2

il2(1 + τ 2
2)

−iτ2l2(1 + τ2
2)



 e2ik2·x,

2GN (ξk1
, ξk2

) = i(1 − τ1τ2)




l1

√
1 + τ2

1 + l2
√

1 + τ 2
2

l1 + l2
(τ 1l1 − l2τ 2)



 ei(k1+k2)·x +

+i
√

1 + τ 2
1

√
1 + τ 2

2




l1
√

1 + τ 2
1 + l2

√
1 + τ 2

2

0
0


 ei(k1+k2)·x,
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2GN (ξk1
,ξ−k2

) = i(1− τ1τ 2)




l1
√

1 + τ2
1 − l2

√
1 + τ 2

2

l1 − l2
(τ 1l1 + l2τ 2)


 ei(k1−k2)·x+

+ i
√

1 + τ 2
1

√
1 + τ 2

2




l1
√

1 + τ 2
1 − l2

√
1 + τ2

2

0
0


 ei(k1−k2)·x,

and therefore, we find by using (17), (18)

ζ2,0 =
2l21(1 + τ 2

1)

D2,0




2c0

√
1 + τ2

1D1,0 + 1 + τ2
1

c0D1,0 + 2
√

1 + τ2
1

τ 1(c0D1,0 + 2
√

1 + τ 2
1)



 , (61)

ζ0,2 =
2l22(1 + τ 2

2)

D0,2




2c0

√
1 + τ2

2D0,1 + 1 + τ2
2

c0D0,1 + 2
√

1 + τ2
2

−τ2(c0D0,1 + 2
√

1 + τ2
2)


 , (62)

ζ1,1 =
L+

D1,1




D+c0(l1 + l2)

l1 + l2
τ1l1 − τ 2l2



 +
1 − τ 1τ 2

D1,1




6D+ − 1

D+c0(l1 + l2)
2

D+c0(l1 + l2)(τ 1l1 − τ 2l2)



 , (63)

ζ1,−1 =
L−

D1,−1




D−c0(l1 − l2)
l1 − l2

τ 1l1 + τ 2l2


+

+
1 − τ 1τ 2

D1,−1




6D− − 1
D−c0(l1 − l2)

2

D−c0(l1 − l2)(τ 1l1 + τ 2l2)


 ,

(64)

where

L+ =

(
1 − τ 1τ 2 +

√
1 + τ2

1

√
1 + τ2

2

) (
l1

√
1 + τ2

1 + l2

√
1 + τ 2

2

)
,

L− =

(
1 − τ 1τ 2 +

√
1 + τ2

1

√
1 + τ2

2

) (
l1

√
1 + τ2

1 − l2

√
1 + τ 2

2

)
,

D1,0 = 1 +
2l21
3

(1 + τ 2
1), D0,1 = 1 +

2l22
3

(1 + τ 2
2),

D2,0 = 4l21[(D1,0)
2c2

0 − (1 + τ2
1)],

D0,2 = 4l22[(D0,1)
2c2

0 − (1 + τ2
2)],

D+ = 1 +
1

6
[(l1 + l2)

2 + (l1τ1 − l2τ 2)
2],

D− = 1 +
1

6
[(l1 − l2)

2 + (l1τ1 + l2τ 2)
2],

D1,1 = c2
0(l1 + l2)

2D2
+ − (l1 + l2)

2 − (l1τ 1 − l2τ2)
2,

D1,−1 = c2
0(l1 − l2)

2D2
− − (l1 − l2)

2 − (l1τ 1 + l2τ 2)
2.
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Let us now calculate the leading terms in (58). Let us notice that

〈ξkj
, ξkj

〉 = 2(1 + τ 2
j )Ω,

where Ω denotes the area of the paralellogram formed with λ1, λ2 (see the
definition of the lattice of periods Γ′ in (6)). In fact, we have

Ω =
4π2

l1l2(τ 1 + τ 2)
.

Now, from (48) and (49) we have the following identities

µ〈Gξkj
, ξkj

〉 = 2iµlj(1 + τ 2
j )

3/2Ω,

〈wL(1)ξkj
, ξkj

〉 = 2i(−1)jwτ j lj(1 + τ 2
j )

3/2Ω,

and it is clear that with our non resonance assumption

〈GN (X, X), ξkj
〉 = 0.

For deriving the principal parts of g1 and g2 in (58), we write as follows

gj = 2lj(1 + τ 2
j )

3/2Ω
{
µ + (−1)jwτ j + aj |A|2 + bj |B|2 + h.o.t.

}
, (65)

with

2il1(1 + τ 2
1)

3/2Ωa1 = 〈2GN (ξ−k1
, ζ2,0e

2ik1·x), ξk1
〉,

2il2(1 + τ 2
2)

3/2Ωb2 = 〈2GN (ξ−k2
, ζ0,2e

2ik2·x), ξk2
〉,

2il1(1 + τ 2
1)

3/2Ωb1 =〈2G
{
N (ξk2

, ζ1,−1e
i(k1−k2)·x) + N (ξ−k2

, ζ1,1e
i(k1+k2)·x)

}
, ξk1

〉,

2il2(1 + τ 2
2)

3/2Ωa2 =〈2G
{
N (ξk1

, ζ1,−1e
−i(k1−k2)·x) + N (ξ−k1

, ζ1,1e
i(k1+k2)·x)

}
, ξk2

〉.

Solving (58) with respect to µ and w and denoting |A| = ε1, |B| = ε2, leads to

µ = − a1 + a2

2
ε2
1 −

b1 + b2

2
ε2
2 + O(ε2

1 + ε2
2)

2,

w(τ 1 + τ 2) =(a1 − a2)ε
2
1 + (b1 − b2)ε

2
2 + O(ε2

1 + ε2
2)

2,
(66)

where we need not to forget the restriction

w =
r
s − l1

l2

τ 1
l1
l2

+ τ2
r
s

,
r

s
∈ Q+, s ≤ σ.

It results from the bounds (53) and (54) that

ε1 + ε2 = O(|µ|1/2(ln σ)−1/2). (67)
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Notice that the value w = 0 leads to asymmetrical waves provided that

(a1 − a2)(b1 − b2) < 0.

Then this particular case gives (the propagation direction is the x1− axis)

ε2
2 =

a1 − a2

b2 − b1
ε2
1 + O(ε4

1),

µ = − ε2
1

2(b2 − b1)
{(a1 + a2)(b2 − b1) + (a1 − a2)(b1 + b2)} + O(ε4

1).

(68)

In the case when the lattice Γ has a diamond structure, and we choose the x1−
axis such that k1 and k2 are symmetric with respect to this axis, we have the
additional symmetry (59) which implies

a1 = b2, a2 = b1,

and

µ = − a1 + a2

2
(ε2

1 + ε2
2) + O(ε2

1 + ε2
2)

2,

wτ =(ε2
1 − ε2

2)

{
(a1 − a2)

2
+ O(ε2

1 + ε2
2)

}
,

(69)

where only rational values of the small parameter wτ = (r − s)/(r + s), s ≤ σ
are allowed, which leads to a restricted choice for the amplitudes ε1 and ε2. Here
the case ε1 = ε2 gives the symmetrical waves propagating in the x1− direction
as described in [6].

It remains to compute the coefficients aj and bj . We have

〈2GN (ξ−k1
, ζ2,0e

2ik1·x), ξk1
〉 =

2il31(1 + τ 2
1)

3Ω

D2,0
(4c0D1,0 + 5

√
1 + τ 2

1),

〈2GN (ξ−k2
, ζ0,2e

2ik2·x), ξk2
〉 =

2il32(1 + τ 2
2)

3Ω

D0,2
(4c0D0,1 + 5

√
1 + τ 2

2),

〈2GN (ξk2
, ζ1,−1e

i(k1−k2)·x), ξk1
〉 =

il1(1 + τ 2
1)

1/2Ω

D1.−1
{L2

−+

+2L−(1 − τ 1τ 2)D−c0(l1 − l2) + 6(1 − τ1τ2)
2(D− − 1)},

〈2GN (ξ−k2
, ζ1,1e

i(k1+k2)·x), ξk1
〉 =

il1(1 + τ 2
1)

1/2Ω

D1.1
{L2

++

+2L+(1 − τ 1τ 2)D+c0(l1 + l2) + 6(1 − τ1τ2)
2(D+ − 1)},

〈2GN (ξk1
, ζ1,−1e

i(k2−k1)·x), ξk2
〉 =

il2(1 + τ 2
2)

1/2Ω

D1.−1
{L2

−+

+2L−(1 − τ 1τ 2)D−c0(l1 − l2) + 6(1 − τ1τ2)
2(D− − 1)},

〈2GN (ξ−k1
, ζ1,1e

i(k1+k2)·x), ξk2
〉 =

il2(1 + τ 2
2)

1/2Ω

D1.1
{L2

++

+2L+(1 − τ 1τ 2)D+c0(l1 + l2) + 6(1 − τ1τ2)
2(D+ − 1)},
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Hence

a1 =
l21(1 + τ 2

1)
3/2

D2,0
(4c0D1,0 + 5

√
1 + τ 2

1),

b2 =
l22(1 + τ 2

2)
3/2

D0,2
(4c0D0,1 + 5

√
1 + τ 2

2),

a2 =
1

2(1 + τ2
2)

{
L2

+

D1,1
+

L2
−

D1,−1
+ 2(1 − τ 1τ 2)c0(

L+D+

D1,1
(l1 + l2)+

+
L−D−

D1,−1
(l1 − l2)) +6(1 − τ1τ2)

2(
D+ − 1

D1,1
+

D− − 1

D1,−1
)

}
,

b1 =
1

2(1 + τ2
1)

{
L2

+

D1,1
+

L2
−

D1,−1
+ 2(1 − τ 1τ 2)c0(

L+D+

D1,1
(l1 + l2)+

+
L−D−

D1,−1
(l1 − l2)) +6(1 − τ1τ2)

2(
D+ − 1

D1,1
+

D− − 1

D1,−1
)

}
,

where we need not to forget the 2 relations (23) between c0, lj , τ j , j = 1, 2.
In the case when the lattice Γ has a diamond structure, and we choose the

x1− axis such that k1 and k2 are symmetric with respect to this axis, these
formulas become

a1 = b2 =
l2(1 + τ2)3/2

D2,0
(4c0D1,0 + 5

√
1 + τ 2),

a2 = b1 =
1

2(c2
0D

2
+ − 1)

{
4c0D+

(1 − τ 2)√
1 + τ 2

+
5 + 2τ2 + τ4

1 + τ2

}
− (1 − τ2)2

2(1 + τ 2)
,

where

D1,0 = D0,1 = 1 +
2l2

3
(1 + τ 2),

D2,0 = D0,2 = 4l2(c2
0D

2
1,0 − (1 + τ 2)),

D+ = 1 +
2l2

3
.

Theorem 3. Assume that c0 = c0(1, 0), k1 = l1(1, τ1) and k2 = l2(1,−τ2) are
such that the dispersion relation ∆(k, c0) = 0 is satisfied only with k = kj , j =
1, 2, and assume that

w =
r
s − l1

l2

τ1
l1
l2

+ τ 2
r
s

, r, s ∈ N.

Let the propagation velocity be c = c0

1+µ (1, w) and fix δ ∈ (0, 1) and σ ∈ N

large enough. Choose l2 < δ and |w| < δ/5 with 1 ≤ s ≤ σ and choose values

of τ 2 ∈ (δ, δ−1), except in a small neighborhood of a finite set τ
(p)
2 (τ 1, l1, l2) of
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cardinal at most O(ln s). Then, for any p ≥ 3, there is a family of bifurcating bi-
periodic traveling waves, U = (η,v) which are solutions of (2) in Gp, in general
non symmetric with respect to the propagation direction c, and of the form

U =Aξk1
+ Aξ−k1

+ Bξk2
+ Bξ−k2

+ ζ2,0(A
2e2ik1·x + A

2
e−2ik1·x)+

+ ζ0,2(B
2e2ik2·x + B

2
e−2ik2·x) + ζ1,1(ABei(k1+k2)·x + ABe−i(k1+k2)·x)+

+ ζ1,−1(ABei(k1−k2)·x + ABe−i(k1−k2)·x) + h.o.t.

where A, B ∈ C, and ξ±kj
, ζl,n are defined in (29), (61), (62), (63), (64).

The amplitudes |A| = ε1, |B| = ε2 are uniformly bounded by O{(|µ|/ lnσ)1/2}
where |µ| << (ln σ)−1, and µ and w satisfy (66). Any solution of the family,
corresponding to

A = ε1e
ik1·y, B = ε2e

ik2·y

is deduced from the one with A = ε1 > 0, B = ε2 > 0 in applying the translation
x 7→ x + y.

We can now plot the traveling surfaces in the (z1, z2) plane, where z2 is the
traveling direction and points downward, i.e.

x1 =
wz1 + z2√

1 + w2
, x2 =

−z1 + wz2√
1 + w2

.

By choosing the waves of the bifurcating family with

A = ε1, B = ε2,

the elevation η of the waves indicated in the pictures is computed with terms
up to degree 2 in (ε1, ε2) :

η ≈ 2ε1

√
1 + τ 2

1 cos(k1 · x) + 2ε2

√
1 + τ2

2 cos(k2 · x)

+ 2ε2
1(ζ2,0)1 cos(2k1 · x) + 2ε2

2(ζ0,2)1 cos(2k2 · x)

+ 2ε1ε2(ζ1,1)1 cos((k1 + k2) · x) + 2ε1ε2(ζ1,−1)1 cos((k1 − k2) · x).

For fixed values of l1, τ1, τ2, we compute l2 with formula (23), and once ε1 and
ε2 are fixed, we compute w with (66). When τ 1 = τ2 = τ and l1 = l2, the lattice
Γ is symmetric. Figure 1 shows the influence of the ratio ε1/ε2 when the lattice
Γ is symmetric. When ε2/ε1 = 1, the wave pattern is symmetric with respect
to the propagation direction (here the vertical direction). Figures 2, 3, 4 show
also cases with a symmetric lattice Γ for different values of τ , and compare the
asymmetrical pattern for ε2/ε1 = 0.5 with the symmetric one for ε2/ε1 = 1.
Figures 5 and 6 show cases with a non symmetric lattice Γ. Figure 7 provides
two examples of waves where w = 0, i.e. once ε1 is fixed, we compute ε2 with
(66) in such a way that w = 0 (at main order). Notice that in view of Theorem
3, these solutions exist for l1/l2 being rational. In our computed examples this
ratio is indeed not rational, so we need to take for r/s a rational approximation
of l1/l2 in such a way that w is very close to 0.

24



Figure 1: Γ symmetric, τ = 0.5, l1 = l2 = 0.25, ε1 = 0.1, i) ε2/ε1 = 0.1, ii)
ε2/ε1 = 0.5, iii) ε2/ε1 = 0.7 (asymmetrical waves), iv ε2/ε1 = 1 (symmetric
waves). The direction of propagation of the waves is the vertical axis. Crests
are white and troughs are dark.

Figure 2: Γ symmetric, τ = 0.7, l1 = l2 = 0.25, ε1 = 0.1, i) ε2/ε1 = 0.5
(asymmetrical waves), ii) ε2/ε1 = 1 (symmetric waves).
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Figure 3: Γ symmetric, τ = 1, l1 = l2 = 0.25, ε1 = 0.1, i) ε2/ε1 = 0.5 (asym-
metrical waves), ii) ε2/ε1 = 1 (symmetric waves). The direction of propagation
of the waves is the vertical axis
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Figure 4: Γ symmetric, τ = 1.5, l1 = l2 = 0.25, ε1 = 0.1, i) ε2/ε1 = 0.5
(asymmetrical waves), ii) ε2/ε1 = 1 (symmetric waves).

Figure 5: Γ asymmetrical, τ1 = 0.5, τ2 = 0.7, l1 = 0.25, ε1 = 0.1, i) ε2/ε1 = 0.5,
ii) ε2/ε1 = 1. The direction of propagation of the waves is the vertical axis
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Figure 6: Γ asymmetrical, τ 1 = 0.5, τ2 = 1, l1 = 0.25, ε1 = 0.1, i) ε2/ε1 = 0.5,
ii) ε2/ε1 = 1. The direction of propagation of the waves is the vertical axis

Figure 7: Γ asymmetrical, here w = 0, l1 = 0.25, ε1 = 0.1, i) τ 1 = 0.5, τ2 =
0.53, ε2 = 0.15, ii) τ 1 = 0.5, τ2 = 0.6, ε1 = 0.05, ε2 = 0.2.
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