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Summary. Considered herein are a number of variants of the classical Boussinesq
system and their higher-order generalizations. Such equations were first derived by
Boussinesq to describe the two-way propagation of small-amplitude, long wavelength,
gravity waves on the surface of water in a canal. These systems arise also when modeling
the propagation of long-crested waves on large lakes or the ocean and in other contexts.
Depending on the modeling of dispersion, the resulting system may or may not have
a linearization about the rest state which is well posed. Even when well posed, the
linearized system may exhibit a lack of conservation of energy that is at odds with its
status as an approximation to the Euler equations. In the present script, we derive a
four-parameter family of Boussinesq systems from the two-dimensional Euler equations
for free-surface flow and formulate criteria to help decide which of these equations one
might choose in a given modeling situation. The analysis of the systems according to
these criteria is initiated.

Key words. water waves, two-way propagation, Boussinesq systems, local well-posed-
ness, global well-posedness

1. Introduction

In a continuum approximation, waves on the surface of an ideal fluid under the force
of gravity are governed by the Euler equations. These are expected to provide a good
model of irrotational waves on the surface of water, say, in situations where dissipative
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and surface tension effects may be safely ignored. In many field and laboratory studies
and in engineering applications, the full Euler equations appear more complex than is
necessary for the modeling situation at hand, and consequently there have appeared many
approximate models applying to restricted physical regimes.

A regime that arises in practical situations is that of waves in a channel of approx-
imately constant depth h that are uniform across the channel, and which are of small
amplitude and long wavelength, and such that the associated nonlinear and dispersive
effects are balanced. Similar waves appear as long-crested disturbances on larger bod-
ies of water. If A connotes a typical wave amplitude and � a typical wavelength, the
conditions just mentioned amount to

α = A

h
� 1, β = h2

�2
� 1, S = α

β
= A�2

h3
≈ 1. (1.1)

In the 1870s, Boussinesq derived some model evolution equations which are appli-
cable in principle to describe motions that are sensibly two-dimensional and which have
the form of a perturbation of the one-dimensional wave equation. Perhaps the best known
is the equation

wt t = wxx + (w2)xx + wxxxx , (1.2)

or its regularized version

wt t = wxx + (w2)xx + wxxtt (1.3)

(see Boussinesq [29], Keulegan & Patterson [44], Ursell [59], Benjamin et al. [9], Kano
& Nishida [42], Bona & Sachs [21]). The variables appearing in (1.2) and (1.3) are
dimensionless but unscaled, so w itself is of order α; wx , wt are of order αβ

1
2 ; wxx , wxt ,

and wt t are of order αβ, and so on. Contrary to what one might guess, these equations
are derived directly from the Eulerian formulation of the water wave problem using
an assumption, among others, that the waves travel only in one direction. (It is worth
noting that the assumption of unidirectionality is not needed in the derivation for the
Lagrangian formulation, as Craig showed in [36, p. 799]. This configuration is not under
consideration here, however.) In consequence, (1.2) and (1.3) are formally comparable to
the well-known model put forth by Korteweg and de Vries [45], but also written down by
Boussinesq (see [29]). Boussinesq [28] also derived from the Euler equations a system
of two coupled equations,

ηt + wx + (wη)x = 0,

wt + ηx + wwx + 1

3
ηxtt = 0,

(1.4)

or its regularization (cf. Whitham [61]),

ηt + wx + (wη)x = 0,

wt + ηx + wwx − 1

3
wxxt = 0,

(1.5)

which are free of the presumption of unidirectionality that is the hallmark of (1.2), (1.3),
and Korteweg–de Vries–type equations as models of surface-wave propagation. One
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therefore expects that these Boussinesq systems will have more intrinsic interest than the
one-way models (an appellation we append to any model derived under the assumption of
unidirectionality of propagation) on account of their considerably wider range of potential
applicability. Because of the very rich mathematical theory that obtains for unidirectional
models like the Korteweg–de Vries equation, and which for the most part seems to have
no counterpart for systems of equations, much of the existing mathematical discussion
has been centered around one-way models. However, it is the Boussinesq systems to
which the present paper is devoted.

As with one-way models, there are potentially many different but formally equivalent
Boussinesq systems. As explained by Bona and Smith [26] (and see also Section 2 of
the present script), the plethora of possibilities is owed in the main to the fact that the
lower-order relations can be used systematically to alter the higher-order terms without
disturbing the formal level of approximation, and to the considerable choice of dependent
variables available for the description of the motion. Despite their formal equivalence
as models for small-amplitude long waves, these systems may have rather different
mathematical properties.

It is our principal purpose to examine some of the properties of a family of Boussinesq
systems of the form

ηt + wx + (wη)x + awxxx − bηxxt = 0,

wt + ηx + wwx + cηxxx − dwxxt = 0,
(1.6)

which are all first-order approximations (in the small parameters α and β introduced in
(1.1)) to the Euler equations. We also aim to derive Boussinesq systems of the form

ηt − bηxxt + b1ηxxxxt = − wx − (ηw)x − awxxx

+ b(ηw)xxx −
(

a + b − 1

3

)
(ηwxx )x − a1wxxxxx ,

wt − dwxxt + d1wxxxxt = − ηx − cηxxx − wwx − c(wwx )xx − (ηηxx )x

+ (c + d − 1)wxwxx + (c + d)wwxxx − c1ηxxxxx ,

(1.7)

which are second-order approximations. The derivation of these model systems from the
full Euler equations is addressed in Section 2.

The parameters a, b, c, . . . appearing in (1.6) and (1.7) are not independently speci-
fied. As will appear in Section 2, the constants in (1.6) obey the relations

a + b = 1

2

(
θ2 − 1

3

)
,

c + d = 1

2
(1 − θ2) ≥ 0, (1.8)

a + b + c + d = 1

3
,

the last of which follows from the first two, where θ ∈ [0, 1] specifies which horizontal
velocity variables w represents (w = wθ is the nondimensional horizontal velocity in
the flow corresponding to the physical velocity at height θh where h, as above, is the
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undisturbed depth of the liquid). As will appear presently, the constants in (1.6) arise
naturally in the form

a = 1

2

(
θ2 − 1

3

)
λ, b = 1

2

(
θ2 − 1

3

)
(1 − λ),

c = 1

2
(1 − θ2)µ, d = 1

2
(1 − θ2)(1 − µ),

(1.9)

whereλ,µ ∈ R are modeling parameters (parameters that do not possess a direct physical
interpretation as does θ ). Of course (1.8) follows from (1.9), but the significance of λ
and µ will become apparent in Section 2. Similar but more elaborate restrictions apply
to the parameters in (1.7).

A few specializations of (1.6) have appeared already in the literature. In addition to
the regularized version (1.5) of the classical Boussinesq system, Kaup [43], Bona and
Smith [26], and Bona and Chen [14] have put forward models that have attracted further
attention (see e.g., [46], [53], [35] for the Kaup system; [62], [57], [58] for the Bona-
Smith system, and [33] for the system studied in [14]). These and some other interesting
specializations are listed now to give concrete form to the discussion:

• Classical Boussinesq system (θ2 = 1
3 , λ arbitrary, µ = 0)

ηt + wx + (wη)x = 0,

wt + ηx + wwx − 1

3
wxxt = 0; (1.10)

• Kaup system (θ2 = 1, λ = 1, µ arbitrary)

ηt + wx + (wη)x + 1

3
wxxx = 0,

wt + ηx + wwx = 0;
(1.11)

• Bona–Smith system (θ2 = ( 4
3 − µ)/(2 − µ), λ = 0, µ < 0 arbitrary)

ηt + wx + (wη)x − bηxxt = 0,

wt + ηx + wwx + cηxxx − bwxxt = 0,
(1.12)

where, in the notation of (1.6),

b = d = 1 − µ

3(2 − µ)
> 0 and c = µ

3(2 − µ)
< 0;

• Coupled BBM-system (θ2 = 2
3 , λ = 0, µ = 0)

ηt + wx + (wη)x − 1

6
ηxxt = 0,

wt + ηx + wwx − 1

6
wxxt = 0;

(1.13)
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• Coupled K-dV system (θ2 = 2
3 , λ = 1, µ = 1)

ηt + wx + (wη)x + 1

6
wxxx = 0,

wt + ηx + wwx + 1

6
ηxxx = 0;

(1.14)

• Coupled K-dV–BBM system (θ2 = 2
3 , λ = 1, µ = 0)

ηt + wx + (wη)x + 1

6
wxxx = 0,

wt + ηx + wwx − 1

6
wxxt = 0;

(1.15)

• Coupled BBM –K-dV system (θ2 = 2
3 , λ = 0, µ = 1)

ηt + wx + (wη)x − 1

6
ηxxt = 0,

wt + ηx + wwx + 1

6
ηxxx = 0.

(1.16)

Some preliminary commentary is warranted concerning some of the preceding mod-
els. Among other things, the Kaup system was featured in Craig’s comparison [36] with
the full Euler equations for two-dimensional water waves. On the other hand, as will
appear in Section 3, Kaup’s version of Boussinesq’s system is linearly ill-posed for the
initial-value problem

η(x, 0) = ϕ(x), w(x, 0) = ψ(x), (1.17)

for x ∈ R. The system (1.14), while referred to as a coupled K-dV system, is not at all
the same as a pair of K-dV equations for the two dependent variables η and w coupled
through mixed nonlinear effects. The operator ∂t ±∂3

x which is characteristic of the K-dV
equation does not appear in its pure form. Nevertheless, because of the appearance of
third-order spatial derivatives in the dispersive term, this appellation seems useful. A
further change of dependent variables does render (1.14) into the form of a pair of K-dV
equations coupled through nonlinearity. System (1.13), on the other hand, is exactly
a pair of nonlinear BBM equations or regularized long-wave equations (see Benjamin
et al. [9]) coupled through nonlinear effects. The special case of the system (1.12) in
which the parameters take their limiting values θ2 = 1, b = d = 1

3 and c = − 1
3 , as

µ → −∞ was considered by Bona and Smith [26]. Notice that if reference is made to
the definition of c and d in (1.9), the value θ = 1 would imply c = d = 0. However,
if one takes the limit as µ → −∞, the combination − 1

3 (ηxxx + wxxt ) remains in the
formal limit. When referred to the size of dependent variables η andw, this quantity has
relative size of order β2, as will be apparent in Section 2. Consequently, its appearance
plays no role at a formal level, though Bona and Smith appended it to gain a useful
mathematical advantage. It will be seen later that their analysis of (1.12) with µ = −∞
may be adapted to the system (1.12) for any value of µ ≤ 0. Of course, when µ = 0,
the coupled BBM-system (1.13) is recovered.
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One might wonder if there is a need to have available more than one of the three-
parameter family displayed in (1.6). Experience with the unidirectional models K-dV,
BBM, the equation

ut + ux + uux + uxtt = 0

arising readily from Boussinesq’s original system (1.4), and the model

ut + ux + uux − uttt = 0

shows that, while they are known rigorously to be equivalent models for initial data
obeying (1.1), (see [19], [2], [25], [13]), they nevertheless possess different mathemat-
ical properties. These differences mean that in both theoretical and practical studies,
one can and does choose the model in accordance with the particular questions under
investigation. The same flexibility is desirable for two-way models.

This latter remark suggests another point that needs explication. Namely, what general
properties must a model such as one of those posited in (1.6) or (1.7) possess to be
considered a desirable prospect for approximating water waves? Here is a list of aspects
that seem likely to be wanted in both theoretical and practical situations.

(i) Well-posedness of initial-value problems; for the linear equation, for the nonlinear
equation, locally in time, globally in time. Well-posedness for initial-boundary-
value problems appropriate to generation of waves by a wavemaker or as a model
for waves impinging on a quiescent stretch of the medium (e.g., waves approaching
the shore from deep water).

(ii) Energy preservation; in each Fourier mode for the linearized equations, of the total
energy for the nonlinear problem.

(iii) Existence of solitary-wave solutions at least for small amplitudes.
(iv) Relative ease of constructing accurate, efficient numerical schemes for approximat-

ing solutions of interesting initial-boundary-value problems.
(v) Accurate comparison with laboratory and field data in the range of parameters where

the model is formally deemed to be valid.

These criteria deserve some discussion. As is well known, and will be seen again in our
Section 2, all these models are derived from the full Euler equations for two-dimensional
water waves under the force of gravity by way of truncating a formal expansion of one
sort or another (e.g., a Taylor expansion of the velocity potential as here, an operator
expansion of the Hamiltonian [37], [51] or the like). Underlying such formalisms is
existence and regularity of the Euler flow corresponding at least to physically relevant
data. Indeed, in the work of Craig [36], Kano and Nishida [42], and the more recent
discussion of Schneider and Wayne [54], theoretical justification has been provided for
some aspects of the passage from the Euler equations to some of the one- and two-way
models considered here. Related comparisons between coupled BBM and the one-way
BBM model are given in the forthcoming work [1]. In spaces of functions analytic in a
strip, such comparisons also follow from the ideas in [42], albeit over limited time scales.
As the overlying equations are linearly globally well-posed, and at least nonlinearly
locally well-posed, requiring the same of the models is not asking too much. Whether
or not the models need to be globally well-posed is perhaps not so clear. They should
be well-posed at least on a time scale of order 1

α2 . Moreover, they are only expected to
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be valid where they are smooth, so global well posedness is certainly convenient if not
necessary. In any event, a globally well-posed model is less likely to give trouble when
forming an associated numerical scheme to simulate solutions as in point (iv) above.

As far as preservation of energy is concerned, the linear Euler equations preserve
energy mode by mode. Thus the total energy in each Fourier mode remains unchanged
as time evolves. While this is no longer true for the nonlinear problem, the total energy is
preserved under the passage of time for various initial-boundary-value problems for the
Euler equations. Maintaining this property in the model seems a very good idea both as
regards theoretical issues and the potential accuracy of an associated numerical scheme
in approximating Euler flows.

Solitary waves are known to play a distinguished role in the evolution of general
initial disturbances for the K-dV equation. This is a rigorous consequence of the inverse
scattering theory for the K-dV equation. Numerical simulations show similar results for
the BBM equation and indeed for a whole range of unidirectional, nonlinear, dispersive
wave equations (see, e.g., [20], [17], [41], [16]). Laboratory experiments (see [63],
[38], [18], [50]) show the same results for real water waves, in both unidirectional and
bidirectional situations. Moreover, the full Euler equations admit solitary-wave solutions
(see [47], [48], [3], [8]). This preponderance of evidence suggests that in choosing a
model from the class in (1.6), attention might reasonably be restricted to those having
solitary waves of their own.

Of course the final point is the ultimate test of any mathematical model. However,
such comparisons can be subtle to make because in laboratory or field situations, effects
not accounted for by the models often prove to be significant. For example, viscous
effects cannot be ignored except perhaps on planetary spatial scales (see [18], [38], [39],
[31], [49]).

All the foregoing commentary centered around (1.6) applies mutatis mutandis to the
equations appearing in (1.7).

After deriving the systems (1.6) and (1.7) in Section 2, attention is turned to Crite-
rion (i). Such evolution equations are unlikely to be well-posed unless they are linearly
well posed. Section 3 focuses on the latter question, namely which of the models in (1.6)
are well posed when the quadratic terms are dropped from consideration.

Of course, the fact of linear well-posedness does not by itself imply that the associ-
ated nonlinear initial-value problem will be well posed, nor does it assure that interesting
initial-boundary-value problems arising in applications will be properly posed. Never-
theless, the successful study of linear well-posedness is a step in the direction of this
understanding. Somewhat surprisingly, though the evolution equations appearing in (1.6)
are all formally equivalent, they possess strikingly varied linear well-posedness prop-
erties. Indeed, some are not linearly well-posed even in the Hilbert-space setting of
L2–based function classes. Among choices that are well posed in Hadamard’s classical
sense, there are more delicate aspects such as spurious growth in energy that make some
unsuitable as models of the underlying physical phenomena, even though well posed.

Section 4 is concerned with the more delicate issue of well-posedness of these linear
systems in L p–spaces and some of their interesting dispersive blow-up properties. These
aspects have to do with whether or not the solution maintains regularity as t increases
(see [23] for related work on unidirectional models in this context). Also, L p-theory
p �= 2, is sometimes very helpful when analyzing nonlinear problems.
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The higher-order correct systems in (1.7) are considered in Section 5 and a preliminary
foray made into their analysis. This project has independent interest, but our main impetus
was the need for a better model for the two-way propagation of waves in connection
with some surface-wave experiments in a laboratory setting and in field studies of wave-
generated sediment transport. The second-order correct models both have increased
accuracy, and, just as important, are formally valid on time and spatial scales an order
of magnitude longer than first-order correct models. These points are explained in more
detail in Section 2.

While the second-order correct systems are more involved than the first-order systems,
the level of complexity that arises is still well below that exhibited by the full, two-
dimensional Euler equations with a free boundary, as regards mathematical analysis,
imposition of boundary conditions, and especially as regards the prospect for associated
algorithms for the numerical approximation of waves. Especially with an eye to practical
implementation, discussion of the systems in (1.7) seems amply justified.

The paper concludes with a summary and a short discussion of related lines of inquiry.
In Part II, which will appear separately, we deal with the nonlinear initial-value

problems corresponding to those systems which are linearly well-posed. A theory of
local well-posedness will be developed for all the linearly well-posed systems, though
the function classes in which well-posedness obtains vary from equation to equation.
Some of the relevant systems possess a Hamiltonian structure, and this together with local
well-posedness sometimes implies global well-posedness of the initial-value problem at
least for physically relevant initial data.

Finally, it is worth note that the models derived in this paper depend upon small
parameters. For instance, in (1.11), one has (wη)x << ηt , etc. Thus the equations have
not been made independent of all the small parameters. Indeed, this is not an important
point in the present perspective, as our models are intended for the description of realistic
waves with finite rather than asymptotically small amplitudes.

2. Model Systems

The origin of the systems (1.6) and (1.7) of partial differential equations is explained
in this section. The methods are standard, but some of these equations are derived for
the first time. They are usefully set forth to provide a context for the further modeling
considerations to follow.

Let�t be the domain in R
3 which is occupied by an inviscid, incompressible fluid at

time t . The system describing the motion of such a fluid is the classical Euler equations

∂ �v
∂t

+ (�v · ∇) �v + ∇ p = −g�k, in �t , (2.1)

∇ · �v = 0, in �t , (2.2)

where g denotes the acceleration of gravity, �v = u�i + v �j + w�k denotes the velocity
field, �i, �j, and �k are the unit vectors along the x−, y−, and z−axis, respectively, in R

3,
∇ = ( ∂

∂x ,
∂
∂y ,

∂
∂z )

T , and p denotes the pressure field. Assuming the initial velocity field
is irrotational so that ∇ × �v = 0, Helmholtz’s vorticity principle implies that the velocity
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field remains irrotational. So long as a regular solution obtains, and hence that

�v = ∇φ (2.3)

for some potential function φ = φ((x, y, z), t). It follows from (2.2) that φ satisfies
Laplace’s equation

�φ = 0 (2.4)

in �t , for each t .
View the boundary of �t as consisting of two parts: the fixed surface located at

z = −h(x, y), and the free surface z = η(x, y, t). The domain is taken to be unbounded
in the horizontal directions so that lateral boundaries do not intrude at this stage of the
analysis. Note that η(x, y, t) is a fundamental unknown of the problem. On the fixed
portion of the boundary, the condition of impermeability (no flow through the solid
boundary) �v · �n = 0 is satisfied with �n being the normal direction of the surface, which
is to say

φx hx + φyhy + φz = 0, on z = −h(x, y). (2.5)

Since the free surface is a material surface, it satisfies the kinematic condition D(η−z)
Dt = 0,

where D
Dt is the usual material derivative ∂

∂t + u ∂
∂x + v ∂

∂y + w ∂
∂z . In consequence, we

have

ηt + φxηx + φyηy − φz = 0, on z = η(x, y, t). (2.6)

Assuming the pressure on the free surface is equal to the ambient air pressure, it follows
from (2.1) and (2.3) that the Bernoulli condition (cf. Whitham [61], pp. 432)

∂φ

∂t
+ 1

2
|∇φ|2 + gz = 0, on z = η(x, y, t), (2.7)

is satisfied on the free surface as well.
Summarizing the equations for the unknown functions η and φ, they consist of (2.4),

(2.5), (2.6), and (2.7). This system is challenging to treat either numerically or analytically
because�t is changing with time through the evolution of η and the boundary conditions
(2.6) and (2.7) on the free surface are nonlinear. Consider now the simpler case of an
open channel in which the fluid motion is irrotational, inviscid and uniform in the cross-
channel direction. Suppose the bottom of the channel to be flat and horizontal and let h
denote the depth of the liquid in its undisturbed state. Then the preceding formulation
reduces to

φxx + φzz = 0, in − h < z < η(x, t),

φz = 0, on z = −h,

ηt + φxηx − φz = 0, on z = η(x, t),

φt + 1

2
(φ2

x + φ2
z )+ gz = 0, on z = η(x, t),

where the undisturbed free surface is located at z = 0,−∞ < x < +∞, for all
t ≥ 0. This system of equations is posed together with suitable boundary conditions as
x → ±∞ and an initial condition at t = 0.
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Consider now the regime mentioned before where the free surface has small ampli-
tude, long wavelength and the classical Stokes number S = α

β
is of order one. In this

circumstance, the two small parameters α and β may be treated on an equal footing.
Choosing β to be the primary parameter, we seek to write solutions of (2.4)–(2.7) in a
Taylor series with respect to β, and thereby to obtain approximate equations correspond-
ing to orders of accuracy characterized by βn for n = 1, 2, . . . .

The procedure is most transparent when working with the variables scaled in such
a way that the dependent quantities and the initial data appearing in the initial-value
problem are all of order one, while the assumptions about small amplitude and long
wavelength appear explicitly connected with small parameters in the equations of motion.
Such consideration leads to the scaled, dimensionless variables

x = �x̃, z = h(z̃ − 1), η = Aη̃, t = �t̃ /c0, φ = g A�φ̃/c0, (2.8)

where c0 = √
gh. In these variables, the last set of equations becomes the system

βφ̃x̃ x̃ + φ̃z̃ z̃ = 0, in 0 < z̃ < 1 + αη̃(x̃, t̃), (2.9)

φ̃z̃ = 0, on z̃ = 0, (2.10)

η̃t̃ + αφ̃x̃ η̃x̃ − 1

β
φ̃z̃ = 0, on z̃ = 1 + αη̃(x̃, t̃), (2.11)

η̃ + φ̃t̃ + 1

2
αφ̃2

x̃ + 1

2

α

β
φ̃2

z̃ = 0, on z̃ = 1 + αη̃(x̃, t̃), (2.12)

for −∞ < x̃ < ∞, t̃ > 0. For clarity, we drop the tilde over the new variables in our
further machinations.

The next procedure, which is a standard one (cf. Peregrine [52], Benjamin [7], and
Whitham [61], Ch. 13), begins by representing φ as a formal expansion,

φ(x, z, t) =
∞∑

m=0

fm(x, t)zm .

Demanding that φ formally satisfy Laplace’s equation (2.9) leads to the recurrence
relation

(m + 2)(m + 1) fm+2(x, t) = −β( fm(x, t))xx , (2.13)

for m = 0, 1, 2, . . . . Let F = f0 denote the velocity potential at the bottom z = 0 and
use (2.13) repeatedly to obtain

f2k(x, t) = (−1)kβk

(2k)!

∂2k F(x, t)

∂x2k
, k = 0, 1, 2, . . . .

Equation (2.10) implies that f1(x, t) = 0, so

f2k+1(x, t) = 0, k = 0, 1, 2, . . . ,

and therefore

φ(x, z, t) =
∞∑

k=0

(−1)kβk

(2k)!

∂2k F(x, t)

∂x2k
z2k .
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Substitute the latter representation into (2.11) and (2.12) to obtain a system of equations
for η(x, t) and F(x, t), namely

ηt + αηx

∞∑
k=0

(−1)kβk

(2k)!

∂2k+1 F

∂x2k+1
z2k −

∞∑
k=1

(−1)kβk−12k

(2k)!

∂2k F

∂x2k
z2k−1 = 0,

η +
∞∑

k=0

(−1)kβk

(2k)!

∂2k+1 F

∂x2k∂t
z2k + 1

2
α

{ ∞∑
k=0

(−1)kβk

(2k)!

∂2k+1 F

∂x2k+1
z2k

}2

+1

2

α

β

{ ∞∑
k=1

(−1)kβk2k

(2k)!

∂2k F

∂x2k
z2k−1

}2

= 0,

on

z = 1 + αη(x, t).

Substituting the value of z into the last two equations leads to

ηt + αηx

∞∑
k=0

{
(−1)k

(2k)!

∂2k+1 F

∂x2k+1
(1 + αη)2k

}
βk

+
∞∑

k=0

{
(−1)k

(2k + 1)!

∂2k+2 F

∂x2k+2
(1 + αη)2k+1

}
βk = 0,

(2.14)

and

η +
∞∑

k=0

{
(−1)k

(2k)!

∂2k+1 F

∂x2k∂t
(1 + αη)2k

}
βk

+ 1

2
α

{ ∞∑
k=0

(−1)k

(2k)!

∂2k+1 F

∂x2k+1
(1 + αη)2kβk

}2

(2.15)

+ 1

2
αβ

{ ∞∑
k=0

(−1)k

(2k + 1)!

∂2k+2 F

∂x2k+2
(1 + αη)2k+1βk

}2

= 0.

Account is now taken of the formal order of the various terms appearing in (2.14)
and (2.15). The parameters α and β have the same small order, while F and η have been
scaled so that they and their partial derivatives are of order one. Keeping only the terms
in (2.14) and (2.15) which are of lowest order, there obtains the system

ηt + ∂2 F

∂x2
= terms linear in α, β,

η + ∂F

∂t
= terms linear in α, β.

Differentiate the second equation with respect to x and let ∂F(x,t)
∂x = u(x, t), the scaled

horizontal velocity at the bottom of the channel. With this new dependent variable at
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hand, the last equation becomes

ηt + ux = terms linear in α, β, (2.16)

ηx + ut = terms linear in α, β, (2.17)

which is simply the linear wave equation if the terms of formal order α and β are ignored.
The next order of approximation keeps all the terms in (2.14)–(2.15) which are at

most linear in α or β. This leads to the system

ηt + ∂2 F

∂x2
+ αηx

∂F

∂x
+ αη

∂2 F

∂x2
− 1

6
β
∂4 F

∂x4
= terms quadratic in α, β,

η + ∂F

∂t
− 1

2
β
∂3 F

∂x2∂t
+ 1

2
α

(
∂F

∂x

)2

= terms quadratic in α, β.

Differentiate the second equation with respect to x and substitute u for d F
dx as before to

recover the first-order Boussinesq system (cf. [27]),

ηt + ux + αηx u + αηux − 1

6
βuxxx = terms quadratic in α, β,

ηx + ut + αuux − 1

2
βuxxt = terms quadratic in α, β.

(2.18)

By the same process, one may derive higher-order approximations. For the second-
order case, (2.14)–(2.15) yield

ηt + αηx

(
∂F

∂x
− 1

2

∂3 F

∂x3
(1 + αη)2β

)
+ ∂2 F

∂x2
(1 + αη)

− 1

6

∂4 F

∂x4
(1 + αη)3β + 1

5!

∂6 F

∂x6
(1 + αη)5β2 = terms cubic in α, β,

η + ∂F

∂t
− 1

2

∂3 F

∂x2∂t
(1 + αη)2β + 1

4!

∂5 F

∂x4∂t
(1 + αη)4β2

+ 1

2
α

{
∂F

∂x
− 1

2

∂3 F

∂x3
(1 + αη)2β

}2

+ 1

2
αβ(

∂2 F

∂x2
(1 + αη))2 = terms cubic in α, β.

Expand the powers, rewrite the system, and combine the resulting higher-order terms
with the error terms to obtain

ηt + αηx

(
∂F

∂x
− 1

2

∂3 F

∂x3
β

)
+ ∂2 F

x2
+ αη

∂2 F

∂x2

− 1

6

∂4 F

∂x4
(1 + 3αη)β + 1

120

∂6 F

∂x6
β2 = terms cubic in α, β,

η + ∂F

∂t
− 1

2

∂3 F

∂x2∂t
(1 + 2αη)β + 1

24

∂5 F

∂x4∂t
β2

+ 1

2
α

(
∂F

∂x

)2

− 1

2
αβ
∂F

∂x

∂3 F

∂x3
+ 1

2
αβ(

∂2 F

∂x2
)2 = terms cubic in α, β.
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Differentiate the second equation with respect to x and substitute u as before to reach a
second-order correct Boussinesq-system of equations

ηt + ux + αηx u + αηux − 1

6
βuxxx − 1

2
αβηx uxx

−1

2
αβηuxxx + 1

120
β2uxxxxx = terms cubic in α, β,

(2.19)

ηx + ut − 1

2
βuxxt + αuux − αβηuxxt − αβηx uxt + 1

2
αβux uxx

−1

2
αβuuxxx + 1

24
β2uxxxxt = terms cubic in α, β.

(2.20)

Our purpose now is to derive a class of systems all of which are formally equivalent to
the system displayed in (2.19)–(2.20). This will be accomplished by considering changes
in the dependent variables and by making use of lower-order relations in higher-order
terms. (As mentioned in the Introduction, different members of this putative class are
likely to be useful in different circumstances.) Toward this goal, begin by letting w be
the scaled horizontal velocity corresponding to the depth (1−θ)h below the undisturbed
surface. Of course, 0 ≤ θ ≤ 1 with θ = 0 leading to w = u, the horizontal velocity
at the bottom. One anticipates on the basis of prior experience that, when the system
model is based upon η and w rather than η and u, the structure of the associated differ-
ential equations may change markedly. A formal use of Taylor’s formula with remainder
shows that

w = φx |z=θ = Fx − 1

2
βθ2 Fxxx + 1

4!
β2θ4 Fxxxxx + O(β3)

= u − 1

2
βθ2uxx + 1

4!
β2θ4uxxxx + O(β3),

as β → 0. By using the Fourier transform, the latter relationship may be written as

ŵ = (1 + 1

2
βθ2k2 + 1

4!
β2θ4k4)û + O(β3),

where the Fourier transform of a function f of the spatial variable x is

f̂ (k) =
∫ +∞

−∞
e−ikx f (x) dx.

Inverting the positive Fourier multiplier yields

û =
(

1 + 1

2
βθ2k2 + 1

4!
β2θ4k4

)−1

ŵ + O(β3)

=
(

1 − 1

2
βθ2k2 − 1

4!
β2θ4k4 + 1

4
β2θ4k4

)
ŵ + O

(
β3
)

=
(

1 − 1

2
βθ2k2 + 5

24
β2θ4k4

)
ŵ + O(β3),
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as β → 0. Thus there appears the relationship

u = w + 1

2
βθ2wxx + 5

24
β2θ4wxxxx + O(β3), (2.21)

as β → 0. Substitute this relation into (2.19) and (2.20) and combine higher-order terms
with the formal error to obtain, after some straightforward calculation,

ηt + wx + α(ηw)x + 1

2

(
θ2 − 1

3

)
βwxxx + 1

2
(θ2 − 1)αβ(ηwxx )x

+ 5

24

(
θ2 − 1

5

)2

β2wxxxxx = terms cubic in α, β, (2.22)

ηx + wt + 1

2
(θ2 − 1)βwxxt + αwwx − αβηwxxt

−αβηxwxt + 1

2
(θ2 + 1)αβwxwxx + 1

2
(θ2 − 1)αβwwxxx (2.23)

+ 5

24
(θ2 − 1)

(
θ2 − 1

5

)
β2wxxxxt = terms cubic in α, β.

Other systems of equations correct to second order in α, β can be obtained by altering
the higher-order terms using the lower-order approximations. Moving all the terms in
(2.22) and (2.23) quadratic in α and β to the right-hand side, it is seen that

ηt + wx + α(ηw)x + 1

2
(θ2 − 1

3
)βwxxx = terms quadratic in α, β, (2.24)

ηx + wt + 1

2
(θ2 − 1)βwxxt + αwwx = terms quadratic in α, β. (2.25)

The idea is to use the relationships (2.24) and (2.25) to alter the evolution equations
without changing the formal order of approximation. As an example, consider the fourth
and sixth terms

1

2

(
θ2 − 1

3

)
βwxxx + 5

24

(
θ2 − 1

5

)2

β2wxxxxx

on the left-hand side of (2.22). Differentiate (2.24) twice with respect to x and solve for
wxxx to obtain

wxxx = −ηxxt − α(ηw)xxx − 1

2

(
θ2 − 1

3

)
βwxxxxx + terms quadratic in α, β.

Let λ ∈ R and write

βwxxx = λβwxxx + (1 − λ)βwxxx

= λβwxxx + (1 − λ)β

(
−ηxxt − α(ηw)xxx − 1

2

(
θ2 − 1

3

)
βwxxxxx

)
+ terms cubic in α, β.
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Similarly, it is clear because of (2.16)–(2.17) that, formally,

β2wxxxxx = −β2ηxxxxt + terms cubic in α, β.

Thus we may write

β2wxxxxx = β2λ1wxxxxx − β2(1 − λ1)ηxxxxt + terms cubic in α, β.

Proceeding systematically to apply the same type of representation to other terms (use
(2.25) on the fifth, sixth, and parts of the third and ninth terms on the left-hand side of
(2.23)), we obtain the system

ηt + wx + α(ηw)x + 1

2

(
θ2 − 1

3

)
λβwxxx

+ 1

2

(
θ2 − 1

3

)
(1 − λ)β

(
−ηt − α(ηw)x − 1

2

(
θ2 − 1

3

)
βwxxx

)
xx

+ 1

2
(θ2 − 1)αβ(ηwxx )x + 5

24

(
θ2 − 1

5

)2

λ1β
2wxxxxx

− 5

24

(
θ2 − 1

5

)2

(1 − λ1)β
2ηxxxxt = terms cubic in α, β,

and

ηx + wt + 1

2
(θ2 − 1)(1 − µ)βwxxt

+ 1

2
(θ2 − 1)µβ

(
−ηx − 1

2
(θ2 − 1)βwxxt − αwwx

)
xx

+ αwwx + αβ(ηηxx )x + 1

2
(θ2 + 1)αβwxwxx

+ 1

2
(θ2 − 1)αβwwxxx + 5

24
(θ2 − 1)

(
θ2 − 1

5

)
µ1β

2wxxxxt

− 5

24
(θ2 − 1)

(
θ2 − 1

5

)
(1 − µ1)β

2ηxxxxx = terms cubic in α, β.

By neglecting the terms cubic in α and β on the right-hand side, we derive the systems
of equations

ηt − bβηxxt + b1β
2ηxxxxt = −wx − α(ηw)x − aβwxxx + bαβ(ηw)xxx

−
(

a + b − 1

3

)
αβ(ηwxx )x̃ − a1β

2wxxxxx ,

wt − dβwxxt + d1β
2wxxxxt = −ηx − cβηxxx − αwwx − cαβ(wwx )xx (2.26)

− αβ(ηηxx )x + (c + d − 1)αβwxwxx

+ (c + d)αβwwxxx − c1β
2ηxxxxx ,
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written in the scaled variables (η,w), which are correct renditions through terms of
formal order β2, αβ, α2, where the constants a, b, c, d are given by (1.9) and

a1 = −1

4

(
θ2 − 1

3

)2

(1 − λ)+ 5

24

(
θ2 − 1

5

)2

λ1,

b1 = − 5

24

(
θ2 − 1

5

)2

(1 − λ1),

c1 = 5

24
(1 − θ2)

(
θ2 − 1

5

)
(1 − µ1),

d1 = −1

4
(1 − θ2)2µ− 5

24
(1 − θ2)

(
θ2 − 1

5

)
µ1.

(2.27)

An appraisal of the scales of the various terms above suggests making the following
change of variables:

x = β
1
2 x̂, t = β

1
2 t̂, η = α−1η̂, w = α−1ŵ.

Recall that the tilde over the variables introduced in (2.8) has been suppressed in (2.26).
In the new variables, the second-order correct system has the form

η̂t̂ − bη̂x̂ x̂ t̂ + b1η̂x̂ x̂ x̂ x̂ t̂ = −ŵx̂ − (η̂ŵ)x̂ − aŵx̂ x̂ x̂ + b(η̂ŵ)x̂ x̂ x̂

−
(

a + b − 1

3

)
(η̂ŵx̂ x̂ )x̂ − a1ŵx̂ x̂ x̂ x̂ x̂ ,

(2.28)

ŵt̂ − dŵx̂ x̂ t̂ + d1ŵx̂ x̂ x̂ x̂ t̂ = −η̂x̂ − cη̂x̂ x̂ x̂ − ŵŵx̂ − c(ŵŵx̂ )x̂ x̂

−(η̂η̂x̂ x̂ )x̂ + (c + d − 1)ŵx̂ ŵx̂ x̂

+(c + d)ŵŵx̂ x̂ x̂ − c1η̂x̂ x̂ x̂ x̂ x̂ .

(2.29)

These are the systems (1.7), though the circumflexes surmounting the variables were
there omitted in the interest of visual clarity. By dropping the second-order terms in
(2.26) and using the scaling introduced above, one obtains the first-order correct systems
displayed in (1.6).

The constants a, b, c, d, a1, b1, c1, d1 form a restricted eight-parameter family which
depends on θ in the range 0 ≤ θ ≤ 1 and λ, µ, λ1 and µ1 in R. To the second-order with
respect to the small parameters α and β, all the systems in (2.28)–(2.29) are formally
equivalent. The relationship between the original physical variables x, t, η,w and the
new variables x̂, t̂, η̂, ŵ is

x = hx̂, t = ht̂ /c0, η = hη̂, w = c0ŵ.

Thus, the variables x̂, t̂, η̂, and ŵ are the standard nondimensionalization of x, t, η, and
w wherein the length scale is taken to be h and the time scale to be h/c0.

A check of the above calculations is to determine the dispersion relation of the system
(2.28)–(2.29) linearized around the rest state. By transforming the linearized system
into a single equation and positing a solution of the form ei(kx−ωt), the frequency ω is
determined as a function of wave number k, viz.

ω2(k) = k2 (1 − ak2 + a1k4)(1 − ck2 + c1k4)

(1 + bk2 + b1k4)(1 + dk2 + d1k4)
.
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Expanding the right-hand side of the last equation for small values of k (long wavelength)
gives an expression for the phase speed c, namely

c2(k) = ω2(k)

k2
= 1 − 1

3
k2 + 2

15
k4

+g(θ, λ, λ1, µ, µ1)k6 + O(k8),

(2.30)

as k → 0, where

g(θ, λ, λ1, µ, µ1) = 1

720
{(−66 − λ− λ1 + 15µ+ 15µ1)

+ (172 + 13λ+ 13λ1 − 105µ− 105µ1)θ
2

+ 5(−34 − 11λ− 11λ1 + 33µ+ 33µ1)θ
4

+ 75(λ+ λ1 − µ− µ1)θ
6}.

The first three terms, which are independent of θ , λ, λ1, µ, and µ1, correspond to the
expansion of the full linearized dispersion relation

c2(k) = tanh(k)

k

of the Euler equations written in the variables displayed in (2.8) (cf. Whitham [61]).
It is interesting to note that while the linear dispersion relation for (2.28)–(2.29)

always matches that of the linearized Euler equations through terms of order k4 in the
Taylor expansion around the origin, by an adroit choice of the constants, the linearized
dispersion relation can be made to match through terms of sixth-order.

It is worthwhile to review what we expect from the models introduced above. If one
takes seriously the power series representation of the velocity potential φ, then the formal
error in the free-surface deviation made in using the second-order correct model versus
using the Euler equations has the form

sup
x∈R

|η̃Euler (x, t)− η̃Bouss(x, t)| ≤ Cβ3t (2.31)

in the variables appearing in (2.26). The constant C depends on a norm of the initial
data and the Stokes number S = α

β
. In consequence, it is an order 1 quantity. The two

renditions of the free surface are likewise of order 1. Hence, so long as the error is of
order β or less, the Boussinesq approximation would be judged a good one. Thus, for
time scales t of order 1

β2 , the expectation is that the higher-order Boussinesq model will
provide a satisfactory description of the wave motion.

In the variables appearing in (2.28)–(2.29) or (1.7), this estimate of the divergence of
the model from the Euler equations becomes

sup
x∈R

|η̂Euler (x, t)− η̂Bouss(x, t)| ≤ C1αβ
3t. (2.32)

Of course, if one poses an initial-value problem for (2.28)–(2.29), then for the solution
to be physically relevant, the initial data

η̂(x̂, 0) = φ(x̂), ŵ(x̂, 0) = ψ(x̂), (2.33)
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should satisfy the small-amplitude, long-wavelength assumptions inherent in the deriva-
tion of the models. That is, in principle, φ(x̂) and ψ(x̂) should be of the form

φ(x̂) = α f (β x̂), ψ(x̂) = αg(β x̂),

where α = A
h and β = h2

�2 are small and f, g and their first few derivatives are all of order
one. (It is worth remark here that, depending on the norm used to measure functions,
it appears that one must assume f and g possess five or six derivatives to justify the
model equation; see Benjamin et al. [9] and Craig [36]). Thus, in this case, both η̂Euler

and η̂Bouss are of order α. The inequality (2.32) thus shows that the difference between
the two profiles is at the neglected relative order error at least over the time scale t̂ of
order 1

β
5
2

. Similar remarks apply to the first-order correct system (1.6). However, the

analog of (2.31) is

sup
x∈R

|ηEuler (x, t)− ηBouss(x, t)| ≤ Cβ2t, (2.34)

and similarly for (2.32).

Remark 2.1. It deserves comment that no attempt has been made to alter the nonlinear-
ities in the Boussinesq systems. Such a program where one looks more deeply into the
nonlinear structure is being pursued separately (see [5], [6], [4] ).

Remark 2.2. The water channel in the Penn State Mathematics Department is about 10
meters long and 30 cm wide. Experiments are planned in a water depth of 10 cm and the
wavelength, which is determined by the frequency of a piston-type wavemaker, is about
a meter. The wave height can be controlled by varying the throw of the wavemaker. Wave
amplitudes from 10−2 cm to 1 cm are in view, and thus α will vary between 10−3 and
10−1. The Stokes number will therefore lie in the range 10−1 � S � 10.

3. First-Order Correct Linear Boussinesq Systems

The initial-value problem for the linear model obtained from the system (1.6) by ignoring
the quadratic terms is analyzed here. The system in question is

ηt + wx + awxxx − bηxxt = 0,

wt + ηx + cηxxx − dwxxt = 0,
(3.1)

where a, b, c, d are as defined in (1.9).
Because the nonlinearity has been dropped, the system (3.1) is straightforwardly

understood using Fourier analysis.

Notation. The standard norm in L p(R) will be written | · |p for 1 ≤ p ≤ ∞. If
f ∈ H s = H s(R), where s ≥ 0, the Sobolev class of L2-functions whose first s
derivatives also lie in L2, then its norm is written ‖ f ‖s . If s is not an integer, the notion
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is extended via the Fourier transform in the usual way. For f ∈ H s(R), its Fourier
transform is f̂ (k) = ∫ +∞

−∞ e−ikx f (x) dx and

‖ f ‖s =
(

1

2π

∫ +∞

−∞
| f̂ (k)|2(1 + k2)sdk

) 1
2

(3.2)

is a norm on H s(R) which is equivalent to the usual norm(
s∑

j=0

∥∥ f ( j)(x)
∥∥2

0

) 1
2

when s is a positive integer (cf. [40]). When s = 0, Parseval’s formula implies

‖ f ‖0 = | f |2 =
(∫ +∞

−∞
| f (x)|2dx

) 1
2

= 1√
2π

| f̂ |2.

If X is any other Banach space, its norm will be denoted, unabbreviated, as ‖ · ‖X . The
product space X × X will be abbreviated by X2 and it carries the norm

‖f‖X2 = (‖ f1‖2
X + ‖ f2‖2

X

) 1
2

for f = ( f1, f2). We denote by B(X, Y ) the set of all bounded linear operators from X
to Y . The associated norm is denoted by ‖ · ‖X,Y . The domain of an operator T is written
D(T ). If X is a Banach space, the continuous mappings w: [a, b] → X , equipped with
the maximum norm

max
a≤t≤b

‖w(t)‖X ,

is again a Banach space denoted by C(a, b; X).
Attention is given to the pure initial-value problem (3.1)–(1.17) where ϕ, ψ are

selected from a class of functions evanescent at ∞, say L2(R) or H s(R) for some s > 0.
Taking the Fourier transform with respect to x , the system (3.1) may be written in the
form

d

dt

(
η̂

ŵ

)
+ ikA(k)

(
η̂

ŵ

)
= 0, (3.3)

where

A(k) =
(

0 ω1(k)

ω2(k) 0

)
(3.4)

and

ω1(k) = 1 − ak2

1 + bk2
, ω2(k) = 1 − ck2

1 + dk2
. (3.5)

Interest is first turned to determining when the initial-value problem for the system
(3.1) is well posed. We begin by investigating when the initial-value problem for (3.1)
is ill posed in the sense to be explained below. In the complementary class, where the
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system (3.1) is well posed, it will appear nevertheless that not all choices preserve energy.
Because these models are meant to serve in place of the Euler equations, the versions that
preserve energy are more natural candidates as good approximations. Indeed, we shall
demand that the initial-value problem for (3.1) defines a group in appropriate Cartesian
products of L2-based Sobolev classes H s .

To understand the initial-value problem (3.1)–(1.17), it suffices to solve formally the
Fourier-transformed system (3.3) and investigate the resulting representation of solu-
tions. Let the quantity σ(k) be defined to be

σ(k) = |ω1(k)ω2(k)| 1
2 .

The eigenvalues of the matrix A(k) are ±λ(k) where

λ(k) = σ(k), when ω1(k)ω2(k) ≥ 0,

and

λ(k) = iσ(k), when ω1(k)ω2(k) < 0.

The formal solution of (3.1) with initial data (ϕ̂, ψ̂) is(
η̂(k, t)

ŵ(k, t)

)
= e−ikA(k)t

(
ϕ̂

ψ̂

)
, (3.6)

and a straightforward computation shows that when ω1(k)ω2(k) ≥ 0,

e−ikA(k)t =
(

cos(kσ(k)t) −i sin(kσ(k)t)ω1(k)
σ (k)

−i sin(kσ(k)t)ω2(k)
σ (k) cos(kσ(k)t)

)
, (3.7)

whereas, if ω1(k)ω2(k) < 0, then

e−ikA(k)t =
(

cosh(kσ(k)t) i sinh(kσ(k)t)ω1(k)
σ (k)

i sinh(kσ(k)t)ω2(k)
σ (k) cosh(kσ(k)t)

)
. (3.8)

The first point to appreciate is that the Fourier multiplier

m(k, t) = eikA(k)t

need not be bounded for bounded values of k. If m is unbounded at finite values of k,
the linear initial-value problem is certainly not well-posed in any of the Sobolev classes
H s because the operators

Tm( f ) ≡ F−1(m(k) f̂ (k))(x),

where F−1 is the inverse Fourier transform, are not bounded maps from H s to L2 for
any value of s. This is because the bounded Fourier multipliers on L2 are exactly the
L∞-functions. Insisting on boundedness of m on bounded sets and reference to the
restrictions in (1.8) on the coefficients a, b, c, d lead to the following result.
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Proposition 3.1. For a, b, c, d satisfying (1.8), the matrix e−ikA(k)t is bounded on finite
intervals of wavenumbers k if and only if one of the following sets of conditions hold:

(C1) b ≥ 0, d ≥ 0, a ≤ 0, c ≤ 0;
(C2) b ≥ 0, d ≥ 0, a = c > 0;
(C3) b = d < 0, a = c > 0.

This follows by noting that m is bounded on bounded intervals if and only if the ratio
ω1(k)
ω2(k)

, which is a rational function of order 2 or 4, has neither zeroes nor poles on the real
axis. Exhaustive reference to the restriction (1.8) on the coefficients a, b, c, and d then
leads to the stated conclusions.

Notice that in all three cases (C1), (C2), and (C3), the product ω1(k)ω2(k) ≥ 0 for all
k. In consequence, it is clear that the coefficients of the symbol m(k, t) are bounded on
bounded sets and grow at most quadratically as k → ±∞. Thus, as will appear presently,
the initial-value problem (3.1), when a, b, c, d satisfy one of (C1) to (C3), is well posed
in L2-based Sobolev classes. Indeed, a consequence of (3.6)–(3.7) is that

|η̂|2 +
(
ω1

ω2

)
|ŵ|2 = |ϕ̂|2 +

(
ω1

ω2

)
|ψ̂ |2, (3.9)

for all k and t . If we define the Fourier multiplier operator H by

Ĥg(k) = h(k)ĝ(k), where h(k) = h(k, t) =
(
ω1

ω2

) 1
2

, (3.10)

then the “energy” of the solution is conserved in the sense that for any value of the
Sobolev index s,

‖η‖2
s + ‖Hw‖2

s = ‖ϕ‖2
s + ‖Hψ‖2

s . (3.11)

Because of (3.9), and depending on the behavior of ω1
ω2

at infinity, a precise result about
global well-posedness for the initial-value problem for (3.1) can be stated as follows.

Theorem 3.2. Let a, b, c, d satisfy one of the conditions (C1)–(C3) in Proposition 3.1.
Define the order l pseudodifferential operator H as in (3.10), and set m1 = max(0,−l),
m2 = max(0, l). Then the corresponding linear initial-value problem (3.1) is well posed
in H s+m1 × H s+m2 for any s ≥ 0.

Taking s = 0, Theorem 3.2 implies the following helpful result.

Corollary 3.3. Let H be as defined in (3.10).

• If H is of order 2, then (3.1) is well posed in H 0 × H 2;
• If H is of order 1, then (3.1) is well posed in H 0 × H 1;
• If H is of order 0, then (3.1) is well posed in H 0 × H 0;
• If H is of order -1, then (3.1) is well posed in H 1 × H 0;
• If H is of order -2, then (3.1) is well posed in H 2 × H 0.
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Remark 3.4. The systems with H having order −2 are not admissible as models of the
underlying physical situation. For if H has order -2, then a = d = 0 and b �= 0, c �= 0.
This is incompatible with (1.8) and any of the conditions C1, C2, or C3.

4. Well-posedness of the Linear Cauchy Problem in L∞: Dispersive Singularity
Formation

Thus far, consideration has been given to the well-posedness of the Cauchy problem for
the linearized Boussinesq systems in L2 or in Sobolev spaces based on L2. In this section,
we will investigate to what extent the linear systems well-posed in L2 are well-posed
in L p for p �= 2 in the usual range 1 ≤ p ≤ ∞. There are several reasons for this
study. First, as discussed in [22], [23], ill-posedness in L p for some p �= 2 is linked
to the short-wave behavior of the phase velocity. As these equations are meant to be
long-wave models, the short-wave behavior should not introduce spurious difficulties,
and especially not instabilities or singularity formation. Another point is that the linear
Euler system from which all these models derive is hyperbolic, and so locally well-
posed in L∞. It is not unnatural, therefore, to require the same qualitative property of
the model system as a means of insuring a more robust approximation of solutions of
the full problem. A final point is that L p-instability, and especially L∞-instability due to
short-wave modeling, could very easily lead to instability in an approximating numerical
code; these instabilities would be an artifact of the modeling and have nothing to do with
the full Euler equations.

Consider a general, constant coefficient system

∂ �v
∂t

+ P(∂x )�v = 0, x ∈ R, t ≥ 0,

�v(x, 0) = φ(x),
(4.1)

where �v = (v1(x, t), . . . , vd(x, t)) and P(∂x ) is a matrix of constant coefficient pseu-
dodifferential operators (Fourier multiplier operators). The precise definition of well-
posedness in force in this context is the following.

Definition 4.1. Let p lie in the range 1 ≤ p ≤ ∞. The system (4.1) is called L p-well-
posed if for any φ ∈ Ld

p (the d-fold product of L p with itself), there is a unique solution
�v in the sense of distributions of (4.1) such that, for any T > 0, �v ∈ C(0, T ; Ld

p) and
there is a constant CT such that

sup
t∈[0,T ]

|�v(·, t)|p ≤ CT |φ|p. (4.2)

Some classical facts about Fourier multipliers (see [40], [56]) are recalled here for
convenience. A function m ∈ L∞ is an L p-multiplier for some p ∈ [1,∞] if there exists

a constant Cp such that for every f ∈ L p, Tm( f ) ≡ F−1
(

m(k) f̂ (k)
)

∈ L p and satisfies

|Tm( f )|p ≤ Cp| f |p. (4.3)
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The multiplier norm ‖m‖Mp is the smallest value of Cp for which (4.3) holds for all
f ∈ L p. Denote by Mp the Banach algebra of L p-multipliers equipped with this norm.

Lemma 4.2. (i) Fix p with 1 ≤ p ≤ ∞. Then Mp = Mp′ for p′ satisfying 1
p + 1

p′ = 1,
and if m ∈ Mp, then ‖m‖Mp = ‖m‖Mp′ .

(ii) M1 = M∞ = F(M), where M is the space of bounded Borel measures.
(iii) M2 = L∞ with equality of norms.
(iv) If a, b ∈ Mp, then ab ∈ Mp and ‖ab‖Mp ≤ ‖a‖Mp ‖b‖Mp .

Lemma 4.3. For k ∈ R, let s(k) = P(ik) be the symbol of the operator P(∂x ) appear-
ing in (4.1). Fix p ∈ [1,∞]. Then (4.1) is L p–well-posed if and only if exp(−ts(k)) ∈ Mp

for all t ∈ R and, for any T > 0, there is a constant CT such that

‖exp(−ts(k))‖Mp ≤ CT , for all t ∈ [0, T ].

Remark 4.4. If s(k) is an L p-multiplier, so is exp(−ts(k)). This helpful fact follows
because when s ∈ Mp, the system (4.1) may be viewed as a linear ordinary differential
equation posed in L p.

We prepare the way for investigating the L p-well-posedness of the linear Boussinesq
systems by studying scalar initial-value problems of the form

∂u
∂t + (I − ∂2

x )
− λ

2
∂u
∂x = 0, x ∈ R, t ≥ 0,

u(x, 0) = φ(x),
(4.4)

where λ > 0 and u = u(x, t) is a real-valued function of x and t .

Proposition 4.5. For the system (4.4), the following two results are valid.
(i) If there is a p ∈ (1,∞), p �= 2, such that (4.4) is well posed in L p, then λ ≥ 1.

Conversely, if λ ≥ 1, then (4.4) is well posed in L p for all p ∈ (1,∞).
(ii) The initial-value problem (4.4) is L∞- and L1-well-posed if and only if λ > 1.

Proof. Since P(∂x ) = (I − ∂2
x )

− λ
2 ∂x , in this case the symbol of the operator is s(k) =

ik(1 + |k|2)− λ
2 . Note that s is bounded if and only if λ ≥ 1.

If λ ≥ 1, then by the Hörmander-Mikhlin theorem (see [56]), s is a multiplier in L p

for any p ∈ (1,∞). On account of Remark 4.4, the initial-value problem (4.4) is seen
to be well posed in L p for all p ∈ (1,∞) (Lemma 4.2 is not needed here).

On the other hand, suppose 0 < λ < 1. Then P(∂x ) = (I − ∂2
x )

− λ
2 ∂x has a positive

order 1 − λ > 0 and Brenner’s theorem [30] implies (4.4) to be ill posed in L p for all
p ∈ (1,∞), p �= 2.

Now presume λ > 1. To show that (4.4) is L∞- and L1-well-posed, it suffices by
Remark 4.4 to show that in this case, s ∈ M1 = M∞ is a multiplier in L∞, say. On account
of Lemma 4.2, it suffices in this endeavor to show that the inverse Fourier transform of
s is an L1-function.
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It is well known (see, e.g., [55]) that the inverse Fourier transform of s is the derivative
of the function

fλ(x) = 2π
λ
2

�(λ2 )
|x | λ−1

2 K 1
2 − λ

2
(2π |x |),

where Kµ connotes the Bessel function of the third kind of order µ. Recall that
Kµ = K−µ,

Kµ(z) ∼
(
π

2|z|
) 1

2

e−|z|, as |z| → +∞,

Kµ(z) ∼ 1

2
�(µ)

(
1

2
z

)−µ
, for µ > 0, as |z| → 0,

and

K0(z) ∼ − log(z), as |z| → 0.

Using the classical formulas (see [60]),

d

dz
(zµKµ(z)) = zµKµ−1(z),

and noticing that µ = λ−1
2 > 0, one determines that f ′

λ lies in L1(Q) where Q =
(−∞,−m)∪ (m,∞) for any m > 0. Concerning the behavior of f ′

λ at 0, it is convenient
to distinguish two cases:

(i) µ− 1 < 0, i.e., 1 < λ < 3, so that

f ′
λ(x) ∼ c|x |2µ−1, as x → 0;

in this case, f ′
λ is integrable in a neighborhood of 0 since 1 − 2µ < 1 is equivalent

to λ > 1; and
(ii) µ − 1 ≥ 0, i.e., λ ≥ 3, in which case f ′

λ ∼ c|x | as x → 0 and thus there is no
singularity at the origin.

In any event, it is now transparent that F−1(s) ∈ L1.
Now, suppose the system (4.4) is L∞- and L1-well-posed. We claim that λ > 1 and

argue by contradiction. If 0 < λ < 1, the L∞-ill-posedness of (4.4) results from a
theorem of Brenner [30]. When λ = 1, s(k) = ik(1 + k2)−

1
2 . The above computations

show that s /∈ M∞. We need to prove also that m(k) = e−s(k) /∈ M∞. By Lemma 4.2, it
suffices to prove that M = F−1(m) is not a bounded measure. We will show in fact that

M = G + cδ0 + d�(x)PV

(
1

x

)
, (4.5)

where c, d are constants with d �= 0, δ0 is the Dirac delta-function at the origin, G ∈
L1, � ∈ C∞

0 , and � ≡ 1 in a neighborhood of 0. Denote by g the distribution x M and
compute its Fourier transform, viz.

ĝ = x̂ M = −i
d

dk
M̂ = −i

dm

dk
= (1 + k2)−

3
2 e−ik(1+k2)

− 1
2
. (4.6)
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The right-hand side of (4.6) is an H 1-function and (1 + k2)α dm
dk belongs to L2 provided

α < 5
4 . Hence g ∈ L1

⋂
Hβ for any β < 5

2 . In particular, g ∈ C1,γ for any γ with
0 < γ < 1. Let � be a nonnegative function in C∞

0 with �(x) = 1, for x ∈ [− 1
2 ,

1
2 ],

and �(x) = 0, for |x | ≥ 1. In terms of �, write

x M = g(x)− g(0)�(x)+ g(0)�(x)

= x

[
g(x)− g(0)�(x)

x
+ g(0)�(x)PV

(
1

x

)]
,

so

x

[
M − G(x)− g(0)�(x)PV

(
1

x

)]
= 0, (4.7)

where G(x) = g(x)−g(0)�(x)
x . The identity (4.7) implies there is a constant c such that

M = G(x)+ g(0)�(x)PV

(
1

x

)
+ cδ0.

Since g is smooth and integrable, G ∈ L1,

g(0) =
∫ ∞

−∞
ĝ(k)dk = i(ei − e−i ) �= 0,

and �(x)PV ( 1
x ) is not a bounded measure. Thus M is not a bounded measure.

The stage is now set to consider the well-posedness of the linear Boussinesq systems
(3.1) in L p with 1 ≤ p ≤ +∞, p �= 2. It will be assumed that (1.8) and one of the
conditions (C1)–(C3) is fulfilled, so the linear Cauchy problem associated to (3.1) is
well-posed in an L2-setting. It will be convenient to consider the system after the change
of variables

η = H(v1 + v2), w = v1 − v2, (4.8)

where H is the Fourier multiplier defined in (3.10). This leads to the equivalent linear
system

∂v1

∂t
+�

∂v1

∂x
= 0, v1(x, 0) = v0 ≡ 1

2
(H−1φ + ψ),

∂v2

∂t
−�

∂v2

∂x
= 0, v2(x, 0) = w0 ≡ 1

2
(H−1φ − ψ),

(4.9)

where � is the pseudodifferential operator with symbol σ(k). This has the salutary
effect of decoupling the system, and thus reduces the issue to qualitative properties
of a single equation. The L p-well-posedness of the system is thereby reduced to the
L p-well-posedness for the scalar initial-value problem

∂v

∂t
+�

∂v

∂x
= 0,

v(x, 0) = v0(x).
(4.10)
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Theorem 4.6. Suppose the system (3.1) to have coefficients satisfying (1.8) and one of
conditions (C1)–(C3). The Cauchy problem for (4.10) is well-posed in L p for 1 < p <
+∞, p �= 2, if and only if σ(k) has order 0, −1, or −2. It is well posed in L1 and L∞
if and only if σ(k) has order 0 or −2.

Proof. The theorem is proved by considering separately the cases where � has order
2, 1, 0, −1, and −2, respectively. As stated, consideration is given only to systems which
satisfy (1.8) and one of the conditions in (C1)–(C3). (These are well posed in L2-based
spaces and so are candidates to be physically relevant.)

If � has order 2, then

b = d = 0, a = c = 1

6
> 0, and so σ(k) =

(
1 − 1

6
k2

)
is the only admissible case. In this case, (4.10) is the linear K-dV equation which is ill
posed in L p for 1 ≤ p ≤ +∞, p �= 2, and which displays the “dispersive blow-up”
phenomena studied in [22], [23].

If � has order 1, the admissible sets of parameters are

(1) a < 0, c < 0, b = 0, d > 0, with

σ(k) =
(
(1 − ak2)(1 − ck2)

(1 + dk2)

) 1
2

, (4.11)

which gives a linear “Benjamin-Ono” type Boussinesq system;

(2) b = 0, a = c > 0, d > 0, σ(k) =
(
(1−ak2)2

(1+dk2)

) 1
2
,

(3) d = 0, a = c > 0, b > 0, σ(k) =
(
(1−ak2)2

(1+bk2)

) 1
2
.

In the first case, (4.10) has the form

wt + (ãH∂2
x − b̃H − K)w = 0, (4.12)

where H is the Hilbert transform and K is an operator skew-adjoint in L2 which is
bounded on all L p spaces, 1 ≤ p ≤ +∞, and is of order -2 (that is, K ∈ B(H s, H s+2),
for s ∈ R). This is a perturbed linear Benjamin-Ono equation for which the L p-ill-
posedness (and the dispersive blow-up phenomena) is established in [24].

If � has order 0, there are six possibilities:

(1) a < 0, c < 0, b > 0, d > 0, σ (k) =
(
(1 − ak2)(1 − ck2)

(1 + bk2)(1 + dk2)

) 1
2

,

(2) a = c > 0, b > 0, d > 0, σ (k) =
(

(1 − ak2)2

(1 + bk2)(1 + dk2)

) 1
2

,

(3) b = c = 0, a < 0, d > 0, σ (k) =
(
(1 − ak2)

(1 + dk2)

) 1
2

,

(4) a = b = 0, c < 0, d > 0, σ (k) =
(
(1 − ck2)

(1 + dk2)

) 1
2

,
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(5) c = d = 0, a < 0, b > 0, σ (k) =
(
(1 − ak2)

(1 + bk2)

) 1
2

,

(6) a = c > 0, b = d < 0, σ (k) =
(
(1 − ak2)2

(1 + bk2)2

) 1
2

.

Note that the condition a + b + c + d = 1
3 prevents the condition σ(k) ≡ 1, so (4.10) is

never the advection equation vt + vx = 0 (which is obviously well-posed in all the L p

spaces!).
We consider in detail only the first case, the other cases being similar. Write σ in the

form

σ(k) =
( ac

bd

) 1
2 + r(k),

where

r(k) = r1(k)

r2(k)

with

r1(k) = bd − ac − (abc + adc + abd + bdc)k2

and

r2(k) = bd[(1 − ak2)(1 − ck2)(1 + bk2)(1 + dk2)]
1
2

+ (abcd)
1
2 (1 + bk2)(1 + dk2).

By arguments similar to those appearing in the proof of Proposition 4.5, one checks that
kr(k) is a multiplier in L p for 1 ≤ p ≤ +∞, and, consequently, so is exp(i tkr(k)) for
t ≥ 0. It follows that

eitkσ(k) = eitk( ac
bd )

1
2 eitk r(k)

is also a Fourier multiplier in L p, for 1 ≤ p ≤ ∞.
If � has order −1, the admissible cases are the following:

(1) a = c = d = 0, b > 0, σ (k) = (1 + bk2)−
1
2 ,

(2) a = b = c = 0, d > 0, σ (k) = (1 + dk2)−
1
2 ,

(3) a = 0, b > 0, c < 0, d > 0, σ (k) =
(

(1−ck2)

(1+bk2)(1+dk2)

) 1
2
,

(4) c = 0, a < 0, b > 0, d > 0 σ(k) =
(

(1−ak2)

(1+bk2)(1+dk2)

) 1
2
.

In all these cases, (4.10) fits exactly into the framework of Proposition 4.5, part (ii). The
results in the case of order −1 follow at once.

If σ has order −2, the admissible cases correspond to the coupled BBM-system (1.13)
when a = c = 0, b > 0, d > 0. In this case, (4.10) reduces to two uncoupled linear
BBM equations, and these are certainly well-posed in L p for 1 ≤ p ≤ ∞.

The study of the systems obtained via the change of variables (4.8) is complete. We
now consider returning to the original variables (η, u) and the system (3.1). This also
involves looking at several cases. The results are conveniently classified by the order
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of H and, for a given order, according to the order of σ , of course, keeping only the
admissible cases. Here is the outcome of such an analysis.

Theorem 4.7. A. Assume that H has order 0.

(1) If σ has order 2 (the “K-dV case”), then the linear system (3.1) is ill posed in L p for
any p ∈ [1,∞] with p �= 2. Moreover, the equation displays the dispersive blow-up
phenomena.

(2) If σ has order 0 (which includes the “generic” case), the linear system (3.1) is well
posed in L p for all p ∈ [1,∞].

(3) If σ has order -2 (the “BBM case”), then (3.1) is well posed in L p for all p ∈ [1,∞].

B. Assume that H has order -1.

(1) If σ has order -1 and a = c = d = 0, b > 0 or a = 0, b > 0, c < 0, d > 0, then
(3.1) is well posed in W s+1

p (R) × W s
p(R) for any s ≥ 0 and 1 < p < ∞, and ill

posed in the same space if s ≥ 0 and p = 1 or p = ∞.
(2) If σ has order 1 and a = c > 0, b > 0, d = 0, then (3.1) is ill posed in W s+1

p (R)×
W s

p(R) for any s ≥ 0 and p ∈ [1,∞], but p �= 2.

C. Assume that H has order 1.

(1) If σ has order −1 and a = b = c = 0, or a, c < 0, d > 0 or, alternatively,
b = 0, a = c > 0, d > 0, then (3.1) is well posed in W s

p(R) × W s+1
p (R) provided

that s ≥ 0 and p ∈ [1,∞].
(2) If σ has order 1 and a = b = c = 0, d > 0, or c = 0, a < 0, b, c > 0, then (3.1)

is well posed in W s
p(R)× W s+1

p (R) for s ≥ 0 and 1 < p < ∞. It is ill posed for the
same range of s in the same spaces if p = 1,∞.

D. Assume that H has order 2.

(1) The only admissible case is when σ has order 0, b = c = 0, a < 0 and d > 0.
In this case, (3.1) is well posed for all values of p ∈ [1,∞] in W s

p(R) × W s+1
p (R)

provided that s ≥ 0

To establish this result, we use the following lemma.

Lemma 4.8. IfH has order 0, then it is bounded as a mapping of L p(R) for 1 ≤ p ≤ ∞.

Proof. It suffices to consider the case whenH has symbol h(k) = ( 1−ck2

1−ak2 )
1
2 , a < 0, c <

0. The full result follows by composing two such mappings.
The L2-boundedness is trivial since h ∈ L∞(R). The L p-boundedness, 1 < p < +∞,

results from Mikhlin’s multiplier theorem. The remaining cases p = 1,+∞ follow from
the fact that the Fourier transform of h is a bounded measure. In fact, write h in the form

h(k) =
( c

a

) 1
2 + a − c

a

1

[(1 − ak2)(1 − ck2)]
1
2 + ( c

a )
1
2 (1 − ak2)

≡
( c

a

) 1
2 + f (k),
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where f ∈ H 1(R). A consequence of this representation is that

ĥ =
( c

a

) 1
2
δ + f̂ , with f̂ ∈ L1(R).

The lemma is thus established.

Proof of Theorem 4.7. Part A. For (1), the only admissible situation corresponds to
a = c > 0 and b = d = 0, in which case H is the identity mapping and the diagonalized
variables are linked to the physical variables via the relations

η = v1 + v2 and w = v1 − v2,

so that

v1 = 1

2
(η + w) and v2 = 1

2
(η − w).

The proposition then follows directly from the results in [23].
For cases (2) and (3), the result follows on account of Lemma 4.8 in light of the results

in Theorem 4.6 for the (v1, v2) variables.
Part B. (1) The well-posedness in W s+1

p (R) × W s
p(R) for 1 < p < ∞ results from

(4.8) and Proposition 4.5. To establish the ill-posedness for p = 1,∞ take φ = 0 so
that, by (4.8), v0

1 = 1
2ψ and v0

2 = − 1
2ψ with ψ ∈ L p. This leads to an L p-instability

in (4.10).
The further cases noted in the theorem follow similarly from the foregoing results;

we pass over the details.

5. Linearized Higher-Order Systems and Some Interesting Sample Systems

In this section, consideration is given to the linear part of the systems in (1.7). The
initial-value problem in question is

ηt − bηxxt + b1ηxxxxt = −wx − awxxx − a1wxxxxx ,

wt − dwxxt + d1wxxxxt = −ηx − cηxxx − c1ηxxxxx , (5.1)

η(x, 0) = φ(x), w(x, 0) = ψ(x),

for x ∈ R, t ≥ 0, where φ and ψ are to be selected from appropriate function classes.
As before when the nonlinear terms have been dropped, the system may be analyzed

via Fourier analysis. Taking the Fourier transform of (5.1) with respect to the spatial
variable x , it is seen that

d

dt

(
η̂

ŵ

)
+ ikA(k)

(
η̂

ŵ

)
= 0, where A(k) =

(
0 ω1(k)

ω2(k) 0

)
,

and

ω1(k) = 1 − ak2 + a1k4

1 + bk2 + b1k4
, ω2(k) = 1 − ck2 + c1k4

1 + dk2 + d1k4
.
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Just as in Section 3, the solution of this system is(
η̂

ŵ

)
(k, t) = e−ikA(k)t

(
φ̂

ψ̂

)
(k). (5.2)

The first point is to recognize when the matrix of Fourier multipliers m(k, t) = eikA(k)t

has entries that are bounded on bounded intervals in k-space. Letting

σ(k) = |ω1(k)ω2(k)| 1
2 ,

the next proposition follows immediately from the formulas (3.7)–(3.8) for m(k, t).

Proposition 5.1. The entries of the matrix e−ikA(k)t are bounded on bounded sets of
wavenumbers k if ∣∣∣∣ω1(k)

ω2(k)

∣∣∣∣ , ∣∣∣∣ω2(k)

ω1(k)

∣∣∣∣ and − ω1(k)ω2(k) (5.3)

are bounded above.

The following theorem then applies.

Theorem 5.2. Suppose the constants a, b, c, d, a1, b1, c1, d1 to satisfy the relations
(1.9), (2.27) and to be such that (5.3) is valid. Define the pseudodifferential operatorH by

Ĥg(k) = h(k)ĝ(k), where h(k) =
(
ω1(k)

ω2(k)

) 1
2

. (5.4)

Suppose H to have order l, and set m1 = max(0,−l) and m2 = max(0, l). Then the
corresponding linear initial-value problem (5.2) is well posed in H s+m1 × H s+m2 for
any s ≥ 0.

This theorem applies to some interesting specializations of the linear versions of the
systems displayed in (1.7)–(1.9)–(2.27).

K-dV–type systems: Let b = b1 = d = d1 = 0 in (1.7), a situation obtained by
choosing

λ = λ1 = 1, µ = 1, µ1 = 6

5

(θ2 − 1)

(θ2 − 1
5 )

(
µ1 is arbitrary if θ2 = 1

5

)
,

in (1.9). Then, it transpires that

a = 1

2

(
θ2 − 1

3

)
, a1 = 5

24

(
θ2 − 1

5

)2

,

c = 1

2
(1 − θ2), c1 = 1

24
(1 − θ2)(5 − θ2),

(5.5)
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and the system of equations becomes

ηt = −wx − (ηw)x − 1

2

(
θ2 − 1

3

)
wxxx

+ 1

2
(1 − θ2)(ηwxx )x − 5

24

(
θ2 − 1

5

)2

wxxxxx ,

wt = −ηx + 1

2
(θ2 − 1)ηxxx − wwx − (ηηxx )x

− (2 − θ2)wxwxx − 1

24
(1 − θ2)(5 − θ2)ηxxxxx .

(5.6)

Corollary 5.3. For any θ in [0, 1], the initial-value problem for the linear K-dV–type
systems (5.6) is well posed in H s+m1 × H s+m2 for any s ≥ 0, where m1 and m2 are
defined as above.

Proof. For this case,

ω1(k) = 1 − ak2 + a1k4 and ω2(k) = 1 − ck2 + c1k4.

It is easy to check that ω1 > 0 and ω2 > 0 and that condition (5.3) is satisfied.

Lower-degree systems: Let a1 = b1 = c1 = d1 = 0, a situation obtained for θ2 �= 1
3

by letting

λ1 = µ1 = 1, λ = 1 − 5

6

(θ2 − 1
5 )

2

(θ2 − 1
3 )

2
, µ = (5θ2 − 1)

6(θ2 − 1)

(µ is arbitrary if θ2 = 1).

For these values of the constants, one finds that

a = 1

2

(
θ2 − 1

3

)
− 5

12

(θ2 − 1
5 )

2

(θ2 − 1
3 )
, b = 5

12

(θ2 − 1
5 )

2

(θ2 − 1
3 )
,

c = − 5

12

(
θ2 − 1

5

)
, d = 1

12
(5 − θ2).

(5.7)

The corresponding system of equations, which has order three, is

ηt − bηxxt = −wx − (ηw)x

− awxxx + b(ηw)xxx + 1

2
(1 − θ2)(ηwxx )x ,

wt − dwxxt = −ηx − cηxxx − wwx − (ηηxx )x

− 3

4
(1 − θ2)wxwxx + 1

12
(5 − θ2)wwxxx .

(5.8)

In this case, the linearized phase speed is

c2(k) = 1 − 1

3
k2 + 2

15
k4 + −201 + 655θ2 − 195θ4 + 125θ6

3600(1 − 3θ2)
k6 + O(k8),
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according to (2.30). If the coefficient of k6 equals −17/315, then the linearized phase
speed for the system agrees with that of the linearized Euler equations to the sixth order.
In the present case, this occurs for values of θ2 about 0.1438 and 0.3504. With these
choices of θ , there obtains a third-order system of equations whose linearized phase
speed agrees with the linearized Euler equations to sixth order.

Corollary 5.4. For the lower-degree systems (5.8) with a, b, c, and d satisfying (5.7) for
some θ2 ∈ ( 1

3 , 1], if the pseudodifferential operatorH has order l and m1 = max(0,−l),
m2 = max(0, l), then the corresponding linear initial-value problem (5.8) is well-posed
in H s+m1 × H s+m2 for any s ≥ 0 for any value of θ in ( 1

3 , 1].

Proof. Because these systems are third-order, Theorem 3.2 can be applied. For 1
3 <

θ2 ≤ 1, one of Conditions (C1)–(C3) holds and the result follows.

BBM-type systems: There are many options for obtaining systems of equations which
correspond to the regularized long-wave equation in the modeling of unidirectional
waves. To make the linearized equation well posed, it suffices to require

b ≥ 0, b1 > 0, a < 0, a1 = 0,

d ≥ 0, d1 > 0, c < 0, c1 = 0,

which is equivalent to asking that

1

3
< θ2 < 1, λ = 1 − 5

6

(
θ2 − 1/5

θ2 − 1/3

)2

λ1,

λ1 > 1, µ ≤ 1, µ1 = 1.

(5.9)

Corollary 5.5. For the regularized long-wave-type systems, namely θ2, λ, λ1, µ, and
µ1 satisfying (5.9), the pseudodifferential operator H has order 0 and the corresponding
linear initial-value problem (5.1) is well posed in H s × H s for any s ≥ 0 for any value
of θ in ( 1

3 , 1).

Proof. This is a direct consequence of Theorem 5.2.

6. Conclusion

Put forward here is a class of Boussinesq systems for the two-way propagation of surface
water waves. An analysis of the associated linearized systems shows only a subclass to
be linearly well-posed and to not feature spurious growth or dissipation.

This line of research needs further development both theoretically and with respect
to applications. The foregoing linear theory, while helpful and suggestive, needs to be
supplemented with associated nonlinear theories of well-posedness. In particular, one
would like to know which of the class (1.6) and (1.7) are globally well-posed at least for
small-amplitude, long-wavelength initial data. A start on this program will appear in Part
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II of the present paper [15]. Another natural theoretical point is whether or not various of
the systems possess solitary waves, and if they have such traveling-wave solutions, how
they interact and what their stability properties are. Work in this direction was initiated
in [32], [33].

We hope to make quantitative comparisons between model predictions and careful,
laboratory measurement, along the lines of those made for unidirectional models by
Zabusky and Galvin [63], Hammack and Segur [39], and Bona, Pritchard, and Scott
[18]. In this regard, it will be necessary to incorporate damping into the models and
analyze appropriate two-point boundary-value problems as was done in [14] for one of
the first-order correct models. A longer-term outlook is the incorporation of variable
bottom boundary structure with an eye toward improving models for wave-generated,
sediment transport (cf. [10], [11], [12], [34]).
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[27] J. V. Boussinesq, Théorie de l’intumescence liquide appelée onde solitaire ou de translation

se propageant dans un canal rectangulaire, C. R. Acad. Sci. Paris, 72 (1871), pp. 755–759.
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[55] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966.
[56] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Uni-

versity Press, Princeton, NJ, 1970.
[57] J. F. Toland, Solitary wave solutions for a model of the two-way propagation of water waves

in a channel, Math. Proc. Cambridge Phil. Soc., 90 (1981), pp. 343–360.
[58] J. F. Toland, Uniqueness and a priori bounds for certain homoclinic orbits of a Boussinesq

system modeling solitary water waves, Commun. Math. Phys., 94 (1984), pp. 239–254.
[59] F. Ursell, The long-wave paradox in the theory of gravity waves, Proc. Cambridge Phil. Soc.,

49 (1953), pp. 685–694.
[60] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press,

Cambridge, 1995. Reprint of the second (1944) edition.



318 J. L. Bona, M. Chen, and J.-C. Saut

[61] G. B. Whitham, Linear and nonlinear waves, Wiley, New York, 1999, reprint of the 1974
original, a Wiley-Interscience publication.

[62] R. Winther, A finite element method for a version of the Boussinesq equation, SIAM J. Numer.
Anal., 19 (1982), pp. 561–570.

[63] N. J. Zabusky and C. J. Galvin, Shallow-water waves, the Korteweg-de Vries equation and
solitons, J. Fluid Mech., 47 (1971), pp. 811–824.


