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Abstract. In this paper, we show that the bifurcation diagrams of �nite
di�erence semidiscretizationsof certain dissipativeparabolicpartial di�erential
equations can be well approximatedby their approximate inertial forms (AIFs)
when a set of second-order, L2-orthogonal incremental unknowns is used.

1. Introduction

Inertial-multigrid-algorithm is proposed for the long time approximation of so-

lutions of dissipative systems because it o�ers exibility and better stability which

results in a better e�ciency (cf. [3], [6], [17] and references therein). Suppose that

V is the solution space of the di�erential equation and Vh is the approximate so-

lution space under standard �nite di�erence. In the cases that the dimension of

Vh has to be very large to describe the �ne structure of the solution, the inertial-

multigrid-algorithm can be used to save the CPU time and/or the memory. The

scheme is based on decomposing Vh into Vh = Ph � Qh; where Ph corresponds to

a coarse grid approximation of V and Qh is the complement of Ph containing only

short-wavelength components (cf. [4] and [5]). Hence for any uh 2 Vh; one can

decompose uh into

uh = yh + zh;

where yh 2 Ph approximates the long-wavelength part of the solution and zh 2 Qh

approximates the short-wavelength part of the solution. Following the theory of

inertial manifolds, the short-wavelength component zh carries only a small part
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of the total energy, therefore, some terms involving zh can be neglected. The

motivation of the scheme can be best described as that in the cases that extremely

�ne grids are required for the numerical simulation, one can take into account

the e�ect of small scale terms in an e�cient way, instead of simply adding more

mesh points. This reasoning leads to the inertial multigrid algorithm: A primary

advantage of this algorithm is that it provides Vh-accuracy with Ph-computational

complexity, and has better numerical stability properties than a direct discretization

using Vh (cf. [6]). Numerical results obtained by [2] con�rmed that the algorithm

indeed provides Vh-accuracy when used to simulate the solution of reaction di�usion

equations in one-, two-, and three-space dimensions and when used on the one-

dimensional Kuramoto-Sivashinsky equation.

In this paper, we study the bifurcation diagram of the scheme and compare it

with that of the underlying continuous problem and that of the standard �nite

di�erence scheme. In practice, this means examining the numerical method for a

large range of physical parameters at once rather than just looking at convergence

for a �xed set of parameters. Thus, this analysis aims toward proving convergence

to a bifurcation diagram rather than to a single solution. As an example, we

will study the inertial multigrid algorithm for the reaction-di�usion equation and

Kuramoto-Sivashinsky equation.

A new set of incremental unknowns, which is L2-orthogonal and second-order, is

used in our study. For a one-dimensional problem on 
 = [a; b] with zero Dirichlet

boundary condition we set h = (b � a)=(N + 1) where N = 2n + 1. Suppose ui

approximates the solution u(x) at mesh points xi, where xi = a+ih and 1 � i � N ,

so the unknowns are uh = (u1; � � � ; uN )T 2 RN. The new set of incremental
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unknowns is de�ned by

pi =
1

4
(u2i�1 + 2u2i + u2i+1); i = 1; : : : ; n;

qi =
1

4
(�u2i�2 + 2u2i�1 � u2i); i = 1; : : : ; n+ 1;

(1.1)

where pi is an average value of u(x) in the neighborhood of x = x2i and qi is an

increment of u(x) in the neighborhood of x = x2i�1. If one expands qi at x2i�1

by Taylor's formula and assumes the solution u(x) is smooth, it is easy to see that

qi = O(h2) and in which sense that we say this set of incremental unknowns is

second-order.

Let Ph and Qh be subspaces of RN where

Ph =
�
uh 2 R

2n+1
�� � u2i�2 + 2u2i�1� u2i = 0; i = 1; : : : ; n+ 1

	
;

Qh =
�
uh 2 R

2n+1
�� u2i�1 + 2u2i + u2i+1 = 0; i = 1; : : : ; n

	
:

(1.2)

Since Ph is de�ned by n+1 linearly independent constraints, dim Ph = N�(n+1) =

n. Likewise, dim Qh = n + 1. One can also show that Ph and Qh are orthogonal

to each other since for any yh 2 Ph and zh 2 Qh

2 hyh; zhi = 2
2n+1X
i=1

yizi = 2
n+1X
i=1

y2i�1z2i�1 + 2
nX
i=1

y2iz2i

=
n+1X
i=1

(y2i�2 + y2i)z2i�1 �
nX
i=1

y2i(z2i�1 + z2i+1)

=

 
n+1X
i=1

y2i�2z2i�1 �
nX
i=1

y2iz2i+1

!
+

 
n+1X
i=1

y2iz2i�1 �
nX
i=1

y2iz2i�1

!

= y0z1 + y2n+2z2n+1 = 0

according to the zero boundary conditions. Hence RN = Ph�Qh is a L2-orthogonal

decomposition.

In section 2, we will show that for any uh = (u1; : : : ; u2n+1)T 2 RN, there is an

unique decomposition

uh = yh + zh
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where yh 2 Ph depends only on p = (p1; : : : ; pn)
T and zh 2 Qh depends only on

q = (q1; : : : ; qn+1)T . We therefore say that the incremental unknowns de�ned in

(1.1) is L2-orthogonal.

Comparing with the existing incremental unknowns, one �nds that the wavelet-

like incremental unknowns is L2-orthogonal, but of �rst-order only; and the second-

order incremental unknown is second-order, but not L2-orthogonal (cf. [5]). The

advantages of this set of incremental unknowns comes with a price which is that

the inverse transform of (1.1) is not local anymore, which means that for any given

p and q, one has to solve a system of linear equations to �nd the corresponding uh.

The paper is organized is the following way. In section two, we will introduce

general space decompositions based on �nite di�erence semidiscretizations and de-

rive the AIF based on that decomposition. In section 3 we prove that the primary

bifurcation values of the AIF are the same as those of the original �nite di�er-

ence scheme. Finally, in section 4, we will present the bifurcation diagrams of the

discretized reaction-di�usion equation and Kuramoto-Sivashinsky equation.

2. General space decompositions

We consider evolution equations of the form

ut + Au+ F (u) = 0; u(0) = u0 2 V (2.1)

where V is a Hilbert space (possibly in�nite{dimensional), u(t) is the unknown

function, A is a symmetric (possibly unbounded) linear operator on V, and F is a

nonlinear operator on V.

Assuming that there exists a convergent �nite di�erence semidiscretization for

this problem, one can approximate (2.1) by a system of ordinary di�erential equa-

tions

(uh)t + Ahuh + Fh(uh) = 0; uh(0) = (u0)h 2 Vh = RN; (2.2)
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where N is the number of (inner) grid points. The reaction{di�usion equation and

the Kuramoto-Sivashinsky equation we will study in section 4 both satisfy the above

abstract form. To simplify the notation, the index h will be dropped throughout

the rest of this paper, that is, we will use the symbols u, A, F , P, Q etc. instead of

uh, Ah, Fh, Ph, Qh. The equation to be considered is thus the ordinary di�erential

equation

ut + Au+ F (u) = 0; u(0) = u0 2 R
N: (2.3)

Introducing the new variable p 2 Rn and q 2 Rn+1 from the L2{orthogonal

decomposition of RN de�ned in (1.1) and writing them in the matrix form, one has

p = V Tu; q = WTu (2.4)

where u = (u1; u2; � � � ; uN )
T , p = (p1; � � � ; pn)

T , q = (q1; � � � ; qn+1)
T , V 2 RN�n,

W 2 RN�(n+1) (see page 11 for the explicit shape of V , W ). Let T be the operator

T = V V T +WWT ;

one �nds that

Tu = V p+Wq:

Since the matrices V and W have maximal rank, V TV and W TW are invertible.

Noticing also that the column vectors in V are orthogonal to the column vectors

of W , namely, V TW = 0 and WTV = 0, one can prove that T is invertible. The

inverse relation of (2.4) (or (1.1)) is therefore

u = T�1V p+ T�1Wq (� yh + zh) (2.5)

We now show that formula (2.5) de�nes a unique decomposition of u with respect

to RN = P � Q, that is, we show that for any p 2 Rn and q 2 Rn+1, T�1V p 2 P

and T�1Wq 2 Q. Notice that

P =
�
u jWTu = 0

	
; Q =

�
u j V Tu = 0

	
: (2.6)
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For any p 2 Rn, let v = V (V TV )�1p, one can check that V p = Tv and WT v =

0 which implies that v = T�1V p 2 P. The proof for T�1Wq 2 Q proceeds

analogously.

Remark 2.1. Since V TW = 0 and WTV = 0, the columns of V and W are a basis

of P and Q respectively. Therefore, for any u 2 RN one can �nd unique ~p 2 Rn,

~q 2 Rn+1 with u = V ~p+W ~q.

Substituting (2.5) into (2.3) and applying V TT (and WTT ) from left we obtain

after exploiting the orthogonality of the decomposition

V TV pt + V TT (Au + F (u)) = 0;

W TWqt +W TT (Au+ F (u)) = 0;

p(0) = V Tu0; q(0) = WTu0;

(2.7)

where u = T�1(V p+Wq). In the cases that A and T are commutable, i.e. AT =

TA, (2.7) can be written as

V TV pt + V TAV p+ V TAWq + f(p; q) = 0;

WTWqt +WTAV p+WTAWq + g(p; q) = 0;

p(0) = V Tu0; q(0) = WTu0;

(2.8)

where V TAV 2 Rn�n, WTAW 2 R(n+1)�(n+1), V TAW 2 Rn�(n+1), WTAV 2

R
(n+1)�n and

f(p; q) := V TTF (T�1(V p+Wq)); g(p; q) :=WTTF (T�1(V p+Wq)): (2.9)

Since (2.8) is equivalent to (2.3), the AIF (c.f. [9] ) can be de�ned by neglecting

the time derivative qt in (2.8) and performing one �xed point iteration step for

the resulting nonlinear algebraic equation, starting with q = 0. If we assume that
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WTAW is invertible, the AIF is

pt + (V TV )�1(V TAV p+ V TAW�(p) + f(p; �(p))) = 0;

q = �(p) = �(W TAW )�1(W TAV p+ g(p; 0));

p(0) = V Tu0:

(2.10)

Remark 2.2. When (2.10) is used for the numerical simulation of a solution, the

�rst equation corresponds to the coarse grid approximation and the second equation

corresponds to a nonlinear correction of the coarse grid approximation. In order

for the algorithm to be numerically e�cient, W TAW has to be well conditioned.

Since space Q is used to approximate the high modes of the eigenspace of A, we can

expect W TAW is well conditioned. In the examples considered in section 4 we can

prove that 0 < �1jqj2 � hAWq;Wqi � �2jqj2 which results cond(W TAW ) = �2=�1

being bounded from above by a constant which does not depend on h.

3. The linear part

Assume now that A and/or F in (2.3) depends on a parameter � and that

F (0) = DuF (0) = 0. Then u = 0 is the trivial solution for all �. To �nd primary

bifurcation values, that is, values of � at which branches of nontrivial stationary

solutions bifurcate from u = 0, the �rst thing to do is to examine the linear part of

(2.3) at u = 0, that is, A. By the implicit function theorem, only those � for which

A becomes singular can be bifurcation values.

In order for the above reduction to an AIF to be accurate, we expect that the

primary bifurcation values of (2.10) are \close" to those of the original system (2.3),

or in other words, that the singular values of the linear part �A of (2.10) are \close"

to those of A.

In the cases that jF (u)j = O(juj2), �A can be computed easily. jF (u)j =

O(juj2) yields jg(p; 0)j = O(jpj2) and �(p) = �(WTAW )�1WTAV p +
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(higher order terms in p). It is easy to show that this implies jf(p; �(p))j = O(jpj2).

As a consequence, the linear part of (2.10) at p = 0 is given by

�A = (V TV )�1(V TAV � V TAW (W TAW )�1W TAV ): (3.1)

We now prove the following result about the singular values of A and �A:

Lemma 3.1. �A is singular if and only if A is singular, provided WTAW is invert-

ible.

Proof. First, we note that �A can be written as

�A = (V TV )�1V TAPAV = (V TV )�1V T �PAAV

where

PA = I �QA; QA = W (WTAW )�1WTA;

�PA = I � �QA; �QA = AW (WTAW )�1WT :

\)": Let �A be singular, then there exists a p 6= 0, �Ap = 0. It follows that

V T �PAAV p = 0, so �PAAV p 2 Q. Using the de�nition of �PA, it is easy to

see that W T �PAAV p = 0. Hence �PAAV p 2 P \Q which yields �PAAV p = 0.

If A was not singular, then from APAV p = �PAAV p = 0, one has PAV p = 0

so V TPAV p = V TV p = 0 and p = 0 because V TV is regular. This yields a

contradiction, so A has to be singular.

\(": Let A be singular. Then there exists a u 6= 0,Au = 0. If we write u = V ~p+W ~q

as in remark 2.1, then either ~p or ~q has to be nonzero. Since

0 = W TAu =W TAV ~p+WTAW ~q

which yields by WTAW being invertible

~q = �(W TAW )�1W TAV ~p;
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~p can not be zero. From the de�nition of PA one can see immediately that

V TAPAW ~q = 0 for any ~q. Consequently,

0 = V TAPAu = V TAPA(V ~p+W ~q) = V TAPAV ~p:

Therefore �A~p = 0 and �A must be singular.

Remark 3.1. The bifurcation values, that is, the values of � for which A and �A

become singular, are not to be confused with the eigenvalues of A and �A.

4. Numerical Results

The software package AUTO designed for the computation of bifurcation dia-

grams is used. In principle, it su�ces to provide AUTO with the right hand side

of the equation as input and AUTO will compute the diagram. However, since not

only selected solutions but entire families of solutions must be computed for the

diagram, the number of degrees of freedom of the system has to remain moderate

due to memory limitation. For example, it is often not possible to deal with systems

with several hundreds of degrees of freedom (cf [7]).

Assume now we want to obtain the bifurcation diagram of a certain �nite dif-

ference semidiscretization (2.3) for some �xed number N of grid nodes. If N is

prohibitively large, we have two choices. Firstly, we could just replace the grid

by some coarser grid, that is, reduce N to some n < N . However, any essential

information which cannot be resolved by the coarser grid would get lost. Secondly,

we could reduce the number of degrees of freedom by replacing (2.3) by some AIF

(2.10) and hope that the diagram of (2.10) will still capture the essential dynamics

of (2.3). According to Lemma 3.1, at least the primary bifurcation values of (2.10)

are exactly those of (2.3), so we can expect the diagrams of (2.3) and (2.10) to
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coincide at least in a small horizontal strip around the horizontal line fkuk = 0g of

the bifurcation diagram.

For the numerical computations of the bifurcation diagrams in this section we

have dropped the factor (V TV )�1 in the AIF (2.10). This is reasonable, since only

steady states are computed in the diagrams.

4.1. A simple reaction-di�usion equation. We will compute the bifurcation

diagram of the equilibria of the equation

ut � uxx � �(u+ u3) = 0 (4.1)

on the spatial interval [0; �] with zero boundary conditions u(t; 0) = u(t; �) = 0.

By setting � = ��1, t = �s and v(s; x) = u(t; x), equation (4.1) can be transformed

to the classical Cha�ee{Infante problem

vs � �vxx � v � v3 = 0 (4.2)

which has been studied rather extensively, see for example [14].

The primary bifurcation values � of (4.1) are given by the eigenvalues of

�@2=@x2, that is, �k = k2; k = 1; 2; : : :. For �k < � < �k+1 there are exactly

k pairs of nontrivial equilibria '�0 ; : : : ; '
�

k�1, k'
+
j k = k'�j k. At � = �k a new

branch of pairs of equilibria bifurcates from the trivial branch u = 0. There is no

secondary bifurcation or bifurcation of any other kind in this system.

We semidiscretize (4.1) by the standard �nite di�erence approximation with

h = �
(N+1)

d

dt
ui + h�2(�ui�1 + 2ui � ui+1)� �(ui + u3i ) = 0; (4.3)

where (u1; : : : ; uN )T are the unknowns and ui approximates u(x; t) at x = ih for

1 � i � N . The boundary conditions are reected by setting u0 = uN+1 = 0

in the scheme. Writing the �nite di�erence scheme in the matrix form, we have
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A = ��h � �I, where

��h =
1

h2

0
BB@

2 �1
�1 2 �1

. . .
�1 2 �1

�1 2

1
CCA

N�N

:

Let N = 2n + 1, we de�ne pi, qi by (1.1) which can be written in the matrix

form p = V Tu, q = W Tu where

V T =
1

4

0
BB@
1 2 1

1 2 1
.. .

1 2 1
1 2 1

1
CCA

n�N

; W T =
1

4

0
BB@
2 �1
�1 2 �1

.. .
�1 2 �1

�1 2

1
CCA
(n+1)�N

:

Calculating explicitly the quantities in (2.8), one �nds

16(Tu)i = ui�2 + 6ui + ui+2; i = 1; : : : ; N;

�16h2(T�hu)i = �ui�3 + 2ui�2 � 7ui�1 + 12ui � 7ui+1 + 2ui+2 � ui+3; i = 1; : : : ; N;

�8h2(V T�hV p)i = �pi�1 + 2pi � pi+1; i = 1; : : : ; n;

�16h2(V T�hWq)i = qi�1 � qi � qi+1 + qi+2; i = 1; : : : ; n;

�16h2(WT�hV p)i = pi�2 � pi�1 � pi + pi+1; i = 1; : : : ; n+ 1;

�8h2(WT�hWq)i = 3qi�1+ 10qi + 3qi+1; i = 1; : : : ; n+ 1;

16(V TV p)i = pi�1 + 6pi + pi+1; i = 1; : : : ; n;

16(WTWq)i = qi�1 + 6qi + qi+1; i = 1; : : : ; n+ 1;
(4.4)

where the convention

p0 = pn+1 = 0; p�1 = �p1; pn+2 = �pn; q0 = �q1; qn+2 = �qn+1;

u0 = uN+1 = 0; u�1 = �u1; u�2 = �u2; uN+2 = �uN ; uN+3 = �uN�1
(4.5)

is used.

From the above calculation, one obtains that �hT , T and �h are symmetric

which leads to AT = TA for the A = ��h � �I. Therefore, the IUs introduced in

(2.8) will be used to calculate the bifurcation diagram.
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The linear part of (2.10) (without the factor (V TV )�1) can be explicitly written

out as:

d

dt
pi �

�
1

8h2
+

�

16

�
(pi�1 + pi+1) +

�
1

4h2
�

3�

8

�
pi

+
1

16h2
(qi�1 � qi � qi+1 + qi+2) + f(p; q)i = 0;�

3

8h2
�

�

16

�
(qi�1 + qi+1) +

�
5

4h2
�

3�

8

�
qi

+
1

16h2
(pi�1 � pi � pi+1 + pi+2) + g(p; 0)i = 0:

(4.6)

System (4.6) is an ODE system with n equations since the variables q is a function of

p which is determined by the second equation. For any p, g(p; 0)i can be evaluated

using (2.9) and q can then be obtained by solving the second equation of (4.6).

Remark 4.1. Following the remark 2.2, we can prove that in the cases that 0 < h <

��1=2, the condition number of WTAW is smaller than 6. In fact, one can write

WTAW explicitly

(W TAWq)i = bqi�1 + aqi + bqi+1; 2 < i < n;

(WTAWq)1 = (a� b)q1 + bq2;

(W TAWq)n+1 = bqn + (a� b)qn+1

where

a =
5

4h2
�

3�

8
; b =

3

8h2
�

�

16
:

It is easy to check that a, b, a � 2b are positive. Since WTAW is symmetric, by

Gershgorin's Theorem all of its eigenvalues lie in the interval [R1; R2] where

R1 = a� 2b; R2 = maxfa; a+ 2bg = a + 2b:

Denoting � = �h2, one can check that 0 � � < 1 which leads to

�(W TAW ) �
a+ 2b

a� 2b
= 2

� � 4

� � 2
< 6:
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Figure 1. Bifurcation diagram of (4.3) with N = 31. The solid
branch contains stable solutions, the dashed branches contain un-
stable solutions.

We made AUTO compute the bifurcation diagrams for (4.3) and (4.6) in the

parameter range 0 � � � 20 for various grids. Starting with the coarsest grid of

only one inner grid point, we re�ned the grid until the computed primary bifurca-

tion values were indistinguishable from the exact values �k = k2 in the diagram. It

turned out that 4 re�nement steps (N = 31 grid points) were necessary to obtain

the desired accuracy. (see Fig. 1). We took the N = 31 diagram as the \refer-

ence diagram". Note that for three re�nement steps (N = 15) the eigenvalues of

h�2[�1; 2;�1] in [0; 20] still di�er substantially from the eigenvalues of the Lapla-

cian which is shown in Fig. 2. Thus, reducing N from 31 to 15 produces larger

errors in the higher primary bifurcation values. However, we see from Fig. 3 that

a better result is obtained with only n = 15 degrees of freedom in the AIF. The

n = 15 diagram is almost indistinguishable from the reference diagram, even for

higher values of �.

4.2. The Kuramoto-Sivashinsky equation. As a second example, we consider

the Kuramoto-Sivashinsky equation

ut + 4uxxxx + � (uxx + uux) = 0 (4.7)



14 ROLF BRONSTERING AND MIN CHEN
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Figure 2. Bifurcation diagrams of (4.3) with N = 15 (dashed
lines) and N = 31 (solid lines)
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Figure 3. Bifurcation diagrams of (4.6) with n = 15 (dashed
lines) and of (4.3) with N = 31 (solid lines)

on H2;per
odd (0; 2�). Equation (4.7) has been studied extensively and its bifurcation

diagram in the parameter range [0; 70] is certainly among the most often reproduced

�gures in dynamical systems literature of the past ten years ([15],[16], [19],[20],[26]

and many more). Because only odd functions are considered, we may restrict the

equation to the subspace of functions de�ned on 0 � x � � with u(0) = u(�) =

u00(0) = u00(�) = 0.
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The primary bifurcation values of (4.7) are those � for which 4�2+�� = �(4�+

�) becomes singular. As � is nonsingular on this space, the primary bifurcation

values are the eigenvalues of �4� which are given by �k = 4k2; k = 1; 2; : : : .

Replacing (4.7) by the semidiscretization, which has been proved to keep the

dissipation property of the original K-S equation (4.7) (see [8]), one obtains

ut + 4�2
hu+ � (�hu+ F (u)) = 0 (4.8)

where

(�2
hu)i = h�4(ui�2 � 4ui�1 + 6ui � 4ui+1 + ui+2);

(�hu)i = h�2(ui�1 � 2ui + ui+1);

uux ' F (u) =
ui+1 + ui + ui�1

3
�
ui+1 � ui�1

2h
;

h = �=(N + 1) and (u1; : : : ; uN )T are the unknowns which approximate u(t; x) at

x = i � h for i = 1; 2; � � � ; N . According to the boundary conditions, we set u0 =

uN+1 = 0 and u�1 = �u1, uN+2 = �uN . As we proved in the preceding example,

�hT , T and �h are symmetric which leads to AT = TA for A = 4�2
h + ��h, so

(2.10) with the IUs de�ned in (1.1) can be used to calculate the bifurcation diagram

in this example as well.

The terms in (2.10) for the equation (4.8) can again be written explicitly (terms

involving �h has already been calculated in (4.4)).

16h4(V T�2
hV p)i = pi�2 � 4pi�1 + 6pi � 4pi+1 + pi+2; i = 1; : : : ; n

4h4(V T�2
hWq)i = qi�1 � qi � qi+1 + qi+2; i = 1; : : : ; n

4h4(W T�2
hV p)i = pi�2 � pi�1 � pi + pi+1; i = 1; : : : ; n+ 1

16h4(WT�2
hWq)i = qi�2 + 28qi�1 + 70qi + 28qi+1 + qi+2; i = 1; : : : ; n+ 1

where the same convention as in (4.5) and q�1 = �q2, qn+3 = �qn are used.
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The AIF of (4.8) (namely (2.10) for the K-S equation) is thus given by

d

dt
pi +

1

4h4
(pi�2 � 4pi�1 + 6pi � 4pi+1 + pi+2) +

�

8h2
(pi�1 � 2pi + pi+1)

+

�
1

h4
�

�

16h2

�
(qi�1 � qi � qi+1 + qi+2) + f(p; q)i = 0;�

1

h4
�

�

16h2

�
(pi�2 � pi�1 � pi + pi+1) �

�

8h2
(3qi�1+ 10qi + 3qi+1)

+
1

4h4
(qi�2 + 28qi�1+ 70qi + 28qi+1 + qi+2) + g(p; 0)i = 0:

(4.9)

Remark 4.2. Similarly to the case of the �rst example, the linear equation for q has

a condition number � which is smaller than 12 independently of h if h < ��1=2. In

fact,

(WTAWq)i = cqi�2 + bqi�1+ aqi + bqi+1 + cqi+2; 3 � i � n� 1;

(WTAWq)1 = (a� b)q1 + (b� c)q2 + cq3;

(WTAWq)2 = (b� c)q1 + aq2 + bq3 + cq4;

(W TAWq)n = cqn�2 + bqn�1 + aqn + (b � c)qn+1;

(WTAWq)n+1 = cqn�1 + (b � c)qn + (a� b)qn+1;

where

a =
35

2h4
�

5�

4h2
; b =

7

h4
�

3�

8h2
; c =

1

4h4
:

Again for h < ��1=2 it is easy to check that all a, b, c, b� c, a� b, a� 2b� 2c are

positive and that by Gershgorin's Theorem all of the eigenvalues of W TAW lie in

the interval [R1; R2] where

R1 = minfa� 2b� 2c; a� 2bg = a� 2b� 2c;

R2 = maxfa+ 2b+ 2c; a+ 2b; ag = a+ 2b+ 2c;

so

� �
a+ 2b+ 2c

a� 2b� 2c
= 4

� � 16

� � 6
< 12

where � = �h2 < 1.
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Again, we made AUTO compute the bifurcation diagrams for the original scheme

(4.8) and its AIF (4.9) and compared the diagrams. Following the same procedure,

the bifurcation diagram of (4.8) with N = 17, which is shown in Fig. 4, is chosen

to be the reference diagram. Fig. 4 is also compared with existing results. For

instance, it is almost identical to Fig. 3.1 in [26] which was computed by a 12 mode

classical spectral method. Reducing the number of grid points to N = 8 leads to

major di�erences in the right part of the diagram (see Fig. 5). Therefore, N = 8

nodes is not su�cient to correctly reproduce the dynamics. Again, we see that

a substantial improvement of the bifurcation diagram can be produced by taking

n = 8 degrees of freedom in the AIF (see Fig. 6).
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1.
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10.

Figure 4. Bifurcation diagram of (4.8) with N = 17
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Figure 5. Bifurcation diagrams of (4.8) with N = 8 (dashed
lines) and N = 17 (solid lines)
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Figure 6. Bifurcation diagrams of (4.9) with n = 8 (dashed lines)
and of (4.8) with N = 17 (solid lines)
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