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Abstract. The utilization of incremental unknowns was proposed in [21] as a tool for the
approximation of inertial manifolds ([6], [7]) when finite differences discretizations are used.

In a first step the emphasis has been put on their utilization for the solution of linear elliptic
problems (more specifically in space dimension two), where they appear as a preconditioner

for the corresponding linear systems. Thanks to their flexibility, they are related sometimes

to the hierarchical bases in finite elements (see [22] and [23]) or to wavelets (see [9] and
[15]), and other classes of Incremental unknowns occur as well.

In this article, we describe the application of incremental unknowns for solving the

Laplace problem in space dimension three. We introduce and study here the second-order
incremental unknowns, and prove by deriving suitable a priori estimates that the incremen-

tal unknowns are small as expected. We then analyze the condition number of the matrix
corresponding to the five-points discretization of the Laplace operator. We show that this

number is 0(h−1(lnh)4) instead of 0(h−2) when the usual nodal unknowns are used, h being

the fine grid mesh size.

Introduction

The computation of turbulent flows necessitates a large number of unknowns. For
instance, in space dimension three, it is not anymore unthinkable to consider billions of
unknowns (i.e. 10243 grid points). In this context, it does not seem reasonable to handle
all unknowns in the same way and to spend as much computing time with the small
wavelengths as with the large wavelengths carrying most of the energy.

In the case of spectral methods, the distinction between small and large wavelengths
is straightforward when considering Fourier series expansions. However, this is no longer
the case when the discretization is made by finite differences, since all nodal values play
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the same role. The concept of incremental unknowns that stems from the dynamical
system theory has been introduced in [21] in order to overcome this difficulty. Incremental
unknowns appear in this context as the natural tool to construct inertial manifolds and
approximate inertial manifolds (see for example [6] and [7]) when finite differences are
used. Incremental unknowns can be defined when multilevel discretizations are used.
For example, if two levels of discretizations are used, the incremental unknowns consist
of usual nodal values at the coarse grid points, and at the fine grid points that do not
belong to the coarse grid the incremental unknown is an increment to the values of
suitable neighboring points.

In a first step the emphasis has been put on their utilization for the solution of linear
elliptic problems, more specifically in space dimension two, where they appear as a
preconditioner for the corresponding linear systems. Thanks to their flexibility, they are
related sometimes to the hierarchical bases in finite elements (see [22] and [23]) or to
wavelets (see [9] and [15]). Several types of incremental unknowns have been defined
and studied (see for instance [4]) in order to suit certain specific requirements from
the original physical problems or the design of the numerical schemes. For instance,
the wavelet-like incremental unknowns considered in [4] (see also [18]) have the L2−
orthogonality property between the different levels of mesh.

The incremental unknowns have been applied to many problems and situations in
space dimension two and have led to subsequent improvements when compared to meth-
ods using the usual nodal unknowns (see [2], [3], [4] and the references therein). Firstly
it is proved in [3] that the condition number of the matrix associated to the discretiza-
tion of linear problems by the second-order incremental unknowns is of order d−2, when
d levels of discretization are used. Hence the condition number is 0((lnh)2) instead of
0(h−2) with the usual unknowns, where h is the size of the finest grid. This result is also
confirmed by numerical computations. Secondly a number of numerical simulations have
been made using incremental unknowns for linear problems. These results show that the
incremental unknowns based algorithms are comparable to multigrid methods, which is
already a satisfactory result since they are intended for nonlinear evolution problems and
their utilization for stationary problems is just a preliminary step to this study. For the
use of incremental unknowns for evolution equations, see [10], [11], [12], [16] and [18].
However, no such studies have been made yet for three-dimensional flows, which is the
case of interest for actual flows.

Our aim in this article is to address the study of incremental unknowns in space
dimension three in the context of stationary problems. For the sake of simplicity, we
restrict ourselves to the Laplace equation on the cube (0, 1)3.

In section 1, we define the second-order incremental unknowns. As for the one and
two-dimensional cases, they consist of the nodal values at the coarse grid points and of
the increment of the nodal value to the average of the values at the neighboring points
for the fine grid points that do not belong to the coarse grid. Then, in section 2 we
obtain a priori estimates based on energy methods. These estimates enable us to prove
in section 3 that the incremental unknowns are indeed small as expected.
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We then study the condition number of the matrix associated to the discretization of
the Laplace operator. Let A be the matrix associated to the five-points discretization
of the Laplace operator using the nodal values and let Ā be the matrix associated to
the discretization by the incremental unknowns. Our aim is to prove that the condition
number of Ā is at most 0(h−1(lnh)4), where h is the size of the finest grid mesh, instead
of 0(h−2) with the usual finite differences matrix A. As for the two-dimensional case, this
result is obtained by deriving appropriate bounds on the smallest and largest eigenvalues
of Ā through the associated bilinear form. We note however that some inequalities used
in [3] for the two-dimensional case could not be used in an optimal way here.

In section 4, we describe the mathematical setting and obtain the bounds on the eigen-
values, which give the upper bound on the condition number of Ā. Then in section 5,
we present some numerical results. These results are in agreement with our theoretical
results, and show that the condition number of Ā is of order h−1|lnh|. We also define an-
other type of incremental unknowns, namely the third-order incremental unknowns, and
conjecture the condition number of the matrix associated to the discretization by these
incremental unknowns through numerical simulations. These results make us believe
that this number is again 0(h−1|lnh|).

1. Incremental Unknowns.

We restrict ourselves here to the Dirichlet problem in the cube Ω = (0, 1)3:

−∆u = f in Ω, (1)

u = 0 on ∂Ω. (2)

We set h = 1
2N
, N ∈ N∗ and we consider the usual discretization of the Dirichlet problem

on the grid of mesh h :

(2uα,β,γ − uα−1,β,γ − uα+1,β,γ) + (2uα,β,γ − uα,β−1,γ − uα,β+1,γ)

+ (2uα,β,γ − uα,β,γ−1 − uα,β,γ+1) = h2fα,β,γ,
(3)

for α, β, γ = 1, . . . , 2N − 1,

uα,β,γ = 0, for α, β or γ = 0 or 2N, (4)

where fα,β,γ = f(αh, βh, γh) and uα,β,γ is the approximate value of u at (αh, βh, γh).
We then consider a coarse grid of mesh 2h = 1/N and we introduce the incremental

unknowns which consist of the nodal values y2i,2j,2k = u2i,2j,2k at the coarse grid points
(2ih, 2jh, 2kh), i, j, k = 0, . . . , N, and of appropriate incremental quantities zα,β,γ at the
other points. As for the one and two-dimensional cases (see [2]), zα,β,γ is the increment
of u to the average of the values at the neighboring points (see figure 1). We then obtain
three sorts of incremental unknowns:
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(i) mid edge:

z2i,2j,2k+1 = u2i,2j,2k+1 −
1
2

(u2i,2j,2k + u2i,2j,2k+2), (5)

z2i,2j+1,2k = u2i,2j+1,2k −
1
2

(u2i,2j,2k + u2i,2j+2,2k), (6)

z2i+1,2j,2k = u2i+1,2j,2k −
1
2

(u2i,2j,2k + u2i+2,2j,2k), (7)

(ii) center of a face:

z2i,2j+1,2k+1 =u2i,2j+1,2k+1 −
1
4

(u2i,2j,2k + u2i,2j,2k+2

+ u2i,2j+2,2k + u2i,2j+2,2k+2),
(8)

z2i+1,2j,2k+1 =u2i+1,2j,2k+1 −
1
4

(u2i,2j,2k + u2i,2j,2k+2

+ u2i+2,2j,2k + u2i+2,2j,2k+2),
(9)

z2i+1,2j+1,2k =u2i+1,2j+1,2k −
1
4

(u2i,2j,2k + u2i,2j+2,2k

+ u2i+2,2j,2k + u2i+2,2j+2,2k),
(10)

(iii) center of a cube:

z2i+1,2j+1,2k+1 = u2i+1,2j+1,2k+1 −
1
8

(u2i,2j,2k + u2i,2j,2k+2 + u2i,2j+2,2k (11)

+u2i+2,2j,2k + u2i,2j+2,2k+2 + u2i+2,2j,2k+2 + u2i+2,2j+2,2k + u2i+2,2j+2,2k+2).

Let Ũ , b̃ ∈ R(2N−1)3
denote the uα,β,γ, fα,β,γ, α, β, γ = 1, . . . , 2N − 1 in lexicographic

order. We first reorder the uα,β,γ and fα,β,γ by considering the coarse grid points first
and then the other points of each type, with lexicographic order in each family. Let U
and b be the reordered vectors of R(2N−1)3

, we have

U =
(
Uc
Uf

)
, b =

(
bc
bf

)
.

The matrix form of (3)-(4) is
ÃŨ = b̃, (12)

which is equivalent to
AU = b, (13)



INCREMENTAL UNKNOWNS IN FINITE DIFFERENCES IN SPACE DIMENSION 3 5

x

x

xx

xx

x

xM

M

M

MM

M1

M 3

4

5

6

8

P

P P

PP

PP

   M

1

3

45

6

2

2

7

7

Figure 1. Coarse grid points (x) and fine grid points (x,o).

where

A =
(
Acc Acf
Afc Aff

)
.

We then introduce the incremental unknowns studied above. We set Ū =
(
Y
Z

)
with

Y = Uc and Z the vector of incremental unknowns with the order described above. We
denote by S the transformation matrix

U = SŪ. (14)

We can rewrite (13) as

ASŪ = b, (15)

or
ĀŪ = b̄, (16)

where Ā =t SAS and b̄ =tSb. The matrix Ā is symmetric, positive definite, and the
general form of S and S−1 is

S =
(

I 0
Sfc I

)
, S−1 =

(
I 0
−Sfc I

)
.

Our aim is to study properties of Ā such as the smallest eigenvalue of Ā (coercivity)
and the condition number of Ā. Throughout this article the letter c denotes constants
which are independent of h and |Ω| and may change from line to line.
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2. A priori estimates.

We multiply (3) by uα,β,γ and sum for α, β, γ = 1, . . . , 2N − 1. A reordering which is
equivalent to a discrete integration by parts then yields, taking into account (4):

2N−1∑
α=0

2N−1∑
β=1

2N−1∑
γ=1

(uα+1,β,γ − uα,β,γ)2 +
2N−1∑
α=1

2N−1∑
β=0

2N−1∑
γ=1

(uα,β+1,γ −uα,β,γ)2

+
2N−1∑
α=1

2N−1∑
β=1

2N−1∑
γ=0

(uα,β,γ+1 − uα,β,γ)2 = h2
2N−1∑
α,β,γ=1

fα,β,γuα,β,γ.

(17)

We have three discrete Poincaré inequalities:

h

2N−1∑
α,β,γ=1

u2
α,β,γ ≤

2N−1∑
α=0

2N−1∑
β=1

2N−1∑
γ=1

1
h

(uα+1,β,γ − uα,β,γ)2
,

h
2N−1∑
α,β,γ=1

u2
α,β,γ ≤

2N−1∑
α=1

2N−1∑
β=0

2N−1∑
γ=1

1
h

(uα,β+1,γ − uα,β,γ)2
,

h

2N−1∑
α,β,γ=1

u2
α,β,γ ≤

2N−1∑
α=1

2N−1∑
β=1

2N−1∑
γ=0

1
h

(uα,β,γ+1 − uα,β,γ)2
.

Therefore

h

2N−1∑
α,β,γ=1

u2
α,β,γ ≤

1
3h

2N−1∑
α=0

2N−1∑
β=1

2N−1∑
γ=1

(uα+1,β,γ − uα,β,γ)2 (18)

+
2N−1∑
α=1

2N−1∑
β=0

2N−1∑
γ=1

(uα,β+1,γ − uα,β,γ)2 +
2N−1∑
α=1

2N−1∑
β=1

2N−1∑
γ=0

(uα,β,γ+1 − uα,β,γ)2

 .

Thanks to Cauchy-Schwarz inequality, we can bound the right-hand-side of (17) by 2N−1∑
α,β,γ=1

h2u2
α,β,γ


1
2
 2N−1∑
α,β,γ=1

h2f2
α,β,γ


1
2

≤ 1√
3

2N−1∑
α=0

2N−1∑
β=1

2N−1∑
γ=1

(uα+1,β,γ − uα,β,γ)2 +
2N−1∑
α=1

2N−1∑
β=0

2N−1∑
γ=1

(uα,β+1,γ − uα,β,γ)2

+
2N−1∑
α=1

2N−1∑
β=1

2N−1∑
γ=0

(uα,β,γ+1 − uα,β,γ)2

 1
2
 2N−1∑
α,β,γ=1

h2f2
α,β,γ

 1
2

,
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and thus

2N−1∑
α=0

2N−1∑
β=1

2N−1∑
γ=1

(uα+1,β,γ − uα,β,γ)2 +
2N−1∑
α=1

2N−1∑
β=0

2N−1∑
γ=1

(uα,β+1,γ − uα,β,γ)2

+
2N−1∑
α=1

2N−1∑
β=1

2N−1∑
γ=0

(uα,β,γ+1 − uα,β,γ)2 ≤ 1
3

2N−1∑
α,β,γ=1

h2f2
α,β,γ.

(19)

Denoting the right-hand-side of (19) by L(y, z), we have

L(y, z) ≤ 1
3

2N−1∑
α,β,γ=1

h2f2
α,β,γ.

We then introduce the incremental unknowns defined by (5)-(11) and we split the
sum in the left-hand-side of (19) into eight sums depending on whether α, β, γ are odd
or even. We write

L = La + Lb + · · ·+ Lh, with

La for α = 2i, β = 2j, γ = 2k,

Lb for α = 2i, β = 2j, γ = 2k + 1,

Lc for α = 2i, β = 2j + 1, γ = 2k,

Ld for α = 2i+ 1, β = 2j, γ = 2k,

Le for α = 2i, β = 2j + 1, γ = 2k + 1,

Lf for α = 2i+ 1, β = 2j, γ = 2k + 1,

Lg for α = 2i+ 1, β = 2j + 1, γ = 2k,

Lh for α = 2i+ 1, β = 2j + 1, γ = 2k + 1,

i, j, k = 0, . . . , N − 1. This yields

La =
N−1∑
i,j,k=0

(
z2i+1,2j,2k +

1
2

(y2i+2,2j,2k − y2i,2j,2k)
)2

+
N−1∑
i,j,k=0

(
z2i,2j+1,2k +

1
2

(y2i,2j+2,2k − y2i,2j,2k)
)2

+
N−1∑
i,j,k=0

(
z2i,2j,2k+1 +

1
2

(y2i,2j,2k+2 − y2i,2j,2k)
)2

,
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Lb =
N−1∑
i,j,k=0

(
z2i+1,2j,2k+1 − z2i,2j,2k+1 +

1
4
gi,j,k

)2

+
N−1∑
i,j,k=0

(
z2i,2j+1,2k+1 − z2i,2j,2k+1 +

1
4
hi,j,k

)2

+
N−1∑
i,j,k=0

(
−z2i,2j,2k+1 +

1
2

(y2i,2j,2k+2 − y2i,2j,2k)
)2

,

where
gi,j,k = y2i+2,2j,2k+2 + y2i+2,2j,2k − y2i,2j,2k+2 − y2i,2j,2k,

hi,j,k = y2i,2j+2,2k+2 + y2i,2j+2,2k − y2i,2j,2k+2 − y2i,2j,2k,

Lc =
N−1∑
i,j,k=0

(
z2i+1,2j+1,2k − z2i,2j+1,2k +

1
4
g′i,j,k

)2

+
N−1∑
i,j,k=0

(
−z2i,2j+1,2k +

1
2

(y2i,2j+2,2k − y2i,2j,2k)
)2

+
N−1∑
i,j,k=0

(
z2i,2j+1,2k+1 − z2i,2j+1,2k +

1
4
h′i,j,k

)2

,

where
g′i,j,k = y2i+2,2j+2,2k + y2i+2,2j,2k − y2i,2j+2,2k − y2i,2j,2k,

h′i,j,k = y2i,2j+2,2k+2 + y2i,2j,2k+2 − y2i,2j+2,2k − y2i,2j,2k,

Ld =
N−1∑
i,j,k=0

(
−z2i+1,2j,2k +

1
2

(y2i+2,2j,2k − y2i,2j,2k)
)2

+
N−1∑
i,j,k=0

(
z2i+1,2j+1,2k − z2i+1,2j,2k +

1
4
g′′i,j,k

)2

+
N−1∑
i,j,k=0

(
z2i+1,2j,2k+1 − z2i+1,2j,2k +

1
4
h′′i,j,k

)2

,

where
g′′i,j,k = y2i+2,2j+2,2k + y2i,2j+2,2k − y2i+2,2j,2k − y2i,2j,2k,

h′′i,j,k = y2i+2,2j,2k+2 + y2i,2j,2k+2 − y2i+2,2j,2k − y2i,2j,2k,
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Le =
N−1∑
i,j,k=0

(
z2i+1,2j+1,2k+1 − z2i,2j+1,2k+1 +

1
8
qi,j,k

)2

+
N−1∑
i,j,k=0

(
z2i,2j+2,2k+1 − z2i,2j+1,2k+1 +

1
4
hi,j,k

)2

+
N−1∑
i,j,k=0

(
z2i,2j+1,2k+2 − z2i,2j+1,2k+1 +

1
4
h′i,j,k

)2

,

where
qi,j,k =y2i+2,2j,2k + y2i+2,2j+2,2k + y2i+2,2j,2k+2 + y2i+2,2j+2,2k+2

− y2i,2j+2,2k+2 − y2i,2j+2,2k − y2i,2j,2k+2 − y2i,2j,2k,

Lf =
N−1∑
i,j,k=0

(
z2i+2,2j,2k+1 − z2i+1,2j,2k+1 +

1
4
gi,j,k

)2

+
N−1∑
i,j,k=0

(
z2i+1,2j+1,2k+1 − z2i+1,2j,2k+1 +

1
8
q′i,j,k

)2

+
N−1∑
i,j,k=0

(
z2i+1,2j,2k+2 − z2i+1,2j,2k+1 +

1
4
h′′i,j,k

)2

,

where
q′i,j,k =y2i+2,2j+2,2k+2 + y2i,2j+2,2k+2 + y2i+2,2j+2,2k + y2i,2j+2,2k

− y2i+2,2j,2k+2 − y2i+2,2j,2k − y2i,2j,2k+2 − y2i,2j,2k,

Lg =
N−1∑
i,j,k=0

(
z2i+2,2j+1,2k − z2i+1,2j+1,2k +

1
4
g′i,j,k

)2

+
N−1∑
i,j,k=0

(
z2i+1,2j+2,2k − z2i+1,2j+1,2k +

1
4
g′′i,j,k

)2

+
N−1∑
i,j,k=0

(
z2i+1,2j+1,2k+1 − z2i+1,2j+1,2k +

1
8
q′′i,j,k

)2

,

where
q′′i,j,k =y2i+2,2j+2,2k+2 + y2i+2,2j,2k+2 + y2i,2j+2,2k+2 + y2i,2j,2k+2

− y2i+2,2j+2,2k − y2i+2,2j,2k − y2i,2j+2,2k − y2i,2j,2k,
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Lh =
N−1∑
i,j,k=0

(
z2i+2,2j+1,2k+1 − z2i+1,2j+1,2k+1 +

1
8
qi,j,k

)2

+
N−1∑
i,j,k=0

(
z2i+1,2j+2,2k+1 − z2i+1,2j+1,2k+1 +

1
8
q′i,j,k

)2

+
N−1∑
i,j,k=0

(
z2i+1,2j+1,2k+2 − z2i+1,2j+1,2k+1 +

1
8
q′′i,j,k

)2

.

We thus obtain

L(y, z) = La + · · ·+ Lh =
N−1∑
i,j,k=0

Li,j,k(y, z),

where

Li,j,k(y, z) = 2z2
2i+1,2j,2k + 2z2

2i,2j+1,2k + 2z2
2i,2j,2k+1 (20)

+
1
2

(y2i+2,2j,2k − y2i,2j,2k)2 +
1
2

(y2i,2j+2,2k − y2i,2j,2k)2 +
1
2

(y2i,2j,2k+2 − y2i,2j,2k)2

+ (z2i+1,2j,2k+1 − z2i,2j,2k+1 +
1
4
gi,j,k)2 + (z2i+2,2j,2k+1 − z2i+1,2j,2k+1 +

1
4
gi,j,k)2

+ (z2i+1,2j+1,2k − z2i,2j+1,2k +
1
4
g′i,j,k)2 + (z2i+2,2j+1,2k − z2i+1,2j+1,2k +

1
4
g′i,j,k)2

+ (z2i+1,2j+1,2k − z2i+1,2j,2k +
1
4
g′′i,j,k)2 + (z2i+1,2j+2,2k − z2i+1,2j+1,2k +

1
4
g′′i,j,k)

2

+ (z2i,2j+1,2k+1 − z2i,2j,2k+1 +
1
4
hi,j,k)2 + (z2i,2j+2,2k+1 − z2i,2j+1,2k+1 +

1
4
hi,j,k)2

+ (z2i,2j+1,2k+1 − z2i,2j+1,2k +
1
4
h′i,j,k)2 + (z2i,2j+1,2k+2 − z2i,2j+1,2k+1 +

1
4
h′i,j,k)2

+ (z2i+1,2j,2k+1 − z2i+1,2j,2k +
1
4
h′′i,j,k)2 + (z2i+1,2j,2k+2 − z2i+1,2j,2k+1 +

1
4
h′′i,j,k)2

+ (z2i+1,2j+1,2k+1 − z2i,2j+1,2k+1 +
1
8
qi,j,k)2 + (z2i+2,2j+1,2k+1 − z2i+1,2j+1,2k+1 +

1
8
qi,j,k)2

+ (z2i+1,2j+1,2k+1 − z2i+1,2j,2k+1 +
1
8
q′i,j,k)2 + (z2i+1,2j+2,2k+1 − z2i+1,2j+1,2k+1 +

1
8
q′i,j,k)2

+ (z2i+1,2j+1,2k+1 − z2i+1,2j+1,2k +
1
8
q′′i,j,k)2 + (z2i+1,2j+1,2k+2 − z2i+1,2j+1,2k+1 +

1
8
q′′i,j,k)2.

We have the following result (see also [2]):

Lemma 1: For every (a, b, c, g) ∈ R4, and for every 0 ≤ γ ≤ 1

(a− b+ g)2 + (c− a+ g)2 ≥ γ(a2 − b2 − c2).
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Proof: Since the left-hand side of this inequality is positive, it suffices to prove the
inequality for γ = 1 which can be done by observing that

(a−b+g)2 +(c−a+g)2 = (a−b−c)2 +(−b+c+g)2 +a2−b2−c2 +g2 ≥ a2−b2−c2. �

We use Lemma 1 with γ = 1
4 for the terms involving 1

4{g, g′, g′′, h, h′, h′′} and with
γ = 1

8 for the terms involving 1
8{q, q′, q′′}. This yields:

N−1∑
i,j,k=0

Li,j,k ≥
N−1∑
i,j,k=0

{
2z2

2i+1,2j,2k + 2z2
2i,2j+1,2k + 2z2

2i,2j,2k+1

+
1
2

(y2i+2,2j,2k − y2i,2j,2k)2 +
1
2

(y2i,2j+2,2k − y2i,2j,2k)2

+
1
2

(y2i,2j,2k+2 − y2i,2j,2k)2 +
1
4
z2

2i+1,2j,2k+1 −
1
4
z2

2i,2j,2k+1 −
1
4
z2

2i+2,2j,2k+1

+
1
4
z2

2i+1,2j+1,2k −
1
4
z2

2i,2j+1,2k −
1
4
z2

2i+2,2j+1,2k +
1
4
z2

2i+1,2j+1,2k

− 1
4
z2

2i+1,2j,2k −
1
4
z2

2i+1,2j+2,2k +
1
4
z2

2i,2j+1,2k+1 −
1
4
z2

2i,2j,2k+1

− 1
4
z2

2i,2j+2,2k+1 +
1
4
z2

2i,2j+1,2k+1 −
1
4
z2

2i,2j+1,2k −
1
4
z2

2i,2j+1,2k+2

+
1
4
z2

2i+1,2j,2k+1 −
1
4
z2

2i+1,2j,2k −
1
4
z2

2i+1,2j,2k+2 +
1
8
z2

2i+1,2j+1,2k+1

− 1
8
z2

2i,2j+1,2k+1 −
1
8
z2

2i+2,2j+1,2k+1 +
1
8
z2

2i+1,2j+1,2k+1 −
1
8
z2

2i+1,2j,2k+1

− 1
8
z2

2i+1,2j+2,2k+1 +
1
8
z2

2i+1,2j+1,2k+1 −
1
8
z2

2i+1,2j+1,2k −
1
8
z2

2i+1,2j+1,2k+2

}
.

Using (4), we can replace, for example, z2
2i+1,2j+2,2k by z2

2i+1,2j,2k in the sum,
which gives

N−1∑
i,j,k=0

Li,j,k ≥
N−1∑
i,j,k=0

L′i,j,k,

where

L′i,j,k(y, z) = z2
2i+1,2j,2k + z2

2i,2j+1,2k + z2
2i,2j,2k+1 +

1
4
z2

2i+1,2j+1,2k +
1
4
z2

2i+1,2j,2k+1

+
1
4
z2

2i,2j+1,2k+1 +
3
8
z2

2i+1,2j+1,2k+1 +
1
2

(y2i+2,2j,2k − y2i,2j,2k)2

+
1
2

(y2i,2j+2,2k − y2i,2j,2k)2 +
1
2

(y2i,2j,2k+2 − y2i,2j,2k)2.
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If we replace fα,β,γ = f(αh, βh, γh) by f∗α,β,γ = 1
h3

∫ (α+1)h

αh

∫ (β+1)h

βh

∫ (γ+1)h

γh
f(x)dx,

then the right-hand-side of (19) is bounded by 1
3

1
h | f |2= 1

3h

∫
(0,1)3 | f(x1, x2, x3) |2 dx,

and thus

N−1∑
i,j,k=0

{z2
2i+1,2j,2k + z2

2i,2j+1,2k + z2
2i,2j,2k+1 + z2

2i+1,2j+1,2k + z2
2i+1,2j,2k+1

+ z2
2i,2j+1,2k+1 + z2

2i+1,2j+1,2k+1 + (y2i+2,2j,2k − y2i,2j,2k)2

+ (y2i,2j+2,2k − y2i,2j,2k)2 + (y2i,2j,2k+2 − y2i,2j,2k)2}

≤ 4
3h
| f |2 .

(21)

In conclusion, we have for h→ 0

h3
N−1∑
i,j,k=0

(
z2

2i+1,2j,2k + z2
2i,2j+1,2k + z2

2i,2j,2k+1 + z2
2i+1,2j+1,2k (22)

+ z2
2i+1,2j,2k+1 + z2

2i,2j+1,2k+1 + z2
2i+1,2j+1,2k+1

)
≤ const. h2,

N−1∑
i=0

N−1∑
j=1

N−1∑
k=1

(y2i+2,2j,2k − y2i,2j,2k)
2 ≤ const.

h
, (23)

N−1∑
i=1

N−1∑
j=0

N−1∑
k=1

(y2i,2j+2,2k − y2i,2j,2k)2 ≤ const.
h

, (24)

N−1∑
i=1

N−1∑
j=1

N−1∑
k=0

(y2i,2j,2k+2 − y2i,2j,2k)2 ≤ const.
h

. (25)

3. Variational formulation.

We consider the spaces H = L2(Ω), V = H1
0 (Ω) which are endowed with their usual

scalar products which we denote (·, ·) for H and ((·, ·)) for V (| · | and || · || denote the
corresponding norms). The variational formulation of (1)-(2) is classical. We look for
v ∈ V such that

((u, v)) = (f, v), ∀v ∈ V.

Let now Vh be the finite dimensional space which consists of functions uh which are
constant on each cube [αh, (α + 1)h) × [βh, (β + 1)h) × [γh, (γ + 1)h). This space is
spanned by the functions wh,M ,M = (αh, βh, γh), α, β, γ = 1, . . . , 2N − 1, which are
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equal to 1 on the cube [αh, (α+ 1)h)× [βh, (β + 1)h)× [γh, (γ + 1)h) and 0 outside this
cube. Thus

uh(x) =
∑
M∈Ωh

uh(M)wh,M (x), x ∈ Ω,

where Ωh = {(αh, βh, γh), α, β, γ = 1, . . . , 2N − 1}. We introduce the finite differences
operators

∇i,hφ(x) =
1
h

(φ(x+ hei)− φ(x)), i = 1, 2, 3,

where (e1, e2, e3) is the canonical basis of R3. We then endow Vh with the discrete scalar
product

((uh, vh))h =
3∑
i=1

(∇i,huh,∇i,hvh).

We then consider the following variational problem:
Find uh ∈ Vh such that

((uh, vh))h = (f, vh), ∀vh ∈ Vh.

We now consider the space decomposition

Vh = Yh ⊕ Zh,

where Yh is the space spanned by the functions φ2h,M ,M ∈ Ω2h, where φ2h,M is given
by (see figure 2):

φ2h,M =wh,M +
1
2
{wh,M+he1 + wh,M+he2 + wh,M+he3 + wh,M−he1

+ wh,M−he2 + wh,M−he3}+
1
4
{wh,M+he1+he2 + wh,M+he1−he2

+ wh,M−he1+he2 + wh,M−he1−he2 + wh,M+he1+he3 + wh,M+he1−he3

+ wh,M−he1+he3 + wh,M−he1−he3 + wh,M+he2+he3 + wh,M+he2−he3

+ wh,M−he2+he3 +wh,M−he2−he3}+
1
8
{wh,M+he1+he2+he3

+ wh,M+he1+he2−he3 + wh,M+he1−he2−he3 + wh,M+he1−he2+he3

+ wh,M−he1+he2+he3 + wh,M−he1−he2+he3 + wh,M−he1+he2−he3

+ wh,M−he1−he2−he3},

and Zh is the space spanned by the functions wh,M ,M ∈ Ωh\Ω2h. Writing uh = yh +
zh, yh ∈ Yh, zh ∈ Zh, we obtain the incremental unknowns introduced above by using the
same method as in [4] for the two-dimensional case.
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south and north faces

1/8 1/8

1/8 1/8

1/4

1/4 1/4

1/4

1/2

middle face

1/4

1/41/4

1/41/2

1/2

1 1/21/2

Figure 2. The values of the basis function φ2h,M .
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Now we have

‖ yh + zh ‖2h=‖ uh ‖2h= h [
2N−1∑
α=0

2N−1∑
β=0

2N−1∑
γ=0

(uα+1,β,γ − uα,β,γ)2

+
2N−1∑
α=0

2N−1∑
β=0

2N−1∑
γ=0

(uα,β+1,γ − uα,β,γ)2 +
2N−1∑
α=0

2N−1∑
β=0

2N−1∑
γ=0

(uα,β,γ+1 − uα,β,γ)2 ]

= h

N−1∑
i,j,k=0

Li,j,k ≥ h
N−1∑
i,j,k=0

L′i,j,k,

that is to say

‖ yh + zh ‖2h ≥
h

4

N−1∑
i,j,k=0

{z2
2i+1,2j,2k + z2

2i,2j+1,2k + z2
2i,2j,2k+1 + z2

2i+1,2j+1,2k

+ z2
2i+1,2j,2k+1 + z2

2i,2j+1,2k+1 + z2
2i+1,2j+1,2k+1 + (y2i+2,2j,2k − y2i,2j,2k)2

+ (y2i,2j+2,2k − y2i,2j,2k)2 + (y2i,2j,2k+2 − y2i,2j,2k)2}

=
1

4h2
|zh|2h +

1
4
||yh||22h.

Now
‖ yh ‖2h = ( we take z = 0 in Li,j,k(y, z))

= h

2N−1∑
i,j,k=0

{1
2

(y2i+2,2j,2k − y2i,2j,2k)2

+
1
2

(y2i,2j+2,2k − y2i,2j,2k)2 +
1
2

(y2i,2j,2k+2 − y2i,2j,2k)2

+
1
8

(y2i+2,2j,2k+2 − y2i,2j,2k+2 + y2i+2,2j,2k − y2i,2j,2k)2

+
1
8

(y2i,2j+2,2k+2 − y2i,2j,2k+2 + y2i,2j+2,2k − y2i,2j,2k)2

+
1
8

(y2i+2,2j+2,2k − y2i,2j+2,2k + y2i+2,2j,2k − y2i,2j,2k)2

+
1
8

(y2i,2j+2,2k+2 − y2i,2j+2,2k + y2i,2j,2k+2 − y2i,2j,2k)2

+
1
8

(y2i+2,2j+2,2k − y2i+2,2j,2k + y2i,2j+2,2k − y2i,2j,2k)2

+
1
8

(y2i+2,2j,2k+2 − y2i+2,2j,2k + y2i,2j,2k+2 − y2i,2j,2k)2

+
1
32

(y2i+2,2j,2k − y2i,2j,2k + y2i+2,2j+2,2k − y2i,2j+2,2k

+ y2i+2,2j,2k+2 − y2i,2j,2k+2 + y2i+2,2j+2,2k+2 − y2i,2j+2,2k+2)2
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+
1
32

(y2i,2j+2,2k − y2i,2j,2k + y2i,2j+2,2k+2 − y2i,2j,2k+2

+ y2i+2,2j+2,2k − y2i+2,2j,2k + y2i+2,2j+2,2k+2 − y2i+2,2j,2k+2)2

+
1
32

(y2i,2j,2k+2 − y2i,2j,2k + y2i,2j+2,2k+2 − y2i,2j+2,2k

+ y2i+2,2j,2k+2 − y2i+2,2j,2k + y2i+2,2j+2,2k+2 − y2i+2,2j+2,2k)2}.

We have, for instance

1
8

N−1∑
i,j,k=0

(y2i+2,2j,2k+2 − y2i,2j,2k+2 + y2i+2,2j,2k − y2i,2j,2k)2

≤ 1
4

N−1∑
i,j,k=0

[
(y2i+2,2j,2k+2 − y2i,2j,2k+2)2 + (y2i+2,2j,2k − y2i,2j,2k)2

]
≤ 1

2

N−1∑
i,j,k=0

(y2i+2,2j,2k − y2i,2j,2k)2.

Similarly

1
32

N−1∑
i,j,k=0

(y2i+2,2j,2k − y2i,2j,2k + y2i+2,2j+2,2k − y2i,2j+2,2k

+ y2i+2,2j,2k+2 − y2i,2j,2k+2 + y2i+2,2j+2,2k+2 − y2i,2j+2,2k+2)2

≤ 1
8

N−1∑
i,j,k=0

[
(y2i+2,2j,2k − y2i,2j,2k)2 + (y2i+2,2j+2,2k − y2i,2j+2,2k)2

+(y2i+2,2j,2k+2 − y2i,2j,2k+2)2 + (y2i+2,2j+2,2k+2 − y2i,2j+2,2k+2)2
]

≤ 1
2

N−1∑
i,j,k=0

(y2i+2,2j,2k − y2i,2j,2k)
2
.

Therefore

‖ yh ‖2h≤ 2h
N−1∑
i,j,k=0

[
(y2i+2,2j,2k − y2i,2j,2k)2

+ (y2i,2j+2,2k − y2i,2j,2k)2 + (y2i,2j,2k+2 − y2i,2j,2k)2
]
,

that is to say
‖ yh ‖2h≤ 2 ‖ yh ‖22h . (26)
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Moreover

‖ zh ‖2h= ( we take y = 0 in Li,j,k(y, z))

= h

N−1∑
i,j,k=0

[
2z2

2i+1,2j,2k + 2z2
2i,2j+1,2k + 2z2

2i,2j,2k+1

+ (z2i+1,2j,2k+1 − z2i,2j,2k+1)2 + (z2i+2,2j,2k+1 − z2i+1,2j,2k+1)2

+ (z2i+1,2j+1,2k − z2i,2j+1,2k)2 + (z2i+2,2j+1,2k − z2i+1,2j+1,2k)2

+ (z2i+1,2j+1,2k − z2i+1,2j,2k)2 + (z2i+1,2j+2,2k − z2i+1,2j+1,2k)2

+ (z2i,2j+1,2k+1 − z2i,2j,2k+1)2 + (z2i,2j+2,2k+1 − z2i,2j+1,2k+1)2

+ (z2i,2j+1,2k+1 − z2i,2j+1,2k)2 + (z2i,2j+1,2k+2 − z2i,2j+1,2k+1)2

+ (z2i+1,2j,2k+1 − z2i+1,2j,2k)2 + (z2i+1,2j,2k+2 − z2i+1,2j,2k+1)2

+ (z2i+1,2j+1,2k+1 − z2i,2j+1,2k+1)2 + (z2i+2,2j+1,2k+1 − z2i+1,2j+1,2k+1)2

+ (z2i+1,2j+1,2k+1 − z2i+1,2j,2k+1)2 + (z2i+1,2j+2,2k+1 − z2i+1,2j+1,2k+1)2

+ (z2i+1,2j+1,2k+1 − z2i+1,2j+1,2k)2 + (z2i+1,2j+1,2k+2 − z2i+1,2j+1,2k+1)2 ]

≤ ( with the same techniques as above )

≤ h
N−1∑
i,j,k=0

(
10z2

2i+1,2j,2k + 10z2
2i,2j+1,2k + 10z2

2i,2j,2k+1

+ 10z2
2i+1,2j+1,2k + 10z2

2i+1,2j,2k+1 + 10z2
2i,2j+1,2k+1 + 12z2

2i+1,2j+1,2k+1 ) ,

which gives

‖ zh ‖2h≤ 12h
N−1∑
i,j,k=0

(z2
2i+1,2j,2k + z2

2i,2j+1,2k + z2
2i,2j,2k+1 + z2

2i+1,2j+1,2k

+ z2
2i+1,2j,2k+1 + z2

2i,2j+1,2k+1 + z2
2i+1,2j+1,2k+1),

that is to say

‖ zh ‖2h≤
12
h2
| zh |2 . (27)

We then obtain
‖ yh + zh ‖2h≥

1
48
‖ zh ‖2h +

1
8
‖ yh ‖2h .

Therefore, we have the inverse triangle inequality:

‖ yh + zh ‖h≥
1

4
√

3
(‖ zh ‖2h + ‖ yh ‖2h)

1
2 , (28)
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∀yh ∈ Yh, zh ∈ Zh. If we take ‖ yh ‖h=‖ zh ‖h= 1 in (28) we find

‖ yh + zh ‖2h≥
1
24
,

which gives

−((yh, zh))h ≤ 1− 1
48
.

Therefore, changing zh into −zh we find

((yh, zh))h ≤
47
48
.

Now if zh and yh are 6= 0, then

| (( yh
‖ yh ‖h

,
zh

‖ zh ‖h
))h |≤

47
48
,

and we obtain the enhanced Cauchy-Schwarz inequality:

| ((yh, zh))h |≤
47
48
‖ yh ‖h‖ zh ‖h, (29)

∀yh ∈ Yh, zh ∈ Zh. Finally

| zh |2= h3
N−1∑
i,j,k=0

(z2
2i+1,2j,2k + z2

2i,2j+1,2k + z2
2i,2j,2k+1 + z2

2i+1,2j,2k+1

+ z2
2i+1,2j+1,2k + z2

2i,2j+1,2k+1 + z2
2i+1,2j+1,2k+1),

and since

‖ zh ‖2h≥
h

4

N−1∑
i,j,k=0

(z2
2i+1,2j,2k + z2

2i,2j+1,2k + z2
2i,2j,2k+1 + z2

2i+1,2j+1,2k

+ z2
2i+1,2j,2k+1 + z2

2i,2j+1,2k+1 + z2
2i+1,2j+1,2k+1),

we find
1

4h2
| zh |2≤‖ zh ‖2h .

We then obtain the enhanced Poincaré inequality

1
2h
| zh |≤‖ zh ‖h, ∀zh ∈ Zh. (30)
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A first consequence of (28), (30) is that the L2- norm of zh is small. We have

((uh, vh))h = (f, vh), ∀vh ∈ Vh,

which gives for vh = uh
‖ uh ‖2h= (f, uh) ≤| f || uh | .

We have the discrete Poincaré inequality (see [21])

| uh |≤ c ‖ uh ‖h, ∀uh ∈ Vh, (31)

where c is independent of h. Therefore

‖ uh ‖2h≤ c | f |‖ uh ‖h,

and
‖ uh ‖2h≤ c2 | f |2,

that is to say
‖ yh + zh ‖2h≤ c2 | f |2 .

Thanks to (28) we have
‖ yh ‖2h + ‖ zh ‖2h≤ c | f |2,

and thus, thanks to (30)
| zh |2≤ ch2 | f |2,

where c is independent of h, hence the result.

4. Condition number of the matrix.

4.1. Mathematical setting.

We consider here two discretization meshes h0 and hd, hd = h0
2d
, d > 0. We associate

to these meshes the grids

R0 = Rh0 made of points (j1h0, j2h0, j3h0),

Rd = Rhd made of points (j1hd, j2hd, j3hd),

where j1, j2, j3 ∈ Z. Here R0 is the coarse grid and Rd the fine grid. We set, for
j = (j1, j2, j3) ∈ Z3,

Kj,d = (j1hd, (j1 + 1)hd)× (j2hd, (j2 + 1)hd)× (j3hd, (j3 + 1)hd).
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We denote by Vd the space of continuous real functions on Ω̄ that are Q1 (i.e. affine
with respect to x1, x2 and x3 separately) on each cube Kj,d ⊂ Ω and by Ud the set of
nodal points

Ud = Rd ∩ Ω̄.

Similarly we define the spaces V`, 0 ≤ ` ≤ d, and we observe that V0 ⊂ V1 ⊂ . . . ⊂ Vd.
Moreover, these spaces are endowed with the scalar products and norms induced by
L2 and H1. In this section, ((·, ·)) denotes the scalar product in H1 and || · || is the
corresponding norm:

(u, v) =
∫

Ω

u · vdx, | u |= (u, u)
1
2 ,

((u, v)) = (u, v) +
∫

Ω

∇u · ∇vdx, ‖ u ‖= ((u, u))
1
2 .

Since Vd−1 ⊂ Vd we can define a supplement Wd−1 of Vd−1 in Vd. We write

Vd = Vd−1 ⊕Wd−1,

where Wd−1 is the subspace of Vd consisting of the functions z ∈ Vd that vanish at the
coarse grid points, i.e.

z(M) = 0, ∀M ∈ Ud−1.

Since the functions of Vd are uniquely defined by their values at the nodal points on
Ud, every function u ∈ Vd can be uniquely written as the sum

u = y + z, y ∈ Vd−1, z ∈Wd−1, (32)

so that

y(M) = u(M), ∀M ∈ Ud−1, (33)

z(P ) = u(P )− y(P ), ∀P ∈ Ud\Ud−1. (34)

Let Fd be the set of all the cubes Kj,d. The cubes of Fd are obtained by dividing the
cubes of Fd−1 into eight equal cubes (see figure 1). Since y is affine along the edges of
K ∈ Fd−1, we have with (33) and (34) (see figure 1):
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z(P1) = u(P1)− 1
2

(u(M1) + u(M4)),

z(P2) = u(P2)− 1
2

(u(M1) + u(M2)),

z(P5) = u(P5)− 1
2

(u(M1) + u(M5)),

z(P3) = u(P3)− 1
4

(u(M1) + u(M2) + u(M3) + u(M4)),

z(P4) = u(P4)− 1
4

(u(M1) + u(M4) + u(M5) + u(M8)),

z(P6) = u(P6)− 1
4

(u(M1) + u(M2) + u(M5) + u(M6)),

z(P7) = u(P7)− 1
8

(u(M1) + u(M2) + u(M3) + u(M4) + u(M5) + u(M6)

+ u(M7) + u(M8)).

(35)

Hence the nodal values of z at the points Pi ∈ Ud\Ud−1 are the incremental values of
u as defined in Section 1.

We can reiterate the decomposition and write

Vd−1 = Vd−2 ⊕Wd−2, . . . ,

and finally

Vd = V0 ⊕W1 ⊕ · · · ⊕Wd−1. (36)

We define the linear interpolation operator r`, 0 ≤ ` ≤ d, which associates to any
continuous function u in Ω̄ the function r`u ∈ V` defined by its nodal values

r`u(M) = u(M), ∀M ∈ U`.
Of course, if u ∈ Vd, u = rdu, and we have if u ∈ Vd

u = rdu = r0u+
d∑
`=1

(r`u− r`−1u), (37)

which gives the decomposition of u corresponding to (36) since r0u ∈ V0 and r`u−r`−1u ∈
W`−1. Furthermore the (r`u − r`−1u)(x), x ∈ U`\U`−1, ` = 1, · · ·d, are the incremental
values of u at the different levels of discretization. If u ∈ Vd, we set

[u]2d =
d∑
`=1

∑
x∈U`\ U`−1

(r`u− r`−1u)(x) |2, (38)



22 MIN CHEN, ALAIN MIRANVILLE AND ROGER TEMAM

[[u]]2d =
∑
x∈U0

| r0u(x) |2 +[u]2d. (39)

Here [·]d is a semi-norm on Vd and [[·]]d is a norm. To a function u ∈ Vd, we associate
the step function ũ such that

ũ(x) = u(j1hd, j2hd, j3hd), ∀x ∈ Kj,d.

We then define the discrete H1−scalar product and norm:

((u, v))d =
∫

Ω

ũ(x) · ṽ(x)dx+
3∑
i=1

∫
Ω

∇i,hd ũ(x) · ∇i,hd ṽ(x)dx,

‖ u ‖d= [((u, u))d]
1
2 , ∀u, v ∈ Vd.

We now state the following result which will be proved in the next subsection:

Theorem 1: There exist two constants c1 and c2 that depend only on the shape of Ω
such that for every u ∈ Vd

c1hd
d3

(| ∇r0u |2 +[u]2d) ≤| ∇u |2≤ c2d(| ∇r0u |2 +|Ω| 13 [u]2d), (40)

c1hd
d3

(| ∇r0u |2+ | Ω |− 2
3 | r0u |2 +[u]2d) ≤ (| ∇u |2 + | Ω |− 2

3 | u |2)

≤ c2d(| ∇r0u |2 + | Ω | 13 [u]2d+ | Ω |−
2
3 | r0u |2).

(41)

4.2. Proof of Theorem 1.

We first establish the following result:

Lemma 2: There exist three constants c1, c2, c3 that depend only on the shape of Ω
such that

| u |L∞(Ω)≤
c1

h
1
2
d

`n

(
| Ω |
h3
d

)
| ∇u |, ∀u ∈ Vd ∩H1

0 (Ω), (42)

| u− ū |L∞(Ω)≤
c2

h
1
2
d

`n

(
| Ω |
h3
d

)
| ∇u |, ∀u ∈ Vd, (43)

| u |L∞(Ω)≤
c3

h
1
2
d

`n

(
| Ω |
h3
d

)
(| ∇u |2 + | Ω |−1| u |2)

1
2 , ∀u ∈ Vd, (44)
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where ū is the average of u on Ω and | Ω | is the volume of Ω.

Proof: If u ∈ H1
0 (Ω), then rdu ∈ Vd ∩H1

0 (Ω). Moreover we have

rdu(x) = u(A0) +
u(A1)− u(A0)

hd
x1 +

u(A7)− u(A0)
hd

x2 +
u(A3)− u(A0)

hd
x3

+
u(A4) + u(A0)− u(A1)− u(A7)

h2
d

x1x2 +
u(A2) + u(A0)− u(A1)− u(A3)

h2
d

x1x3

+
u(A6) + u(A0)− u(A3)− u(A7)

h2
d

x2x3

+
u(A1) + u(A3) + u(A5) + u(A7)− u(A0)− u(A2)− u(A4)− u(A6)

h3
d

x1x2x3,

(45)

on the cube K (see figure 3).

A A

A

A A

x

A23

5

1

A7

x3

A

x2

0

6

1

4

Figure 3. The cube K.

Therefore

∂rdu

∂x1
=(1− x2

hd
− x3

hd
+
x2x3

h2
d

)
u(A1)− u(A0)

hd
− (1− x3

hd
)
x2

hd

u(A7)− u(A4)
hd

− (1− x2

hd
)
x3

hd

u(A3)− u(A2)
hd

+
x2x3

h2
d

u(A5)− u(A6)
hd

,

(46)
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∂rdu

∂x2
=(1− x1

hd
− x3

hd
+
x1x3

h2
d

)
u(A7)− u(A0)

hd
− (1− x3

hd
)
x1

hd

u(A1)− u(A4)
hd

− (1− x1

hd
)
x3

hd

u(A3)− u(A6)
hd

+
x1x3

h2
d

u(A5)− u(A2)
hd

,

(47)

∂rdu

∂x3
=(1− x1

hd
− x2

hd
+
x1x2

h2
d

)
u(A3)− u(A0)

hd
− (1− x2

hd
)
x1

hd

u(A1)− u(A2)
hd

− (1− x1

hd
)
x2

hd

u(A7)− u(A6)
hd

+
x1x2

h2
d

u(A5)− u(A4)
hd

,

(48)

on the cube K ∈ Fd. Thus, if u ∈ Vd∫
K

| ∇u |3 dx ≤ c

hd
| u |L∞(Ω)

∫
K

| ∇u |2 dx, (49)

where c is a numerical constant. Furthermore, thanks to [8], Lemma 7.12 we have

| u |Lq(Ω)≤ cq
2
3 | Ω | 1q | u |W 1,3

0 (Ω), ∀q ≥ 3, (50)

where c is an absolute constant. Now, it is proved in [1] that

| u |L∞(Ω)≤ ch
−3
q

d | u |Lq(Ω), (51)

∀u ∈ Vd, where c is an absolute constant. We sum (49) for all K ∈ Fd and we obtain
thanks to (50) and (51)

| u |2L∞(Ω)≤
c

hd
q2 | Ω | 3q h−

9
q

d | ∇u |2 .

Taking q = `n( |Ω|
h3
d

), we find (42).
Now, thanks to [8], Lemma 7.16 we obtain

| u− ū |Lq(Ω)≤ cq
2
3 | Ω |

1
q | ∇u |L3(Ω), (52)

∀u ∈ Vd, ∀q ≥ 3, where c depends only on the shape of Ω, and we obtain (43) and (44)
as above. �

Inequalities (43) and (44) are also valid if we replace Ω by a cube K ∈ F`, | Ω | being
replaced by h3

` and |Ω|
h3
d

by 8d−`. In that case, (43) and (44) become

| u− ūK |L∞(K)≤
c

h
1
2
`

(d− `) | ∇u |L2(K), (53)
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| u |L∞(K)≤
c

h
1
2
`

(d− `)(| ∇u |2L2(K) +h−3
` | u |2L2(K))

1
2 . (54)

Now, if u ∈ Vd, we have

| ∇r`u |L3(K)≤ c′ | r`u− r`uK |L∞(K), (55)

where c′ depends only on the shape of K (i.e. of Ω), (55) being invariant by homothety.
Here ūK and r`uK are the average on K. More precisely, we have

| ∇(r`u) |L3(K)≤ c′Infα∈R | r`u− α |L∞(K), (56)

and thus for α = ūK

| ∇(r`u) |L3(K) ≤ c′ | r`u− ūK |L∞(K)≤ c′ | u− ūK |L∞(K),

since r`u agrees with u at the vertices of K. Therefore, thanks to (53) we obtain

| ∇(r`u) |L3(K)≤
c

h
1
2
`

(d− `) | ∇u |L2(K) .

Since

| ∇(r`u) |L2(K) ≤| K |
1
6 | ∇(r`u) |L3(K)≤ h

1
2
` | ∇(r`u) |L3(K),

we find

| ∇(r`u) |2L2(K)≤ c(d− `)2 | ∇u |2L2(K) . (57)

Moreover, if u ∈ Vd, we have

| r`u |2L2(K) ≤ h3
` | u |2L∞(K)≤ ( thanks to (54))

≤ ch2
` (d− `)2(| ∇u |2L2(K) +h−3

` | u |2L2(K)),

and thus

| r`u |2L2(K)≤ c(d− `)2(h2
` | ∇u |2L2(K) +h−1

` | u |2L2(K)). (58)

Summing (57) and (58) for K ∈ F` we then obtain:

Lemma 3: There exists a constant c that depends only on the shape of Ω such that for
every u ∈ Vd, 0 ≤ ` ≤ d

| ∇(r`u) |≤ c(d− `) | ∇u |, (59)
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| r`u |≤ c(d− `)(h2
` | ∇u |2 +h−1

` | u |2)
1
2 . (60)

We can now prove the following results:

Lemma 4: There exist two constants c and c′ that depend only on the shape of Ω such
that for every u ∈ Vd

chd[u]2d ≤
d∑
k=1

| ∇(rku− rk−1u) |2≤ c′h0[u]2d. (61)

Proof: We fix k, 1 ≤ k ≤ d. Let K be a cube of Fd−1 (see figure 1). Then, for every
continuous function ϕ that is Q1 on each of the eight cubes of Fd that are in K and that
vanish at the points Mi, we have

c
∑
i

| ϕ(Pi) |2≤| K |−
1
3 | ∇ϕ |2L2(K)≤ c′

∑
i

| ϕ(Pi) |2 . (62)

Indeed, | K |− 1
6 | ∇ϕ |L2(K) and (

∑
i | ϕ(Pi) |2)

1
2 are two norms on the space of such

functions. Moreover, (62) is invariant by homothety. Thus c and c′ depend only on the
shape of K (i.e. of Ω) and are independent of hk−1. Therefore, for every v ∈ Wk−1, we
have

c
∑

x∈Uk\Uk−1

| v(x) |2≤ h−1
k−1 | ∇v |

2
L2(K)≤ c′

∑
x∈Uk\Uk−1

| v(x) |2 .

We then obtain

c
∑

x∈Uk\Uk−1

| v(x) |2≤ h−1
d | ∇v |2L2(K) .

We now add these relations for K ∈ Fk−1, and then for k = 1, · · · , d, with v =
rku− rk−1u, and find

c[u]2d ≤ h−1
d

d∑
k=1

| ∇(rku− rk−1u) |2 .

Similarly
h−1

0 | ∇v |2L2(K)≤ c′
∑

x∈Uk\Uk−1

| v(x) |2,

hence

c′[u]2d ≥ h−1
0

d∑
k=1

| ∇(rku− rk−1u) |2 . �
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Lemma 5: There exists a constant c that depends only on the shape of Ω such that for
every u ∈ Vd

| u |≤ c(| r0u |2 + | Ω | [u]2d)
1
2 . (63)

Proof: Let u ∈ Vd. Then

u = rdu = r0u+
d∑
l=1

(rlu− rl−1u),

where rlu− rl−1u ∈Wl−1 ⊂ Vl. Thus

| u |≤| r0u | +
d∑
l=1

| rlu− rl−1u | . (64)

If v ∈ Vl, we have

| v |2=
∫

Ω

| v(x) |2 dx =
∑
K∈Fl

∫
K

v2dx.

Now, if K ∈ Fl, | v |L2(K) and (h3
l

∑
i | v(Ai) |2)

1
2 (see figure 3) are two norms that

are equivalent on the finite dimensional space consisting of the functions that are Q1 on
K. Therefore, there exist two constants c and c′ that depend only on the shape of Ω such
that

c(h3
l

∑
i

| v(Ai) |2)
1
2 ≤| v |L2(K)≤ c′(h3

l

∑
i

| v(Ai) |2)
1
2 , (65)

since (65) is invariant by homothety. Thus

| v |2L2(K) ≤ ch3
l

∑
i

| v(Ai) |2≤
c

8l
h3

0

∑
i

| v(Ai) |2≤
c

8l
| Ω |

∑
i

| v(Ai) |2 . (66)

We now sum the inequalities (66) for K ∈ Fl and obtain, since each vertex Ai belongs
to at most eight cubes

| v |2≤ 8c
8l
| Ω |

∑
x∈Ul

| v(x) |2, ∀v ∈ Vl. (67)

If v ∈Wl−1, then v(x) = 0, ∀x ∈ Ul−1, and therefore thanks to (67)

| v |2≤ c

8l
| Ω |

∑
x∈Ul\Ul−1

| v(x) |2, ∀v ∈Wl−1. (68)
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We set v = rlu− rl−1u in (68) and obtain thanks to (64)

| u | ≤| r0u | +c | Ω |
1
2

 d∑
l=1

1
(2
√

2)l

 ∑
x∈Ul\Ul−1

| (rlu− rl−1u)(x) |2


1
2


≤| r0u | +c | Ω |
1
2

(
d∑
l=1

1
8l

) 1
2
 d∑
l=1

∑
x∈Ul\Ul−1

| (rlu− rl−1u) (x) |2


1
2

≤| r0u | +c | Ω |
1
2 [u]d. �

We can now prove Theorem 1. Thanks to Lemma 4, we have

| ∇(r0u) |2 +[u]2d ≤
c

hd

(
| ∇(r0u) |2 +

d∑
k=1

| ∇(rku− rk−1u) |2
)

≤ c

hd

(
| ∇(r0u) |2 +2

d∑
k=1

(
| ∇rku |2 + | ∇rk−1u |2

))

≤ 4c
hd

d∑
k=0

| ∇rku |2 .

Therefore, thanks to (59)

| ∇r0u |2 +[u]2d ≤
c

hd

d∑
l=1

(d− l)2 | ∇u |2≤ cd3

hd
| ∇u |2 .

We now take ` = 0 in (60) and obtain

| r0u |2≤ cd2(h2
0 | ∇u |2 +h−1

0 | u |2). (69)

Since h3
0 ≤| Ω |,

| Ω |
−2
3 | r0u |2≤ cd2(| ∇u |2 +h−1

0 | Ω |
−2
3 | u |2),

and thus

| ∇r0u |2 + | Ω |
−2
3 | r0u |2 +[u]2d ≤

cd3

hd
| ∇u |2 +cd2(| ∇u |2 +h−1

0 | Ω |
−2
3 | u |2)

≤ cd3

hd
(| ∇u |2 + | Ω |

−2
3 | u |2).
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We have then proved the first inequalities in (40) and (41). Now if u ∈ Vd, we write

u =
d∑
l=0

vl,

where v0 = r0u, vl = rlu− rl−1u, 1 ≤ l ≤ d. We obtain

| ∇u |2=|
d∑
l=0

∇vl |2≤
d∑

j,k=0

(∇vj ,∇vk) ≤ (d+ 1)
d∑
l=0

| ∇vl |2≤ 2d
d∑
l=0

| ∇vl |2 .

Therefore, thanks to Lemma 4

| ∇u |2≤ cd(h0[u]2d+ | ∇r0u |2). (70)

The second inequality in (40) is then satisfied. Finally, if u ∈ Vd we have

| ∇u |2 + | Ω |
−2
3 | u |2 ≤ cd(| ∇r0u |2 +h0[u]2d)+ | Ω |

−2
3 | u |2

≤ ( Thanks to Lemma 5)

≤ cd(| ∇r0u |2 +h0[u]2d) + c(| Ω |
−2
3 | r0u |2 + | Ω | 13 [u]2d)

≤ cd(| ∇r0u |2 + | Ω | 13 [u]2d+ | Ω |−
2
3 | r0u |2),

which proves the second inequality in (41).

4.3. Application to incremental unknowns.

4.3.1 Preliminary results.

Lemma 6: For every u ∈ Vd, we have
√

2
6
| ∇dũ |≤| ∇u |, (71)

where ∇du = (∇1,hdu,∇2,hdu,∇3,hdu).

Proof: In order to prove (71), it suffices to prove

1
18

∫
K

| ∇dũ |2 dx ≤
∫
K

| ∇u |2 dx,

where K is a cube of Fd. We assume for simplicity that K = (0, hd)3. We then have (see
figure 3):
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∇dũ =



1
hd

(u(A1)− u(A0))

1
hd

(u(A7)− u(A0))

1
hd

(u(A3)− u(A0))

 ,

and

∫
K

| ∇dũ |2 dx = hd[(u(A1)− u(A0))2 + (u(A7)− u(A0))2 + (u(A3)− u(A0))2].

Furthermore, thanks to (46), (47) and (48) we have

∇u =



(
1− x2

hd
− x3

hd
+
x2x3

h2
d

)
α1

hd
−
(

1− x3

hd

)
x2

hd

β1

hd
−
(

1− x2

hd

)
x3

hd

γ1

hd
+
x2x3

h2
d

δ1
hd(

1− x1

hd
− x3

hd
+
x1x3

h2
d

)
α2

hd
−
(

1− x3

hd

)
x1

hd

β2

hd
−
(

1− x2

hd

)
x3

hd

γ2

hd
+
x1x3

h2
d

δ2
hd(

1− x1

hd
− x2

hd
+
x1x2

h2
d

)
α3

hd
−
(

1− x2

hd

)
x1

hd

β3

hd
−
(

1− x1

hd

)
x2

hd

γ3

hd
+
x1x2

h2
d

δ3
hd


,

where

α1 = u(A1)− u(A0), α2 = u(A7)− u(A0), α3 = u(A3)− u(A0),

β1 = u(A7)− u(A4), β2 = u(A1)− u(A4), β3 = u(A1)− u(A2),

γ1 = u(A3)− u(A2), γ2 = u(A3)− u(A6), γ3 = u(A7)− u(A6),

δ1 = u(A5)− u(A6), δ2 = u(A5)− u(A2), δ3 = u(A5)− u(A4).
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Therefore∫
K

| ∇dũ |2 dx = hd(α2
1 + α2

2 + α2
3),∫

K

| ∇u |2 dx =
hd
9

3∑
i=1

(
α2
i + β2

i + γ2
i + δ2

i − αiβi − αiγi +
1
2
αiδi

+
1
2
βiγi − βiδi − γiδi

)
=
hd
9

3∑
i=1

(
1
2

(
αi − βi − γi +

δi
2

)2

+
1
2
α2
i +

1
2
β2
i +

1
2
γ2
i

+
3
4
δ2
i −

1
2
βiδi −

1
2
γiδi −

1
2
βiγi

)
≥ (thanks to Cauchy-Schwarz inequality)

≥ hd
18

((
αi − βi − γi +

δi
2

)2

+ α2
i +

δ2
i

2

)
.

(72)

We then deduce (71). �
In order to establish the inverse inequality of (71), we introduce the extended norms

| ∇ei,dũ |=
(∫

Ω∪(Ω+hdei)

| ∇i,hd ũ |
2 dx

) 1
2

,

|∇edũ| =
(
|∇e1,dũ|2 + |∇e2,dũ|2

)1/2
,

Ω∗d = (0, 1 + hd)3.

As in [3] (Lemma 4.2 and Lemma 4.3) we can prove the following results:

Lemma 7: There exist two numerical constants c1 and c2 such that for every u ∈ Vd

c1 | ∇edũ |≤| ∇u |≤ c2 | ∇edũ | . (73)

Lemma 8: There exist two constants c1 and c2 that depend only on the shape of Ω such
that for every u ∈ Vd

c1

(∫
Ω∗d

| ũ |2 dx
) 1

2

≤| u |≤ c2

(∫
Ω∗d

| ũ |2 dx
) 1

2

. (74)

We note that for functions vanishing on ∂Ω, the extended domains are not needed and
|∇edũ| = |∇dũ|. Thus, the left inequality in (73) is replaced by (71), and for the second
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inequality in (73), we can replace ∇edũ by ∇dũ. We then have the inverse inequality of
(71).

4.3.2. Incremental unknowns for boundary value problems.

The discretization of (1)-(2) by the usual finite differences scheme leads to the classical
linear problem

AdUd = bd. (75)

We actually have several systems

AlUl = bl, l = 0, · · · , d, (76)

corresponding to the different levels of discretization, but we are here interested in the
resolution of (75). At each level l, we consider the set Ūl of incremental unknowns which
consists of the following:

• the set properly ordered (see Section 1) Y l = Y0 of the approximate nodal values of
u at the coarse grid,

• the set properly ordered (see Section 1) Zj of the incremental unknowns at level j.

Thus

Ūl =

(
Y l

Zl

)
, Zl =


Z1

...
Zl

 .

We can pass from Ul to Ūl by using a transformation matrix Sl and we obtain the systems

ĀlŪl = b̄l, 0 ≤ l ≤ d. (77)

If κ(Ād) is the condition number of Ād, then we have

κ(Ād) = λ̄(Ād)/λ(Ād),

where λ̄(Ād) is the largest eigenvalue of Ād and λ(Ād) the smallest eigenvalue. As in [3]
we have

< ĀdŪd, Ūd > =
∫

Ω

| ∇dũd |2 dx ≥ c
∫

Ω

| ∇ud |2 dx ≥ (thanks to (40))

≥ chd
d3

(| ∇r0ud |2 +[ud]2d) ≥ (thanks to (71))

≥ chd
d3

(| ∇r0ũd |2 +[ud]2d) ≥
chd
d3

min (λ(A0), 1) < Ūd, Ūd > .
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Therefore
λ(Ād) ≥

chd
d3

min (λ(A0), 1).

Similarly we obtain
λ̄(Ād) ≤ cd max (λ̄(A0), 1).

Thus

κ(Ād) ≤ c
d4

hd

max (λ̄(A0), 1)
min (λ(A0), 1)

. (78)

We set h = hd. We then deduce that κ(Ād) is at most of order 1
h(lnh)4, whereas κ(Ad)

is of order 1
h2 , hence an improvement in the case of incremental unknowns.

Remark 1: As in [3], we can consider more general domains or operators and obtain
similar results. Moreover, thanks to (41), Lemma 7 and 8, we can obtain similar results
in the case of Neumann boundary conditions.

5. Numerical results and other types of Incremental Unknowns.
In this section, we shall present the numerical results from the computation of κ(Ād)

introduced in earlier sections. We then introduce another type of incremental unknowns
and conjecture the behavior of the condition number κ(Ād) through numerical compu-
tations.

The incremental unknowns introduced in Section 1 were referred to as the second-
order incremental unknowns in [4] since the Taylor’s expansion of zα,β,γ at (αh, βh, γh)
is of order h2. In Figure 4 and 5, κ(Ād) and κ(Ād)/(h−1| log2(h)|) are plotted against
d respectively with h = hd = 1/2d being the mesh size and Ω = (0, 1)3. The graph
in Figure 4(a) shows that κ(Ād) is growing with d and the graph in Figure 4(b) shows
that κ(Ād)/(h−1| log2(h)|) is almost a constant, which means that κ(Ād) is of order
h−1| log2(h)| which confirms our theoretical results obtained in the previous sections.

Inspired by the idea of the second-order incremental unknowns and the first-order
incremental unknowns introduced in [4] for the two-dimensional case, we can introduce
third-order or even higher order incremental unknowns. For h = 1/(2N), we let as for
the second-order incremental unknowns:

y2i,2j,2k = u2i,2j,2k, for i = 0, 1, . . . , N.

For a mesh point A0 = (α, β, γ) which is not a coarse grid point, there exist three distinct
coarse grid points A1, A2, A3 on a line and dist(A1, A2) = dist(A2, A3) = 2λh, A0 being
the midpoint of A1A2, and 3 dist(A0, A1) = 3 dist(A0, A2) = dist(A0, A3) = 3λh, where
λ = 1 or

√
2 correspond to the cases where A1A2A3 is a horizontal\ vertical line segment

or a diagonal line segment respectively. Let

zα,β,γ = uα,β,γ − (
3
8
uA1 +

3
4
uA2 −

1
8
uA3),
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Figure 4. Condition numbers of the second-order IU in the three di-
mensional case.

for α or β or γ odd, A1, A2, and A3 as described. The Taylor’s expansion of zα,β,γ at
(αh, βh, γh) is of order h3. Numerical results presented in Figure 5 make us believe that
κ(Ād) in this case is also of order h−1| log2(h)|.

Many other types of incremental unknowns can be introduced to suit certain specific
requirements from the original physical problem or the design of the numerical schemes.
In [5], we have used the wavelet-like incremental unknowns which have the L2 orthogo-
nality property between different levels of mesh to design numerical schemes which have
significantly improved stability when compared to the existing schemes.
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