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Abstract. In this article, we consider the two-dimensional dissipative Boussi-
nesq systems which model surface waves in three space dimensions. The long
time asymptotics of the solutions for a large class of such systems are obtained
rigorously for small initial data.

1. Introduction.

1.1. Damped Boussinesq systems. There are three important factors associ-
ated with wave propagation: dispersion, dissipation and nonlinearity. In many real
physical situations, it is observed that the effect of damping (which is always present
in reality) is at least comparable to the effects of dispersion and nonlinearity [5].
In such cases, a damping term (or terms) should be included in the equation. Fol-
lowing the pioneering work of Kakutani and Matsuuchi ([13]), Dias-Dutykh [10],
Liu-Orfila [16] and H. Le Meur [15] have derived dissipation terms, which involve
local and non-local terms, for Boussinesq systems under the small amplitude and
long wavelength assumptions from Navier-Stokes equations.

In this article, attention is given to the two-dimensional Boussinesq systems,
derived in [2], for three-dimensional water waves supplemented with various local
dissipative terms. Similar to the corresponding one-dimensional dissipative Boussi-
nesq systems, studied in [7], these systems are evolution partial differential equations
involving two unknown functions, the vertical deviation of the water surface with
respect to its equilibrium, η(x, t), and the horizontal velocity of the fluid, which is
a two dimensional vector field, at certain depth of the water, u(x, t). We address
here two separate cases, one is when the dissipation acts both on η and u (strong
dissipation) and the other is when the dissipation acts only on u (weak dissipation).
The study of nonlocal dissipative terms will be carried out in a separate paper.
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1.2. A class of dissipative Boussinesq system. Without dissipative mecha-
nism, the four parameter family of Boussinesq systems derived in [2, 3, 8] reads

ηt + ∇ · u + ∇ · ηu + a∆∇ · u− b∆ηt = 0,

ut + ∇η +
1

2
∇|u|2 + c∆∇η − d∆ut = 0,

(1.1)

where u(x, t) is the horizontal velocity of the fluid, a mapping from R2
x
× Rt into

R2, and η(x, t) is a scalar field from R2
x×Rt into R. For the systems to model water

wave with no surface tension, the constants a, b, c, d must satisfy the consistent
conditions (see [2] for detail)

a+ b+ c+ d =
1

3
and c+ d ≥ 0. (C0)

Furthermore, in order for the systems to be wellposed for the initial value problems,
it is relevant to assume either

b ≥ 0, d ≥ 0, a ≤ 0, c ≤ 0, (C1)

or

b ≥ 0, d ≥ 0, a = c > 0, (C2)

according to the results presented in [1] and [2]. Therefore, our investigation is
going to be restricted to the cases where a, b, c, d satisfy (C0)-(C1) or (C0)-(C2).

We now introduce the dissipative mechanisms interested in this article. The
systems under consideration are of the form

ηt + ∇ · u + ∇ · ηu + a∆∇ · u− b∆ηt = ν∆η,

ut + ∇η +
1

2
∇|u|2 + c∆∇η − d∆ut = ∆u,

(1.2)

where ν = 1 or ν = 0. The case with ν = 1 will be called complete dissipation and
the case with ν = 0 will be called partial dissipation.

The following decay results

‖v(x, t)‖L2
x

≤ C(1 + t)−1/2 and ‖v(x, t)‖L∞
x

≤ C(1 + t)−1, (1.3)

are going to be proved rigorously for some of the systems in (1.2) where v is related
to (η,u) or one of its derivative, up to a suitable change of variables. These decay
rate are faster those that in one-dimensional case, which are expected since the
solution of the corresponding heat equation decays faster in two-dimensional case.

The proof will follow the method presented in our previous article [7] where the
corresponding one-dimensional systems were investigated. We begin with analyzing
the linearized system and then extend the results to the nonlinear system for small
initial data. It is worth to note that if we use the notations in [12] which classify dis-
sipative systems accordingly to the decay properties, our two-dimensional systems
belong to the class of weak nonlinearities (this classification was also introduced in
[9]; see also [4]), namely the same decay rate for solutions to systems with or with-
out nonlinear terms. It is worth to mention that the general methods presented in
[12] do not work here straightforwardly (see Remark 2.5 for details) and our proof
will follow the guidelines in [7].

2. Linear system.
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2.1. Preliminary computations. Following [2] and [7], we introduce the Fourier
multipliers

ω1 =
1 − a|ξ|2
1 + b|ξ|2 , ω2 =

1 − c|ξ|2
1 + d|ξ|2 ,

α =
|ξ|2

1 + b|ξ|2 and ε =
|ξ|2

1 + d|ξ|2 ,

where ξ = (ξ1, ξ2) is the Fourier variable associated to x and |ξ| is the Euclidean
norm of ξ.

Since a, b, c, d satisfy (C1) or (C2), ω1ω2 is non-negative and we denote

Ĥ =

(
ω1

ω2

)1/2

and σ = (ω1ω2)
1/2,

with the conventional notation 0
0 = 1.

Remark 2.1. For a system satisfying (C2) assumption, ω1 and ω2 do change signs,
but ω1ω2 ≥ 0.

By recalling the definition

order(H) = {a} + {d} − {b} − {c}, where {a} = 1 iff a 6= 0 and {0} = 0,

it turns out that H behaves like a Bessel potential of order m = order(H), i.e like
(Id − ∆)

m
2 . In the sequel we shall use without notice that H is an isomorphism

from Wm,p(R2) into Lp(R2), if 1 < p < +∞ (see Theorem 5.3.3 in [17]).
For the linearized system of (1.2), it is natural to study it in Fourier variables

which reads

(1 + b|ξ|2)η̂t + ν|ξ|2η̂ + i(1 − a|ξ|2)ξ · û = 0,

(1 + d|ξ|2)ût + |ξ|2û + i(1 − c|ξ|2)η̂ξ = 0.
(2.1)

2.2. Helmholtz decomposition. A well-known fact about vector fields in R2 is
that they split into a potential part and a rotating part. Let ξ⊥ = (−ξ2, ξ1), one
has, for ξ 6= 0

û = q̂
ξ

|ξ| + ψ̂
ξ⊥

|ξ| , (2.2)

where q̂ and ψ̂ are scalar functions. Using this new set of variables, the system (2.1)
reads

(1 + b|ξ|2)η̂t + ν|ξ|2η̂ + i(1 − a|ξ|2)|ξ|q̂ = 0,

(1 + d|ξ|2)q̂t + |ξ|2q̂ + i(1 − c|ξ|2)|ξ| η̂ = 0,

(1 + d|ξ|2)ψ̂t + |ξ|2ψ̂ = 0.

(2.3)

Therefore, for the linear system, the dynamic decouples into a “rotating” wave ψ
that decays to 0 and a problem similar to the one in one-dimensional case which has
been studied (for the spectral analysis) in [7]. The coupling between ψ and other
variables will show up when the nonlinear terms are included.

Following the notations of [7] and [1], the balanced system that is equivalent to
(2.3) reads

η̂t + ναη̂ + isgn(ω1)σ|ξ|Ĥq = 0,

Ĥqt + εĤq + isgn(ω1)σ|ξ|η̂ = 0,

Ĥψt + εĤψ = 0,

(2.4)
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and we now study the decay of the rotating part ψ and the two coupled equations
separately. The generic constant C is used which may change its value in each
appearance.

2.3. Decay of the rotating wave.

Lemma 2.2. Assume that ψ0 ∈ L1(R2) ∩ L2(R2), then

||ψ(t)||L2
x

≤ C(1 + t)−1/2.

Proof. For d ≥ 0,

||ψ(t)||2L2
x

=

∫

R2

|ψ̂0|2e−2t |ξ|2
1+d|ξ|2 dξ

=

∫

|ξ|≤1

|ψ̂0|2e−2t |ξ|2
1+d|ξ|2 dξ +

∫

|ξ|>1

|ψ̂0|2e−2t |ξ|2
1+d|ξ|2 dξ

≤ ||ψ̂0||2L∞
ξ

∫

R2

e−2t |ξ|2
1+d dξ + ||ψ̂0||2L2

ξ
e−βt

≤ C‖ψ0‖2
L1

x

t−1 + C||ψ0||2L2
x

e−βt ≤ C(ψ0)t
−1,

(2.5)

where β = 2
1+d , which yields the conclusion. �

2.4. Decay of η and q. Let the matrix

A(ξ) =

(
να i sgn(ω1)|ξ|σ

i sgn(ω1)|ξ|σ ε

)
,

the decay rate of the linear operator ||e−tA|| as a function of |ξ| is studied in [7].
The relevant results (Propositions 1-4) are recalled here, where

order(σ) = {a} + {c} − {b} − {d}.
Lemma 2.3. If order(σ) ≥ 1, and either (ν = 1) or (ν = 0 and d = 0), then there
exist constants C > 0 and β > 0 such that

||e−tA|| ≤ Ce−βt|ξ|2 .

Hence the system behaves like KdV-Burgers equation for t large.

Lemma 2.4. If b, d > 0 (the corresponding systems were called weakly dispersive
systems in [2]) and ν = 1, then there exist constants C > 0 and β > 0 such that

||e−tA|| ≤ Ce
−βt |ξ|2

1+|ξ|2 .

Hence the system behaves like BBM-Burgers equation for t large.

Remark 2.5. For complete results concerning this linear system according to the
parameters ν, a, b, c, d we refer to [7]. It is worth to remark that some of our results
here overlap with the results for systems in [12] and some of them do not. The
results in [12] are proved under the assumptions that the matrix A(ξ), where A

is the linear operator in (2.1) when it is written in the form of ut + Au = 0,
is diagonalisable, and that the norms of the eigenprojectors Pj(ξ) and their first
derivatives are bounded as functions of |ξ|. For our systems there are a broad class
of parameters a, b, c, d such that the matrix A(ξ) has a double eigenvalue for some
values ξ0 6= 0. Since A(ξ) is not a scalar matrix, when ξ converges towards ξ0 the
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norm of the eigenprojectors blows up. This can be seen more clearly using a simple
case with two equations.

Let A(ξ) be a 2×2 matrix that depends on ξ. Assume that A(ξ) has two different
eigenvalues except at ξ = ξ0 and assume that A(ξ0) is not a scalar matrix. For ξ 6=
ξ0 denote the eigenvectors by e1 and e2, where (e1, e2) is a basis, ‖e1‖ = ‖e2‖ = 1
and e1.e2 = cos θ, where θ is the angle between e1 and e2. Then the eigenprojector
P1 is

P1(xe1 + ye2) = xe1,

and

‖P1‖2 = sup
(x,y) 6=(0,0)

|x|2
(x2 + y2 + 2xy cos θ)

=
(

inf
t=y/x,t6=0

(1 + t2 + 2t cos θ)
)−1

=
1

sin2 θ
.

Therefore, if ξ → ξ0, then both e1 and e2 converge to the unique eigenvector of
norm 1 of A(ξ0) (up to a multiplication by −1), and θ → 0.

3. Decay rate for the nonlinear system. We now consider the full nonlinear
system which reads




η

Ĥq

Ĥψ




t

+

(
A(ξ) 0

0 ε

) 


η

Ĥq

Ĥψ


 = −|ξ|




1
1+b|ξ|2

iξ
|ξ| · η̂u

bH
1+d|ξ|2

i
2 |̂u|2

0


 . (3.1)

3.1. A general theorem. Consider a nonlinear evolution equation that reads

vt + Lv = F (v) (3.2)

where v(x, t) maps R2 × R into Rn, L is a linear unbounded operator and F (v)
is a bilinear operator that might involves some derivatives of v (actually F (v) is
a convection term; see assumption (3.4) below) and has the structure as in (3.1),
namely the last element is zero. Let S(t) = e−Lt which is the linear semi-group and

denote its symbol as Ŝ(t, ξ), namely y = S(t)y0 if and only if ŷ = Ŝ(t, ξ)ŷ0 in the

Fourier space. In this section, Ŝ(t, ξ) is in the form of

Ŝ(t, ξ) =

(
e−A(ξ)t 0

0 e−εt

)
.

Then the following theorem is valid.

Theorem 3.1. Assume that there exist δ > 0 (δ = +∞ is allowed) and β > 0 such
that

‖e−A(ξ)t‖ ≤
{
Ce−βt|ξ|2 if |ξ| < δ,

Ce−βt if |ξ| ≥ δ.
(3.3)

Assume that the nonlinear operator satisfies

|F̂ (v)| ≤ C|ξ| |B̂(v)| (3.4)

where B is a bilinear operator that satisfies, if Qδ is the projector onto the large-
frequencies {|ξ| > δ} and Pδ = Id −Qδ the complementary projector,

||PδB(v)||L2
x

+ || |ξ|B̂(v)||
L

4
3
{|ξ|≥δ}

≤ C||v||2L4
x

,

||PδB(v)||
L

4
3
x

+ ||QδB(v)||H1
x

≤ C||v||L2
x

||v||L4
x

,
(3.5)
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then for initial data v(0) in L1(R2) ∩ L2(R2) with small L2(R2) norm, and such
that v̂0 is in L1

ξ(R
2) with small norm if δ 6= +∞, there exists a solution of (3.2)

that satisfies the decay property

||v(t)||L2(R2) ≤ C(1 + t)−
1
2 . (3.6)

Remark 3.2. For the assumption in (3.5), it would be more natural to have all
the assumptions in physical variable x. Unfortunately we had to assume a bound

for a quantity in L
4
3

ξ -norm, that is stronger than the “natural assumption” using

L4
x
-norm since

||QδB(v)||W 1,4
x

≤ C|| |ξ|B̂(v)||
L

4
3
{|ξ|≥δ}

Remark 3.3. Our method is indebted to the famous so called Kato’s method for
solving initial-value-problem of semi-linear partial differential equations in the “crit-
ical case”. Following Kato’s method (see [11], [14]), we first construct a solu-
tion using a fixed point argument in the class of functions Cb([0,+∞), L2(R2)) ∩
C((0,+∞), L4(R2)), and then prove the decay estimate.

Proof. The proof is divided into two steps. The first step is devoted to prove
that if v0 is small enough in L2(R2), and v̂0 is in L1(R2

ξ) and with small norm if

δ 6= +∞, then there exists a unique solution of (3.2) in a small ball of the Banach

space E whose norm is ||v||E = supt>0(t
1
4 ||v(t)||L4(R2)).

We first write (3.2) in its Duhamel’s form that reads

v(t) = S(t)v0 +

∫ t

0

S(t− s)F (v(s))ds. (3.7)

The analysis of the linear operator starts by recalling that the inverse Fourier trans-

form F−1 is a bounded mapping from L
4
3

ξ into L4
x (this is valid by noticing first

that the inverse Fourier transform maps L1
ξ ∩ L2

ξ into L∞
x

∩ L2
x

and then applying

the Riesz-Thorin interpolation theorem), and denoting v0 = (u0, w0)
T ,

||S(t)v0||L4
x

≤ C||e−A(ξ)tû0||
L

4
3
ξ

+ C||F−1(e−εtŵ0)||L4
x

. (3.8)

The first integral on the right-hand side of (3.8) can be split into two parts according
to the magnitudes of the frequencies. For small frequency part, Hölder inequality

‖fg‖L1
≤ ‖f‖Lp‖g‖Lq ,

1

p
+

1

q
= 1, 1 ≤ p, q ≤ +∞

and Plancherel theorem yields
∫

|ξ|<δ

|e−A(ξ)tû0|
4
3 dξ ≤ C

( ∫

|ξ|<δ

e−4βt|ξ|2dξ
) 1

3 ||û0||
4
3

L2
ξ

≤ Ct−
1
3 ||u0||

4
3

L2
x

.

(3.9)

For large frequency part, using (3.3) and interpolation inequality

‖u‖Lr ≤ ‖u‖θ
Ls
‖u‖1−θ

Lt
,

1

r
=
θ

s
+

1 − θ

t
, 1 ≤ s ≤ r ≤ t ≤ +∞

yields
∫

|ξ|≥δ

|e−A(ξ)tû0|
4
3 dξ ≤ Ce−

4
3
βt||û0||

4
3

L
4
3
ξ

≤ Ce−
4
3
βt||û0||

2
3

L1
ξ

||u0||
2
3

L2
x

. (3.10)
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Therefore, by combining (3.9)-(3.10), one obtains for t large,

||e−A(ξ)tû0||L4/3

ξ

≤




Ct−

1
4 ||u0||

1
2

L2
x

(||u0||
1
2

L2
x

+ ||û0||
1
2

L1
ξ

) when δ < +∞,

Ct−
1
4 ‖u0‖L2

x

when δ = +∞.
(3.11)

For the second integral on the right-hand-side of (3.8), from Lemma 2.2, we have

||F−1(e−εtŵ0)||L4
x

≤ C(1 + t)−
1
4 . (3.12)

Then, for a small γ that will be chosen subsequently, if v0 is in L2(R2
x)∩L1(R2

x)
with small L2-norm and such that v̂0 is in L1

ξ(R
2) with small norm if δ 6= +∞, then

from (3.8)-(3.11)-(3.12)

sup
t>0

(t
1
4 ||S(t)v0||L4

x

) ≤ γ. (3.13)

The boundedness of ||e−εtŵ0||L4/3

ξ

which is stronger than (3.12) will be useful

in the proof of the decay rate with L∞-norm. It is given here for convenience.
With exactly the same proof, where d = 0 corresponding to δ = +∞ and d > 0
corresponds to δ < +∞, it shows

||e−εtŵ0||L4/3

ξ

≤




Ct−

1
4 ||w0||

1
2

L2
x

(||w0||
1
2

L2
x

+ ||ŵ0||
1
2

L1
ξ

) when d 6= 0,

Ct−
1
4 ‖w0‖L2

x

when d = 0.
(3.14)

We now move to the nonlinear estimate. We first split the norm into small and
large frequency parts as follows

||
∫ t

0

S(t− s)F (v(s))ds||L4
x

≤ ||
∫ t

0

S(t− s)PδF (v(s))ds||L4
x

+ ||
∫ t

0

S(t− s)QδF (v(s))ds||L4
x

≤ C

∫ t

0

||Ŝ(t− s) ̂PδF (v(s))||
L

4
3
ξ

ds+ C

∫ t

0

||Ŝ(t− s) ̂QδF (v(s))||
L

4
3
ξ

ds.

(3.15)

Notice that the last element in F is zero and therefore

|Ŝ(t− s)F̂ (v(s))| ≤ C‖e−A(ξ)t‖ |F̂ (v(s))|.

For the small-frequency part, using (3.3), (3.4), Hölder inequality, Plancherel The-
orem and (3.5), one obtains
∫

{|ξ|<δ}

|Ŝ(t− s) ̂F (v(s))| 43 dξ ≤ C

∫

{|ξ|<δ}

e−
4
3

β(t−s)|ξ|2 |ξ|4/3|B̂(v)| 43 dξ

≤ C
(∫

ξ

e−4β(t−s)|ξ|2 |ξ|4dξ
) 1

3 ||PδB̂(v)||
4
3

L2
ξ

≤ C(t− s)−1||PδB(v)||
4
3

L2
x

≤ C(t− s)−1||v(s)||
8
3

L4
x

.

(3.16)

For the large frequency part, due to (3.3), (3.4) and (3.5)

‖Ŝ(t− s)Q̂δF (v)‖
L

4
3
ξ

≤ Ce−β(t−s)‖ |ξ|B̂(v)‖
L

4
3
ξ

(|ξ|>δ)
≤ e−β(t−s)||v(s)||2L4

x

. (3.17)
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Therefore, since e−β(t−s) ≤ C(t − s)−
3
4 for t − s > 0, we infer from (3.15), (3.16)

and (3.17) that

||
∫ t

0

S(t− s)F (v(s))ds||L4
x

≤
∫ t

0

C

(t− s)
3
4

||v(s)||2L4
x

ds

≤ C( sup
0<s<t

s
1
4 ||v(s)||L4

x

)2
∫ t

0

ds

s
1
2 (t− s)

3
4

= Ct−
1
4 ( sup

0<s<t
s

1
4 ||v(s)||L4

x

)2.

(3.18)

We then infer from (3.7), (3.13) and (3.18) that

( sup
0<s<t

s
1
4 ||v(s)||L4

x

) ≤ γ + C( sup
0<s<t

s
1
4 ||v(s)||L4

x

)2. (3.19)

Let M(t) = sup0<s<t{s
1
4 ||v(s)||L4

x

}, (3.19) implies that

CM(t)2 −M(t) + γ ≤ 0

for any t. Using the facts that M(0) = 0 and M(t) is continuous nondecreasing
function with respect to t, one obtains M(t) is bounded, i.e.

sup
0<s<t

s
1
4 ||v(s)||L4

x

≤ 2γ (3.20)

if the two roots of the quadratic form Cx2 − x + γ = 0 are real and positive
0 < r1 < r2, where r1 ≤ 2γ. Therefore if γ is small enough (i.e γ < 1

4C ), the

mapping T (v) = S(t)v0 +
∫ t

0 S(t − s)F (v(s))ds maps the ball of radius r1 in E

into itself. The proof for showing T is a contraction is similar and the Banach fixed
point theorem applies and therefore these exists a unique solution in E.

Remark 3.4. In fact, using (3.14), one can prove under the additional condition

v̂0 is in L1
ξ(R

2) with small norm when d > 0, that t
1
4 ||v̂||

L
4
3
ξ

is bounded by 2γ which

is stronger than (3.20).

We now move to the second step of the proof. We prove that the solution defined
in the previous step satisfies the desired L2 decay estimate (3.6). The estimate on
the linear term reads, due to Plancherel Theorem

||Ŝ(t, ξ)v̂0||2L2
ξ
≤ C

∫

{|ξ|<δ}

e−2βt|ξ|2 |v̂0|2dξ + C

∫

{|ξ|≥δ}

e−2βt|v̂0|2dξ

≤ C(t−1||v0||2L1
x

+ e−2βt||v̂0||2L2
ξ
) ≤ C(v0)t

−1.

(3.21)

The estimate on the nonlinear term starts by observing

||
∫ t

0

S(t− s)F (v(s))ds||L2
x

≤ C

∫ t

0

||Ŝ(t− s) ̂F (v(s))||L2
ξ
ds. (3.22)

We split the norm into small frequency part and large frequency part. On the small
frequency part, due to (3.4), (3.3) and (3.5)∫

{|ξ|<δ}

|Ŝ(t− s) ̂F (v(s))|2dξ ≤ C(

∫

ξ

e−4β(t−s)|ξ|2 |ξ|4dξ)
1
2 ||P̂δB(v)||2L4

ξ

≤ C(t− s)−
3
2 ||v(s)||L4

x

||v(s)||L2
x

.

(3.23)

Similarly, on the large frequency part,∫

{|ξ|≥δ}

|Ŝ(t− s) ̂F (v(s))|2dξ ≤ Ce−2β(t−s)

∫

{|ξ|≥δ}

|ξ|2|B̂(v)|2dξ

≤ Ce−2β(t−s)||v(s)||L4
x

||v(s)||L2
x

.

(3.24)
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We then conclude, by using e−2β(t−s) ≤ C(t− s)−
3
4 , that

||
∫ t

0

S(t− s)F (v(s))ds||L2
x

≤
∫ t

0

C

(t− s)
3
4

||v(s)||L4
x

||v(s)||L2
x

ds

≤ C(sup
s>0

s
1
4 ||v(s)||L4

x

)(sup
s>0

s
1
2 ||v(s)||L2

x

)

∫ t

0

ds

s
3
4 (t− s)

3
4

≤ C(sup
s>0

s
1
4 ||v(s)||L4

x

)(sup
s>0

s
1
2 ||v(s)||L2

x

)t−1/2.

(3.25)

Therefore, due to (3.7)-(3.21)-(3.20)-(3.25)

t
1
2 ||v(t)||L2

x

≤ C(v0) + Cγ(sup
s>0

s
1
2 ||v(s)||L2

x

). (3.26)

Then, if γ is small enough, by moving (sups>0 s
1
2 ||v(s)||L2

x

) to the left hand side of
(3.26), the proof is completed. �

3.2. Application to KdV-Burgers-type systems. A system is called KdV-
Burgers type if (3.3) is valid with δ = +∞ in the linear estimates. From Lemma
2.3, this is the case when order(σ) ≥ 1, and either {ν = 1} or {ν = 0 and d = 0}.
Therefore For the KdV-Burgers-type systems, the following theorem holds.

Theorem 3.5. For system (1.2) with order(σ) ≥ 1, and either {ν = 1} or {ν = 0
and d = 0} and for large t,

• if order(H) = −1, then for (∇η0,u0) in L1(R2
x
) ∩ L2(R2

x
) and small enough

in L2(R2
x),

||u(t)||L2
x

+ ||∇η(t)||L2
x

≤ Ct−
1
2 ; (3.27)

• if order(H) = 0, then for (η0,u0) in L1(R2
x
) ∩ L2(R2

x
) and small enough in

L2(R2
x),

||u(t)||L2
x

+ ||η(t)||L2
x

≤ Ct−
1
2 ; (3.28)

• if order(H) = 1, then for (η0,∇u0) in L1(R2
x
) ∩ L2(R2

x
) and small enough in

L2(R2
x),

||∇u(t)||L2
x

+ ||η(t)||L2
x

≤ Ct−
1
2 . (3.29)

Proof. The theorem is going to be proved by splitting cases according to the
constants a, b, c, d. The conditions order(σ) ≥ 1 and (C0)-(C2) implies that there
are three possibilities:

• b = d = 0, a = c = 1
6 ;

• b = 0, d > 0, a and c do not vanish;
• d = 0, b > 0, a = c > 0.

Case I: b = d = 0, a = c = 1
6 , so H = 1 and order(H) = 0. Applying the Helmholtz

splitting to (1.1), the nonlinear system reads in a balanced form as

η̂t + ναη̂ + isgn(ω1)σ|ξ|q̂ = |ξ|(− iξ

|ξ| · η̂u),

q̂t + εq̂ + isgn(ω1)ση̂|ξ| = |ξ|(− i

2
|̂u|2),

ψ̂t + εψ̂ = 0.

(3.30)
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The theorem is valid if (3.5) is true with

B̂(v) =



− iξ

|ξ| · η̂u
− i

2 |̂u|2
0


 , v =



η

q

ψ


 ,

Pδ = Id and Qδ = 0.
The first inequality is straightforward due to Plancherel theorem

||B̂(v)||2L2
ξ
≤ C

∫
(|η̂u|2 + | |̂u|2|2)dξ ≤ C(||η||4L4

x

+ ||u||4L4
x

)

≤ C(||η||4L4
x

+ ||q||4L4
x

+ ||ψ||4L4
x

).

(3.31)

For the second inequality, we use that the operator that has symbol − iξ
|ξ| , which is

a vector valued Riesz transform, is bounded on any Lp
x
, 1 < p < +∞, and then by

Hölder inequality to obtain

||B(v)||
L

4
3
x

≤ C(||ηu||
L

4
3
x

+ || |u|2||
L

4
3
x

) ≤ C‖v‖L2
x

‖v‖L4
x

. (3.32)

Case II: b = 0 and d > 0, a and c do vanish. In this case, order(H) = 1 and the
system reads

η̂t + ναη̂ + isgn(ω1)σ|ξ|Ĥq = |ξ|(− iξ

|ξ| · η̂u),

Ĥqt + εĤq + isgn(ω1)ση̂|ξ| =
Ĥ |ξ|

1 + d|ξ|2 (− i

2
|̂u|2),

Ĥψt + εĤψ = 0.

(3.33)

Again, the proof amounts to verify that (3.5) is valid with

B̂(v) =




− iξ
|ξ| · η̂u

− i bH
2(1+d|ξ|2) |̂u|2

0


 where v =




η

Hq

Hψ


 .

Since the operator whose symbol is (1+d|ξ|2)−1Ĥ is bounded on Lp
x

for 1 < p <

+∞, we just have to prove that v 7→ ξ
|ξ| · η̂u and v 7→ |̂u|2 satisfy the assumptions.

This can be demonstrated by using (3.31), (3.32) and the fact that H−1 is bounded
on Lp

x for 1 < p < +∞.

Case III: d = 0, b > 0 and a = c > 0. In this case, order(H) = −1 and the system
reads

Ĥ−1ηt + ναĤ−1η + isgn(ω1)σ|ξ|q̂ =
H−1|ξ|
1 + b|ξ|2 (− iξ

|ξ| · η̂u)

q̂t + εq̂ + isgn(ω1)σĤ−1η|ξ| = |ξ|(− i

2
|̂u|2)

ψ̂t + εψ̂ = 0.

(3.34)

The bilinear term involved here can be handled exactly as in case II with v =
(H−1η, q, ψ)T . �
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3.3. Application to weakly dispersive systems. In this case, b > 0, d > 0 and
(3.3) is valid with δ < +∞.

Theorem 3.6. For system (1.2) with b, d > 0, and either {ν = 1} or {ν = 0 and
order(σ) = −1} and for large t,

• if order(H) = −1, then for (∇η0,u0) in L1(R2
x
), and (∇̂η0, û0) in L2(R2

ξ) ∩
L1(R2

ξ) and small enough in L2(R2
ξ) ∩ L1(R2

ξ),

||u(t)||L2
x

+ ||∇η(t)||L2
x

≤ Ct−
1
2 ; (3.35)

• if order(H) = 0, then for (η0,u0) in L1(R2
x), and (η̂0, û0) in L2(R2

ξ)∩L1(R2
ξ)

and small enough in L2(R2
ξ) ∩ L1(R2

ξ),

||u(t)||L2
x

+ ||η(t)||L2
x

≤ Ct−
1
2 ; (3.36)

• if order(H) = 1, then for (η0,∇u0) in L1(R2
x), and (η̂0, ∇̂u0) in L2(R2

ξ) ∩
L1(R2

ξ) and small enough in L2(R2
ξ) ∩ L1(R2

ξ),

||∇u(t)||L2
x

+ ||η(t)||L2
x

≤ Ct−
1
2 . (3.37)

Proof. We only need to check that system (3.1) fits into the abstract framework
of Theorem 3.1. We again split the study to the small frequency part and large
frequency part.
Small frequencies: the Pδ part of (3.5) needs to be checked and the proof is the
same as that for Theorem 3.5.

Large frequencies: the Qδ part of (3.5), i.e. for |ξ| ≥ δ, needs to be checked and we
again separate our investigation according to the order of H .
Case I: order(H)=0. The proof for the first inequality in (3.5) amounts to show

|| |ξ|Ĥ
1 + d|ξ|2 |̂u|

2||
L

4
3
{|ξ|≥δ}

≤ C||v||2L4
x

. (3.38)

with v = (η, q, ψ)T . The proof is obtained by using order(H) = 0, the Hölder
inequality and Plancherel theorem which yield

|| |ξ|Ĥ
1 + d|ξ|2 |̂u|

2||
4
3

L
4
3
{|ξ|≥δ}

≤ C

∫

{|ξ|≥δ}

1

|ξ| 43
| |̂u|2| 43 dξ

≤ C(

∫

{|ξ|≥δ}

dξ

|ξ|4 )
1
3 (

∫

ξ

| |̂u|2|2dξ)
2
3 ≤ C(δ)|| |u|2||

4
3

L2
x

= C(δ)||u||
8
3

L4
x

≤ C(δ)||v||
8
3

L4
x

.

(3.39)

We skip the proof of the analogous estimate on the bilinear term ξ
|ξ| η̂u because it

is very similar to this one.
The second inequality to prove in (3.5) amounts to prove

||F−1

( |ξ|
1 + d|ξ|2 |̂u|

2

)
||L2

x

≤ C||v||L4
x

||v||L2
x

. (3.40)

Since H1
x ⊂ L4

x, one has by duality

|| |u|2||H−1
x

≤ C|| |u|2||
L

4
3
x

.
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Therefore, with the use of interpolation inequality [L2, L4] 1
2

= L
8
3 ,

||F−1

( |ξ|
1 + d|ξ|2 |̂u|

2

)
||L2

x

≤ C|| |u|2||
L

4
3
x

≤ C||u||2
L

8
3
x

≤ C||u||L4
x

||u||L2
x

≤ C||v||L4
x

||v||L2
x

.

(3.41)

We again skip the proof of analogous estimate on the bilinear term ξ
|ξ| η̂u because

it is very similar to this one.

Case II: order(H) = 1. We first prove the L
4
3

ξ estimate, namely the first inequality

in (3.5). This amounts to prove that

||F(|u|2)||
L

4
3
{|ξ|≥δ}

+ || 1

|ξ|F(ηu)||
L

4
3
{|ξ|≥δ}

≤ C||v||2L4
x

(3.42)

where v = (η,Hq,Hψ)T .
The second term in the left-hand-side of this inequality can be handled exactly

as in the previous case, since H−1 is a bounded operator on Lp
x. For the first term

in the left-hand-side of (3.42) we use the following trick:

Ω =
{
ξ

∣∣∣|ξ| ≥ δ
}
⊂ Ω1 ∪ Ω2

where

Ω1 =
{

ξ

∣∣∣|ξ1| ≥
δ√
2
, |ξ1| ≥ |ξ2|

}
, Ω2 =

{
ξ

∣∣∣|ξ2| ≥
δ√
2
, |ξ2| ≥ |ξ1|

}
.

One then obtains

||F(|u|2)||
L

4
3
Ω1

≤ || 2

ξ1
F(u · ∂u

∂x1
)||

L
4
3
Ω1

≤ ||2
√

2

|ξ| F(u · ∂u
∂x1

)||
L

4
3

{
√

2|ξ|≥δ}

. (3.43)

Using the same argument as in (3.39) and the fact that H−1 is a bounded operator
on Lp

x,

||F(|u|2)||
L

4
3
Ω1

≤ C||v||2L4
x

Since the similar estimate is true for ||F(|u|2)||
L

4
3
Ω2

, it yields

||F(|u|2)||
L

4
3
{|ξ|≥δ}

≤ C(||F(|u|2)||
L

4
3
Ω1

+ ||F(|u|2)||
L

4
3
Ω2

) ≤ C||v||2L4
x

.

We now prove the L2
x estimate, namely the second inequality in (3.5). By

Plancherel inequality, Sobolev embedding W
1, 8

3
x ⊂ L4

x
associated with order(H)=1,

and interpolation inequality [L2, L4] 1
2

= L
8
3 ,

||F(|u|2)||L2
ξ

= C||u||2L4
x

≤ C||v||2
L

8
3
x

≤ C||v||L2
x

||v||L4
x

. (3.44)

Together with the following inequality

||ηu||H−1
x

≤ C||ηu||
L

4
3
x

≤ C||η||L2
x

||u||L4
x

≤ C||v||L2
x

||v||L4
x

, (3.45)

the theorem in proved for the case with order(H)=1.

Case III: order(H) = −1. In this case, the system reads (3.34), and with v̂ =

(Ĥ−1η̂, û) the nonlinearity can be handled exactly as in the cases where order(H) =
0 or 1. �
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Corollary 3.7. For the Bona-Smith system (a = 0, b > 0, c < 0, d > 0) the decay
rates are valid if we are either in the partial dissipation case or in the complete
dissipation case. Solutions to BBM-BBM systems (a = c = 0, b > 0, d > 0 satisfy
the decay rates in the case of complete dissipation ν = 1.

3.4. L∞ decay rate. In this section we prove the following abstract result

Theorem 3.8. With the same assumptions as in Theorem 3.1 and assume also v̂0

is in L1
ξ(R

2) with small norm when d > 0, and

||B̂(v)||
L

4
3
{|ξ|≤δ}

+ || |ξ|B̂(v)||L1
{|ξ|≥δ}

≤ C||v̂||L1
ξ
||v̂||

L
4
3
ξ

. (3.46)

Then the solution defined in Theorem 3.1 satisfies

||v||L∞
x

≤ C(1 + t)−1. (3.47)

Proof. We are going to prove that

||v̂||L1
ξ
≤ C(1 + t)−1, (3.48)

which will complete the proof of the theorem, since the inverse Fourier transform
maps L1

ξ into L∞
x

. From (3.7) and (3.4),

||v̂(t)||L1
ξ
≤ ||Ŝ(t)v0||L1

ξ

+

∫ t

0

||Ŝ(t− s)|ξ|B̂(v)||L1
{|ξ|≤δ}

ds+

∫ t

0

||Ŝ(t− s)|ξ|B̂(v)||L1
{|ξ|≥δ}

ds.
(3.49)

For the linear part

||Ŝ(t)v0||L1
ξ
≤ (

∫
e−βt|ξ|2dξ)||v̂0||L∞

{|ξ|≤δ}
+ e−βt||v̂0||L1

{|ξ|≥δ}

≤ Ct−1||v0||L1
x

+ Ce−βt||v̂0||L1
ξ
,

(3.50)

which provides the desired decay rate since both v0 and v̂0 are integrable.
For the nonlinear part with small frequencies, using Hölder’s inequality and the

assumptions above
∫ t

0

||e−β(t−s)|ξ|2 |ξ|B̂(v)||L1
{|ξ|≤δ}

ds

≤ C

∫ t

0

||e−β(t−s)|ξ|2 |ξ| ||L4
ξ
||B̂(v)||

L
4
3
{|ξ|≤δ}

ds ≤
∫ t

0

C

(t− s)
3
4

||v̂||L1
ξ
||v̂||

L
4
3
ξ

ds

≤ C(

∫ t

0

ds

(t− s)
3
4 s

1
4

)(sup
s≤t

||v̂(s)||L1
ξ
)(sup

s>0
s

1
4 ||v̂(s)||

L
4
3
ξ

)

≤ Cγ sup
s≤t

(||v̂(s)||L1
ξ
),

(3.51)

by recalling Remark 3.4 that sups>0(s
1
4 ||v̂(s)||

L
4
3
ξ

) ≤ 2γ which is small. Therefore

the upper bound in (3.51) moves into the left-hand-side of (3.49).
For the nonlinear term with high frequencies
∫ t

0

||Ŝ(t− s)|ξ|B̂(v)||L1
{|ξ|≥δ}

ds ≤ C

∫ t

0

e−β(t−s)|| |ξ|B̂(v)||L1
{|ξ|≥δ}

ds, (3.52)
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and we proceed exactly as above using e−β(t−s) ≤ C(t− s)−
3
4 which completes the

proof. �

We now apply the abstract theorem to the KdV-Burger-type systems and weakly
dispersive systems and obtain the following theorem.

Theorem 3.9. For the systems listed in Theorem 3.5 and in Theorem 3.6,

||v||L∞
x

≤ C(1 + t)−1 (3.53)

where v is defined according to the order of H and the initial data satisfies the
corresponding conditions as in those theorems and also v̂0 is in L1

ξ(R
2) with small

norm when d > 0.

Proof. For KdV-Burgers systems and b = d = 0, H = 1, we essentially have to
check that for a pair of function f, g

||f̂ g||
L

4
3
ξ

≤ C||f̂ ||L1
ξ
||ĝ||

L
4
3
ξ

, (3.54)

which is true since L1
ξ ∗ L

4
3

ξ ⊂ L
4
3

ξ . For the cases b = 0, d > 0, it is necessary to
check that

||ηû||
L

4
3
ξ

+ || Ĥ

1 + d|ξ|2 |̂u|
2||

L
4
3
ξ

≤ C||v̂||L1
ξ
||v̂||

L
4
3
ξ

. (3.55)

This is straightforward by using (3.54) and the facts that Ĥ−1 and
bH

1+d|ξ|2 are in

L∞
ξ . The only case remaining is with b > 0 and d = 0 which can be handled exactly

in the same manner.
For weakly dispersive systems, we again split the discussion according to the

magnitude of frequencies. For small frequencies, the proofs are analogous to the
KdV-Burgers case. For large frequencies, considering first the case with order(H) =
0, so the problem becomes to check that

|| 1

|ξ| f̂ g||L1
{|ξ|≥δ}

≤ C(||f̂ ||L1
ξ
||ĝ||

L
4
3
ξ

+ ||ĝ||L1
ξ
||f̂ ||

L
4
3
ξ

). (3.56)

With Hölder inequality

|| 1

|ξ| f̂ g||L1
{|ξ|≥δ}

≤ (

∫

{|ξ|≥δ}

|ξ|−4dξ)
1
4 ||f̂ ∗ ĝ||

L
4
3
ξ

, (3.57)

and we conclude as in (3.54).
The other cases order(H) = 1 or order(H) = −1 can be handled exactly in the

same way.

4. Numerical simulations. In this section, the decay rates of the solutions are
computed numerically for the BBM-BBM system with full and partial dissipations.

The numerical code is based on a Legendre-Fourier spectral discretization in
space and a leap-frog Crank-Nicholson scheme in time (see [6] for detail). The
initial data is taken to be

η(x, y) = 0.5e−0.1((x−120)2+(y−120)2)

u = v = 0,
(4.1)

on the computation domain [0, 240] × [0, 240] and the solution is computed for
t ∈ [0, 80]. The number of modes used in both x and y directions is 1024 and
∆t = 0.05. Since the solution is axisymmetric about the point (120, 120), the norms
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on u and v are the same and therefore only the norms on η and u are presented.
The decay rate r for function f(x, y, t), where f is η or u, in

‖f‖ ∼ Ct−r, as t→ ∞
is calculated by first computing

r(tn) := −
log ‖f(tn)‖

‖f(tn−1)‖

log tn

tn−1

,

where the norm is either ‖ · ‖∞ or ‖ · ‖L2 , and then calculating the mean using a
constant least square fitting for the last 50 data which corresponds to t between
77.5 to 80.

The first case is for the full dissipation, namely ν = 1, on the BBM-BBM system
(b = d = 1

6 , a = c = 0). The L∞ norm and L2 norms of the solution η and u with
respect to t are plotted in Figure 1. It is clear that after an initial transition period,
namely after wave is generated from initial water displacement, the solutions decay
monotonically. The corresponding decay rate functions r(t) with f = η and f = u

with L∞-norms and L2-norms are plotted respectively in Figure 2. By calculating
the decay rate for t large, as described above, one obtains

‖η‖L∞ ∼ Ct−1.20 and ‖u‖L∞ ∼ Ct−1.24,

‖η‖L2 ∼ Ct−0.48 and ‖u‖L2 ∼ Ct−0.49.
(4.2)

The Figures and the decay rate of r confirm the theoretical results in Theorem 3.6
and in Theorem 3.9 and the small data requirement might not be necessary if other
methods are employed.

0 10 20 30 40 50 60 70 80
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0.04

0.05

0.06

0.07

0.08

0.09

0.1

t

||η||∞ and || u|| ∞

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6
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1
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1.6

1.8

2

||η||
2
 and || u||

2

t

Figure 1. The left figure is for ‖η‖∞ (solid line) and ‖u‖∞ (dash
line) with respect to t and the figure on the right is for ‖η‖L2 (solid
line) and ‖u‖L2 (dash line).

The second case in for the partial dissipation ν = 0 on the BBM-BBM system.
This is a case which we do not have the theoretical proof. In fact, for the linearized
system, one can show, just as in the corresponding one-dimensional case (see [7]),
that the solution can decay arbitrarily slow depends on the initial data. But for
this initial data, which consists every frequency, we observe the decay rates, which
is almost identical to the case of full dissipation,

‖η‖L∞ ∼ Ct−1.18 and ‖u‖L∞ ∼ Ct−1.21,

‖η‖L2 ∼ Ct−0.47 and ‖u‖L2 ∼ Ct−0.47.
(4.3)
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Figure 2. The plots of r(tn) with ‖η‖∞: solid line on the left;
‖u‖∞: dash line on the left; ‖η‖L2: solid line on the right and
‖u‖L2: dash line one the right.

We also tested numerically the case where we only apply the dissipation on the
first equation. The numerical results read

‖η‖L∞ ∼ Ct−1.18 and ‖u‖L∞ ∼ Ct−1.21,

‖η‖L2 ∼ Ct−0.47 and ‖u‖L2 ∼ Ct−0.48.
(4.4)

In summary, our numerical simulations confirm the theoretical results and demon-
strated the theoretical results are sharp. Furthermore, for the systems we were
unable to prove rigorously the decay rates, a prediction is given.
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