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Abstract. Multilevel methods are indispensable for the approximation of nonlin-
ear evolution equations when complex physical phenomena involving the interaction
of many scales are present (such as in, but without being limited to 
uid turbulence).
Incremental unknowns of di�erent types have been proposed as a means to develop
such numerical schemes in the context of �nite di�erence discretizations.

In this article, we present several numerical schemes using the so-called multilevel
wavelet-like incremental unknowns. The fully discretized explicit and semi-explicit
schemes for reaction-di�usion equations are presented and analyzed. The stability
conditions are improved when compared with the corresponding standard algorithms.
Furthermore the complexity of the computation on each time step is comparable to
the corresponding standard algorithm.

1. Introduction.

In the past, the approximation of nonlinear evolution equations was mostly re-

stricted to short intervals of time or to long intervals of time when the solution

converges to a stationary one as t!1.

The new technologies and the increased power of the new computers o�er to

the numerical analysts new challenging problems, namely the approximation of

nonlinear evolution equations on large intervals of time when complex physical

phenomena appear. New numerical methods adapted to such problems need to be

developed (see [9]); in particular multilevel methods are needed in order to treat

appropriately the di�erent scales appearing in a complex problem and to resolve at

reasonable cost the smaller scales.

Incremental unknowns have been proposed as a means to address this new type

of problems when �nite di�erence discretizations are used. The idea is to treat

di�erently the small and large scale components of a 
ow and in this way to avoid
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sti� systems; to save on computing time; and to obtain better CFL (Courant-

Fredriche-Levy) stability conditions (see [9]).

After studying linear elliptic problems in [1] and [2], we consider here nonlin-

ear evolution equations. As a �rst example, we apply the multilevel wavelet-like

incremental unknowns to a Reaction-Di�usion equation:

@u

@t
� ��u+ g(u) = 0 in 
; (1.1)

u = 0 on @
; (1.2)

u(x; 0) = u0 in 
: (1.3)

Here � > 0;
 is an open bounded set in IRn with su�cient smooth boundary and

g(s) =

2p�1X
j=0

bjs
j ; b2p�1 > 0:

For the sake of simplicity, we shall consider only the one-dimensional case and


 = [0; 1] in the rest of the paper. The higher dimensional cases can be treated in

the same way. The de�nition of the wavelet-like incremental unknowns in dimension

two can be found in [3] and it is recalled below in dimension one.

The article is organized as follows. In Section 2 we recall the de�nition of the

wavelet-like incremental unknowns (WIU) and describe their implementation in the

space discretization of problem (1.1)-(1.3). Then in Section 3 we consider space and

time discretization. Four di�erent schemes are proposed which are of the nonlin-

ear Galerkin type. Finally in Section 4 we develop the stability analysis of these

schemes. The limitation of the time mesh k = �t are much better than those

obtained with usual one-level spatial discretizations. Of course as usual for non-

linear problems, our stability analysis provides only su�cient stability conditions;

however there are also numerical simulations performed for Burgers equation which

con�rm these improvements [5].

2. Multilevel Wavelet-like Incremental Unknowns (WIU).

In this section, we shall transform a spatial �nite di�erence discretization in terms

of U into a scheme involving Y and Z where U is the �nite di�erence approximation

of the solution u, while Y represents a coarse grid approximation and Z represents

a �ne grid correction (the incremental unknowns).

Considering spatial discretization by �nite di�erence with mesh size

hd = 1=(2dN + 1), where N 2 IN , we have

@Uhd
@t

+ �AhdUhd + g(Uhd) = 0; (2.1)

where Uhd is the vector of approximate values of u at the grid points, Uhd 2 IR2dN

and Ahd is a regular matrix of order 2dN . For simplicity, we write Ad = Ahd ; Ud =



Uhd . When a central di�erence scheme is used for the convection term, we have

AdUd(i) =
1

h2d
(2Ud(i) � Ud(i + 1) � Ud(i� 1));

where Ud(i) is the �nite di�erence approximation of u at x = ihd. Ordering

Ud(i); i = 1; 2; : : : ; 2dN in its natural way, we see that Ad is a tri-diagonal ma-

trix.

We now introduce the (d+1) levels Wavelet Incremental Unknowns (WIU) into

equation (2.1). We �rst separate evenly the unknowns into two parts, one part

represents a coarser grid approximation, another represents a correction to the

coarser grid approximation. We obtain 2-level wavelet-like incremental unknowns.

After the �rst split, the unknowns which represent a coarser grid approximation

can be separated again into two parts : : : . After d-time of separations, there are

N unknowns (Y part) which represent the coarsest grid approximation and each

of them is an average of 2d unknowns from Ud. The other (2d � 1)N unknowns (Z

part) are the correction of Y to bring the total accuracy of the approximation into

the accuracy of Ud.

We now introduce the �rst separation. The incremental unknown Ud in this

level as stated consists of two parts:

� the coarser grid approximation which is the average of two neighboring values of

�ner grid

yd2i = (Ud(2i� 1) + Ud(2i))=2; i = 1; : : : ; 2d�1N; (2.2)

� the increment on the �ne grid approximation

zd2i�1 = (Ud(2i� 1)� Ud(2i))=2; i = 1; : : : ; 2d�1N: (2.3)

The transformation from Ud to incremental unknowns Ud is the inverse of (2.2)

and (2.3): (
Ud(2i) = yd2i � zd2i�1;

Ud(2i � 1) = zd2i�1 + yd2i;
for i = 1; : : : ; 2d�1N: (2.4)

We reordering Ud into eUd by letting

eUd = (Ud(2); : : : ; Ud(2
dN); Ud(1); : : : ; Ud(2

dN � 1))T ;

and we see that

Ud = Pd eUd;
where Pd is a permutation matrix. We then write (2.4) in the matrix form

eUd = SdUd;



where Ud = (Yd; Zd) = (yd2 ; : : : ; y
d
2dN ; z

d
1 ; : : : ; z

d
2dN�1), and

Sd =

0BBBBBBBBBBB@

1 0 : : : 0 �1 0 : : : 0
0 1 : : : 0 0 �1 : : : 0
...

...
. . .

...
...

...
. . .

...
0 0 : : : 1 0 0 : : : �1
1 0 : : : 0 1 0 : : : 0
0 1 : : : 0 0 1 : : : 0
...

...
. . .

...
...

...
. . .

...
0 0 : : : 1 0 0 : : : 1

1CCCCCCCCCCCA
=

�
Id�1 �Id�1
Id�1 Id�1

�
;

Id�1 being the identity matrix of order 2d�1N . We can easily see that S�1 =
1
2
ST , and

Ud = PdSdUd: (2.5)

Substituting (2.5) into the �nite di�erence equation (2.1) and multiplying the

equation by (PdSd)
T , we �nd

@(PdSd)TPdSdUd

@t
+ �(PdSd)

TAdPdSdUd + (PdSd)
T g(PdSdUd) = 0:

Noticing that PT
d Pd = Id, S

T
d Sd = 2Id, P

T
d and g commute, we obtain

2
@Ud

@t
+ �STd P

T
d AdPdSdUd + STd g(SdUd) = 0; (2.6)

which is the �nite di�erence scheme obtained when 2-level wavelet-like incre-

mental unknowns are used. Equation (2.6) is equivalent to (2.1) except that we

have replaced Ud by Ud = (Yd; Zd)T .

We can again introduce the next level of WIU on Yd by repeating exactly the

same procedure. Let

Y d = (Yd�1; Zd�1)T = (yd�14 ; yd�18 ; : : : ; yd�1
2dN

; zd�12 ; zd�16 ; : : : ; zd�1
2dN�2)

T ;

we replace Ud by Yd and Zd by Zd�1 and change the corresponding subscript in

(2.4). Namely, we de�ne(
yd4i = yd�14i � zd�14i�2;

yd4i�2 = zd�14i�2 + yd�14i ;
for i = 1; : : : ; 2d�2N: (2.7)

Therefore,

Yd = Pd�1Sd�1Y d;

where Pd�1 is a permutation matrix of order 2d�1N and

Sd�1 =
�
Id�2 �Id�2
Id�2 Id�2

�
:



Noticing that the size of Yd is only half that of Ud, we let

Ud�1 = (Y d�1; Zd�1;
1p
2
Zd)T ;

ePd�1 = �Pd�1 0
0 Id�1

�
; eSd�1 = �Sd�1 0

0
p
2Id�1

�
:

Here ePd�1 and eSd�1 are matrices of order 2dN . We see that

ePd ePT
d = Id; eSdeSTd = 2Id;

Ud = ePd�1 eSd�1Ud�1:

Generally for l = d� 1; d� 2; : : : ; 1, we de�ne Y l+1 = (Yl; Zl)
T and(

yl+1
2d�l+1i

= yl2d�l+1i � zl2d�l+1i�2d�l ;

yl+1
2d�l+1i�2d�l = zl2d�l+1i�2d�l + yl2d�l+1i;

for i = 1; : : : ; 2l�1N: (2.8)

We can easily see as previously that

Yl+1 = PlSlY l; l = d� 1; d� 2; : : : ; 1; (2.9)

where Pl; Sl have similar structures as Pd and Sd but with di�erent sizes. We can

include (2.5) into formula (2.9) with l = d by denoting Yd+1 = Ud and Y d = Ud.

Setting U l = (Yl; Zl;
1p
2
Zl�1; : : : ; 1p

2
d�lZd)

T , we obtain

U l = ePl eSlU l�1 (2.10)

where ePl = �Pl 0
0 Ik�k

�
; where k = (2d � 2l)N:

eSl =
0@ Il�1 �Il�1 0
Il�1 Il�1 0
0 0

p
2Ik�k

1A =

�
Sl 0
0 Ik�k

�
;

eSl eSTl = 2Id; ePl ePT
l = Id:

Substituting (2.10) into equation (2.6) successively with l = d; : : : ; 1, we obtain

the evolution equation expressed in terms of Y and Z where Y = Y0; Z =

(Z0;
1p
2
Z1; : : : ;

1p
2
dZd)

T :

2d
@U0

@t
+ �STAdSU0 + STg(SU0) = 0; (2.11)

with S = ePd eSd : : : eP1 eS1.



3. Nonlinear Galerkin method.

In this section, we propose some new schemes based on the utilization of the

incremental unknowns introduced in the last section. The new schemes will not

only simplify the formulas which make them easier to implement, but also improve

the stability conditions comparing to the corresponding schemes in the last section

while maintaining the same complexity of the computation (see Section 4). The

schemes we shall propose are obtained by neglecting some small terms involving

Z. A partial justi�cation of these schemes can also be seen through the dynamical

system theory (c.f. [6], [7], [8]). In this section, we shall �rst propose the new

treatment of the spatial discretization. We then propose several fully discretized

schemes. The stability conditions for the fully discretized schemes will be presented

in the next section. The convergence of these schemes can be proved by using

the stability results in the next section and then proceeding as in the proof of

convergence of the nonlinear galerkin method for Navier-stokes type equations in

[3].

We now analyze (2.11) and start with d = 1; we write

2
@Ud

@t
+ �STd P

T
d AdPdSdUd + STd g(SdUd) = 0:

But

SdUd =

�
Id�1 �Id�1
Id�1 Id�1

��
Yd
Zd

�
=

�
Yd � Zd
Yd + Zd

�
;

STd g(SdUd) =

�
Id�1 Id�1
�Id�1 Id�1

��
g(Yd �Zd)
g(Yd +Zd)

�
=

�
g(Yd �Zd) + g(Yd + Zd)
g(Yd +Zd)� g(Yd � Zd)

�
=

�
2g(Yd) +O(jZdj2)

O(jZdj)
�
:

(3.1)

We therefore obtain the 2-level nonlinear galerkin method

2
@

@t

�
Yd
Zd

�
+ �STd P

T
d AdPdSdUd + 2

�
g(Yd)
0

�
= 0;

by neglecting a O(jZdj2) term in the evolution equation for Yd and a O(jZdj) term
in the equation for the evolution of Zd.

Now, when d = 2, we have

4
@Ud�1
@t

+ �STAdSUd�1 + eSTd�1 ePT
d�1S

T
d g(SdUd) = 0:

Using the approximation for (3.1), Pd�1 and g commute, we have

eSTd�1 ePT
d�1S

T
d g(SdUd) � 2eSTd�1 ePT

d�1

�
g(Yd)
0

�
= 2

�
STd�1 0
0 Ik�k

�� ePT
d�1g( ePd�1Sd�1Y d)

0

�
= 2

�
STd�1g(S

T
d�1Y d)
0

�
:



We can again use the same approximation technique as for (3.1) and obtain

eSTd�1 ePT
d�1S

T
d g(SdUd) � 4

�
g(Yd�1)

0

�
:

Therefore, we can easily see that the nonlinear galerkin method with the use of

(d+ 1)-level incremental unknowns leads to equation

2d
@

@t

�
Y0
Z

�
+ �STAdSU0 + 2d

�
g(Y0)
0

�
= 0 (3.2)

where Y0 2 IRN and Z is a vector of dimension (2d � 1)N .

From the theory of inertial manifolds, we sometime prefer to neglect also the @Z
@t

term. Therefore, another similar scheme can be proposed

2d
@

@t

�
Y0
0

�
+ �STAdSU0 + 2d

�
g(Y0)
0

�
= 0: (3.3)

Now we consider time discretization. We can easily obtain an explicit scheme

for (3.2) by using the explicit Euler scheme.

Scheme I. Explicit scheme

2d

k

�
Y n+1
0 � Y n

0

Zn+1 � Zn

�
+ �STAdSU

n

0 + 2d
�
g(Y n

0 )
0

�
= 0:

Based on (3.3), we can also obtain a similar scheme by omitting the discretized

time derivative of Z:

Scheme I'.

2d

k

�
Y n+1
0 � Y n

0

0

�
+ �STAdSU

n

0 + 2d
�
g(Y n

0 )
0

�
= 0:

Alternatively, taking a backward Euler scheme for the time discretization of the

linear terms, we obtain semi-implicit schemes:

Scheme II. Semi-implicit scheme

2d

k

�
Y n+1
0 � Y n

0

Zn+1 �Zn

�
+ �STAdSU

n+1

0 + 2d
�
g(Y n

0 )
0

�
= 0:

Scheme II'.

2d

k

�
Y n+1
0 � Y n

0

0

�
+ �STAdSU

n+1

0 + 2d
�
g(Y n

0 )
0

�
= 0:

The e�ective implementation of the above schemes is very similar to using incre-

mental unknowns for solving linear problems (c.f. [1], [2]). The product of STAdS
T

with a vector can be obtained without writing out the explicit form of S; O(2dN)


ops are required which is the order of 
ops required for the product of Ad with a

vector.



4. Stability Analysis for the Fully Discretized schemes.

Let Vhd be the function space spanned by the basis functions whd;M ;M = ihd; i =

1; 2; : : : ; 2dN ; whd;ihd is equal to 1 on the interval [ihd; (i+1)hd) and vanishes outside

this interval; let uhd (x) be a step function in Vhd and uhd (x) = Ud(i); for ihd �
x < (i+ 1)hd; i = 1; 2; : : : ; 2dN . Hence

uhd(x) =

2dNX
i=1

Ud(i)whd ;ihd ; x 2 
:

We introduce the �nite di�erence operator

rhd�(x) =
1

hd
f�(x+ hd)� �(x)g;

and endow Vhd with the scalar product

((uhd ; vhd ))hd = (rhduhd ;rhdvhd );

where (�; �) is the scalar product in L2(
). We set jj � jjhd = f((�; �))hdg1=2 and

observe that jj � jjhd and j � j are Hilbert norms on Vhd .
Using the space Vhd , we can write the �nite di�erence discretization scheme (2.1)

in variational form as

(
@uhd
@t

; ~u) + �((uhd ; ~u))hd + (g(uhd ); ~u) = 0; 8~u 2 Vhd : (4.1)

We can recover (2.1) by choosing ~u = whd;ihd . It is not hard to see that we can

recover the de�nition of wavelet-like incremental unknowns by a suitable decompo-

sition of the space Vhd (c.f. [3]). We de�ne Yhd (or simply Yd) as the space spanned
by the basis functions  2hd;M , where M = 2ihd; i = 1; 2; : : : ; 2d�1N ; here  2hd ;2ihd
is equal to 1 on the interval [2ihd�hd; 2ihd+hd) and vanishes outside this interval.
Thus

yd(x) =
2d�1NX
i=1

yd(2ihd) 2hd ;2ihd ; x 2 
; 8yd 2 Yd:

We then de�ne Zd as the space spanned by �hd ;M = whd;M � whd;M+hd , where

M = (2i � 1)hd; i = 1; 2; : : : ; 2d�1N . We have

zd(x) =
2d�1NX
i=1

zd((2i � 1)hd)�2hd ;2ihd�hd ; x 2 
; 8zd 2 Zd:

Therefore,

Vhd = Yd �Zd: (4.2)



We now decompose the approximate solution uhd 2 Vhd into:

uhd = yd + zd; yd 2 Yd; zd 2 Zd:

By identifying yd and zd on each interval [2ihd � hd; 2ihd + hd); i = 1; : : : ; 2d�1N
and writing yd(2ihd) = yd2i; zd(ihd) = zdi ; we obtain exactly (2.4).

With decomposition (4.2), (2.6) is identical to

(
@yd
@t

; ~y) + �((yd + zd; ~y))hd + (g(yd + zd); ~y) = 0; 8~y 2 Yd

(
@zd
@t

; ~z) + �((yd + zd; ~z))hd + (g(yd + zd); ~z) = 0; 8~zd 2 Zd

Multilevel incremental unknowns can be recovered in a similar fashion. We

decompose Yl, l = d; : : : ; 1, into

Yl = Yl�1 �Zl�1;

and we recover (2.8) by de�ning Yl�1 and Zl�1 accordingly. We therefore see that

for any function uhd 2 Vhd , we can write it as

uhd = y + z;

where y = yh0 2 Y = Y0 and z 2 Z = Z0 �Z1 � � � � � Zd; Y0 is a function space

spanned by the step functions with step size h0 = 2dhd and

(y; z) = 0; 8y 2 Y0;8z 2 Z:

Equation (2.11) is therefore identical to

(
@yh0
@t

; ~y) + �((yh0 + z; ~y))hd + (g(yh0 + z); ~y) = 0; 8~y 2 Y0;

(
@z

@t
; ~z) + �((yh0 + z; ~z))hd + (g(yh0 + z); ~z) = 0; 8~z 2 Z;

and (3.3) is identical to

(
@yh0
@t

; ~y) + �((yh0 + z; ~y))hd + (g(yh0 ); ~y) = 0; 8~y 2 Y0;

(
@z

@t
; ~z) + �((yh0 + z; ~z))hd = 0; 8~z 2 Z:

(4.3)

Before presenting the stability theory, let us introduce some easy lemmas. Their

proof can be found for example in [4].



Lemma 2.1. There exist constants c1 and c2 such that the function g above satis-

�es

g(s)s � 1

2
b2p�1s2p � c1; (4.4)

g(s)2 � 2b22p�1s
4p�2 + c2; 8s: (4.5)

Lemma 2.2. For every function uh 2 Vh,
p
2juhj � kuhkh � 1

S1(h)
juhj;

where S1(h) = h=2.

Lemma 2.3. For every function yh0 2 Y0,

S2(h0)jyh0 j21 � jyh0 j2; with S2(h0) = h0:

S1(h0; hd)kyh0khd � jyh0 j; with S1(h0; hd) =
1

2

p
h0hd:

Here jyh0 j1 is the maximum (L1) norm of yh0 .

Theorem 2.1. Stability condition for Scheme I

We assume that k � K0 for some K0 �xed and let

M0 = ju0hd j2 +
1

�
(c1 + c2K0)j
j:

If
k

h2d
� 1

4�
(

2d

2 + 2d
) (4.6)

and
k

(hd)p�1
� 2d(p�1)

4b2p�1M
p�1
0

; (4.7)

we have for Scheme I the following estimate:

junhd j2 = jynh0 j2 + jznj2 �M0 for any n � 0: (4.8)

Proof. Using (4.3), we can write Scheme I in its variational form:

(
yn+1h0

� ynh0
k

; ~y) + �((ynh0 + zn; ~y))hd + (g(ynh0 ); ~y) = 0; 8~y 2 Y0;
(4.9)

(
zn+1 � zn

k
; ~z) + �((ynh0 + zn; ~z))hd = 0; 8~z 2 Z:

(4.10)



We let ~y = 2kynh0 in (4.9) and ~z = 2kzn in (4.10) and add these relations, since

2(a � b; b) = jaj2 � jbj2 � ja� bj2, we obtain

jyn+1h0
j2 � jynh0 j2 � jyn+1h0

� ynh0 j2 + jzn+1j2 � jznj2 � jzn+1 � znj2
+ 2k�kynh0 + znk2hd + 2k(g(ynh0 ); y

n
h0
) = 0:

By using (4.4) in Lemma 2.1, we �nd

jyn+1h0
j2 � jynh0 j2 � jyn+1h0

� ynh0 j2 + jzn+1j2 � jznj2 � jzn+1 � znj2

+ 2k�kynh0 + znk2hd + kb2p�1

Z



(ynh0 )
2pdx � 2kc1j
j:

Now, let ~y = k(yn+1h0
� ynh0 ) in (4.9):

jyn+1h0
� ynh0 j2 + k�((ynh0 + zn; yn+1h0

� ynh0 ))hd + k(g(ynh0 ); y
n+1
h0

� ynh0 ) = 0:

We obtain by using Cauchy-Schwarz inequality and Lemma 2.3

jyn+1h0
� ynh0 j2 � k�kynh0 + znkhd kyn+1h0

� ynh0khd + kjg(ynh0)j jyn+1h0
� ynh0 j

� k�
1

S1(h0; hd)
kynh0 + znkhd jyn+1h0

� ynh0 j+ k2jg(ynh0)j2 +
1

4
jyn+1h0

� ynh0 j2

� 1

2
jyn+1h0

� ynh0 j2 + k2jg(ynh0 )j2 +
k2�2

S1(h0; hd)2
kynh0 + znk2hd :

Therefore

jyn+1h0
� ynh0 j2 � 2k2jg(ynh0 )j2 +

2k2�2

S1(h0; hd)2
kynh0 + znk2hd :

We can bound jzn+1 � znj2 by the same method. Let ~z = k(zn+1 � zn) in (4.10):

jzn+1 � znj2 + k�((ynh0 + zn; zn+1 � zn))hd = 0:

We therefore obtain using Lemma 2.2 with h = hd,

jzn+1 � znj2 � k�kynh0 + znkhd kzn+1 � znkhd
� k�

1

S1(hd)
kynh0 + znkhd jzn+1 � znj:

Therefore

jzn+1 � znj2 � k2�2

S1(hd)2
kynh0 + znk2hd :

Combining these relations, we see that

jyn+1h0
j2 � jynh0 j2 + jzn+1j2 � jznj2 + (2k� � k2�2

S1(hd)2
� 2k2�2

S1(h0; hd)2
)kynh0 + znk2hd

+ kb2p�1

Z



(ynh0 )
2pdx � 2kc1j
j+ 2k2jg(ynh0)j2:



Using (4.5) pointwise and Lemma 2.3, we obtain

k2jg(ynh0 )j2 � 2k2b22p�1

Z



(ynh0 )
4p�2dx+ k2c2j
j

� 2k2b22p�1jynh0 j2p�21

Z



(ynh0 )
2pdx + k2c2j
j

� 2k2b22p�1
S2(h0)p�1

jynh0 j2p�2
Z



(ynh0 )
2pdx+ k2c2j
j:

(4.11)

This yields

jyn+1h0
j2 � jynh0 j2 + jzn+1j2 � jznj2 + (2k� � k2�2

S1(hd)2
� 2k2�2

S1(h0; hd)2
)kynh0 + znk2hd

+ (kb2p�1 �
4k2b22p�1
S2(h0)p�1

jynh0 j2p�2)
Z



(ynh0 )
2pdx � 2kc1j
j+ 2k2c2j
j:

Since S1(hd) = hd=2, S1(h0; hd) =
1
2

p
h0hd, S2(h0) = h0;

jyn+1h0
j2 � jynh0 j2 + jzn+1j2 � jznj2 + 2k�(1� 2k�

h2d
� 4k�

2dh2d
)kynh0 + znk2hd

+ (kb2p�1 �
4k2b22p�1
hp�10

jynh0 j2p�2)
Z



(ynh0 )
2pdx � 2kc1j
j+ 2k2c2j
j:

We are now ready to prove Theorem 2.1 by induction:

� q = 0 is obvious since jy0h0 j2 + jz0j2 �M0.

� Assuming (4.8) is correct up to q = n, we then have jynh0 j2 + jznj2 �M0.

� For q = n+ 1, using condition (4.6) and (4.7), we write

jyn+1h0
j2 � jynh0 j2 + jzn+1j2 � jznj2 + k�kynh0 + znk2hd � 2kc1j
j+ 2k2c2j
j:

With the use of Lemma 2.2 and jynh0 + znj2 = jynh0 j2 + jznj2, we obtain

jyn+1h0
j2 + jzn+1j2 � (1 � 2k�)(jynh0 j2 + jznj2) + 2kc1j
j+ 2k2c2j
j:

Using above inequality corresponding to n; n� 1; : : : ; 1; 0, we obtain

jyn+1h0
j2 + jzn+1j2 � (1� 2k�)n+1(jy0h0 j2 + jz0j2)

+ (1 + (1� 2k�) + (1 � 2k�)2 + � � �+ (1 � 2k�)n)(2kc1j
j+ 2k2c2j
j)
� (1� 2k�)n+1(jy0h0 j2 + jz0j2) + 1

1� (1� 2k�)
(2kc1j
j+ 2k2c2j
j):

Therefore

jyn+1h0
j2 + jzn+1j2 � (1� 2k�)n+1(jy0h0 j2 + jz0j2) +

j
j
�
(c1 +K0c2) �M0: (4.12)



Hence (4.8).

Remark 1. By using the same method, we observe that the stability condition for

the classical explicit approximation scheme of (4.1) (i.e. two levels in time, one

level in space) reads
k

h2d
� 1

8�

and
k

hp�1d

� 1

4b2p�1M
p�1
0

: (4.13)

Since for d � 1, 2d

2+2d
> 1

2
, we observe an improved stability for any d � 1. When

the nonlinear e�ect is strong, that is when (4.7) and (4.13) are dominant, the

stability condition of the nonlinear galerkin method is better. The time step can

be taken about 2d(p�1) larger than the step size if we deal with uhd directly.

Remark 2. From (4.12), we see that there is an absorbing set in the L2{norm for

the approximate solution. That is there exists an R0 > 0 (R0 =
j
j
� (c1 +K0c2)),

which depends only on g (and not on k and h), such that the ball centered at origin

with radius R, BR(0), for any R > R0 absorbs the solutions: namely for any initial

data u0, we have jynh0 j2 + jznj2 � R when n is large enough.

Remark 3. We have better stability results for Scheme I'. But the equation involving

z becomes implicit which might add the complexity of computation.

In order to present the stability condition for Scheme II, we need the following

well-known result:

Lemma. (Discrete Gronwall Lemma)

Let an; bn be two nonnegative sequences satisfying

an+1 � an

k
+ �an+1 � bn; bn � b; 8n � 0:

Then,

an � 1

(1 + k�)n
a0 +

1 + k�

�
(1 � 1

(1 + k�)n+1
)b; 8n � 0;

provided k > 0 and 1 + k� > 0:

Theorem 2.2.

Assuming k � K0 for some K0 �xed, we set

M1 = jyh0 j2 + jz0j2 + 1 + 4K0�

4�
(2c1 + c2K0)j
j:

Then if
k

(hd)p�1
� 2d(p�1)

2b2p�1M
p�1
1

; (4.14)



we have for Scheme II the following estimate:

jynh0 j2 + jznj2 �M1 for all n � 0:

Proof. Again, we �rst write Scheme II in its variational form

(
yn+1h0

� ynh0
k

; ~y) + �((yn+1h0
+ zn+1; ~y))hd + (g(ynh0 ); ~y) = 0; 8~y 2 Y0;

(4.15)

(
zn+1 � zn

k
; ~z) + �((yn+1h0

+ zn+1; ~z))hd = 0; 8~z 2 Z:
(4.16)

We let ~y = 2kyn+1h0
in (4.15) and ~z = 2kzn+1 in (4.16) and use 2(a � b; a) =

jaj2 � jbj2 + ja� bj2 and inequality (4.4). We obtain after adding these relations

jyn+1h0
j2�jynh0 j2+jyn+1h0

�ynh0 j2+jzn+1j2�jznj2+jzn+1�znj2+2k�kyn+1h0
+zn+1k2hd

= �2k(g(ynh0); yn+1h0
) = �2k(g(ynh0); yn+1h0

� ynh0 )� 2k(g(ynh0); y
n
h0
)

� �2k(g(ynh0); yn+1h0
� ynh0) � kb2p�1

Z



(ynh0 )
2pdx + 2kc1j
j;

jyn+1h0
j2 � jynh0 j2 + jyn+1h0

� ynh0 j2 + jzn+1j2 � jznj2 + jzn+1 � znj2

+2k�kyn+1h0
+zn+1k2hd +kb2p�1

Z



(ynh0 )
2pdx � �2k(g(ynh0); yn+1h0

�ynh0)+2kc1j
j:

Now using formula (4.11)

� 2k(g(ynh0); y
n+1
h0

� ynh0 ) � 2kjg(ynh0)j jyn+1h0
� ynh0 j � jyn+1h0

� ynh0 j2 + k2jg(ynh0)j2

� jyn+1h0
� ynh0 j2 +

2k2b22p�1
S2(h0)p�1

jynh0 j2p�2
Z



(ynh0 )
2pdx+ k2c2j
j:

We therefore obtain

jyn+1h0
j2 � jynh0 j2 + jzn+1j2 � jznj2 + jzn+1 � znj2 + 2k�kynh0 + znk2hd

+ kb2p�1(1� 2kb2p�1
S2(h0)p�1

jynh0 j2p�2)
Z



(ynh0 )
2pdx � 2kc1j
j+ k2c2j
j:

Lemma 2.2 yields then

jyn+1h0
j2 � jynh0 j2 + jzn+1j2 � jznj2 + 4k�jynh0 + znj2 � 2kc1j
j+ k2c2j
j:

Since

jynh0 + znj2 = jynh0 j2 + jznj2;



we have

jyn+1h0
j2 � jynh0 j2 + jzn+1j2 � jznj2

k
+ 4�(jyn+1h0

j2 + jzn+1j2) � 2c1j
j+ kc2j
j:

Now the discrete Gronwall lemma implies

jynh0 j2+jznj2 �
1

(1 + 4k�)n
(jy0h0 j2+jz0j2)+

1 + 4k�

4�
(1� 1

(1 + 4k�)n
)j
j(2c1+K0c2):

Therefore

jynh0 j2 + jznj2 � 1

(1 + 4k�)n
(jy0h0 j2 + jz0j2) + 1 + 4k�

4�
j
j(2c1 +K0c2);

jynh0 j2 + jznj2 �M1:

Remark 4. Comparing the stability condition of Scheme II with that of the standard

semi-implicit approximation scheme of (4.1), we see that the size of the time step

can be taken 2d(p�1) times larger.

Remark 5. As in Remark 2, any ball BR(0) with R > R0 is an absorbing ball,

where R0 =
1+4k�
4� j
j(2c1 +K0c2):
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