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Abstract

This talk concerns the nonlinear dispersive waves in a water channel. Results from
the study of a new version of the classical Boussinesq model system for the two-way
propagation of water waves will be presented. The talk will feature presentations
about theoretical work, numerical analysis, implementation of numerical schemes and
the use of these schemes to better understand the models, reports on laboratory
experiments and comparisons of model predictions with real-world data. Some
interesting simulations will be presented, which include a new set of traveling waves of
permanent form, the generation of tidal waves and head-on collision of tidal waves.

1 Introduction

In this paper, we study the propagation of waves in a uniform horizontal channel of length
L0 �lled to a depth h with an incompressible perfect uid. Assuming the wave motion is
generated irrotationally and that it is uniform across the width of the channel, the two-
dimensional Euler equations are the full equations of motion. Since the numerical simulation
of Euler equations are rather challenging and costly (cf. [1]), especially when a relative long
time period is involved, further approximations are often made in practice. Assuming that
the maximum deviation a of the free surface from its undisturbed position is small relative
to h (small-amplitude waves), that the typical wavelength � is large relative to h (long
waves), and that the Ursell number S = a�2=h3 is of order one, the Euler equations may
be formally approximated by

�t � 1

6
�xxt = �ux � (u�)x;

ut � 1

6
uxxt = ��x � uux;

for (x,t) 2 
 = [0; L]� [0; T ];(1)

where L = L0=h, x is distance along the channel scaled by h, t is elapsed time scaled
by

p
h=g with g being the acceleration of gravity. The dependent variable � is such that

h(1 + �(x; t)) is the total depth at location x at time t, and u = u(x; t) is the horizontal

velocity scaled by c0 =
p
gh at the water level

q
2

3
h at the location x along the channel at

time t.

As pointed out in [4], the system (1) is formally equivalent and correct to the
Boussinesq's original system (cf. [6]) through �rst order with regard to the small parameter
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� = a=h, and has the same formal status as the famous KdV equation which describe waves
moving in one direction. Among a class of formally equivalent systems studied in [4],
system (1) is particularly interesting because that the dispersive relation is stabilizing for
all wave numbers and the natural initial-boundary-value problems that arise in laboratory
experiments are well-posed, which is to say that when (1) is associated with the initial and
boundary conditions

�(0; t) = h1(t); �(L; t) = h2(t); �(x; 0) = h0(x);

u(0; t) = v1(t); u(L; t) = v2(t); u(x; 0) = v0(x);
(2)

which satisfy the consistency requirements

h1(0) = h0(0); h2(0) = h0(L); v1(0) = v0(0); v2(0) = v0(L);

there exists an unique solution over a positive time interval and the solution is as regular
as the initial and boundary data a�ords.

2 Numerical Scheme

In this section, we present the scheme which was shown in [2] to be fourth-order
accurate both in time and in space, unconditional stable, and have optimal computational
complexity, which is to say the operation cost per time step is of order M with M being
the number of grid points in the spatial discretization.

The numerical scheme is based on the integral equations of (1). Inverting the operator
(1� 1

6
@2x) subject to the boundary conditions in (2) and integrating the right-hand side by

parts, one �nds

�t =

Z L

0

K(x; s)(u+ �u)ds+ S(L� x)h01 + S(x)h02;

ut =

Z L

0

K(x; s)(�+
1

2
u2)ds+ S(L� x)v01 + S(x)v02;

(3)

with

K(x; s) =
1

12

�
S(L� x� s) + sign(x� s)S(L� jx� sj)�

and

S(x) =
sinh(x=

p
6)

sinh(L=
p
6)
:

Let �t be the step-size for the temporal discretization and �x the length of the spatial
discretization; let (M + 1) be the number of spatial mesh points, so that M�x = L. The
equations in (3) are �rst discretized in space via numerical quadrature; the resultant system
of ordinary di�erential equations are then integrated forward in time by a �nite-di�erence,
predictor-corrector method.

Spatial Discretization The spatial discretization is e�ected by approximating �(xi) =R L

0
K(xi; s)y(s)ds; i = 0; 1; � � � ;M . Using the trapezoidal rule with boundary corrections



and taking account of the fact that K(x; s) is discontinuous at x = s, one has that

�(xi) �1

2
�x

�
Ki(0)y(0)+ (Ki(i�x�) +Ki(i�x+))y(i�x) +Ki(L)y(L)

�

+�x
M�1X

j=1;j 6=i

Ki(j�x)y(j�x) +
1

12
�x2

�
(Ki(s)y(s))

0
��
0+

� (Ki(s)y(s))
0
��
i�x�

+(Ki(s)y(s))
0
��
i�x+

�(Ki(s)y(s))
0
��
M�x�

�

where Ki(s) = K(xi; s). The derivatives y0(i�x), i = 0; � � � ;M , may be replaced by the
second-order �nite di�erences. Therefore �(xi) may be approximated by a function �i(y)
where y = (y0; � � � ; yM) with yi = y(i�x).

The semi-discrete algorithm of (3) is then to �nd vectors n = (n0(t); � � � ; nM(t)) and
w = (w0(t); � � � ; wM(t)) which are approximations to � and u respectively, such that for
i = 1; � � � ;M � 1,

(ni)t = �i(w+ n �w) + S(L� xi)h
0
1 + S(xi)h

0
2; n0 = h1; nM = h2;

(wi)t = �i(n+
1

2
w �w) + S(L� xi)v

0
1 + S(xi)v

0
2; w0 = v1; wM = v2:

(4)

The symbol n � w denotes the component-wise product of n and w, which is to say
n �w = (�0u0; � � � ; �MuM).

If M + 1 is the number of spatial mesh points, a direct evaluation of �i(y), i =
0; 1; � � � ;M , will involve on the order of M2 operations. To reduce the computation to
order M operations, an acceleration technique which was put forward in [3] and [2] is used
in the computation.

Temporal Discretization The system (4) may be written as a system of ordinary
di�erential equations

d

dt
u = f(t;u);(5)

where u � (n;w)T . The Adams fourth-order predictor-corrector scheme (P4EC4E) is used
for the integration of (5) in time. The numerical scheme for u is

~ul+1 = ul +
�t

24

�
55f l(ul)� 59f l�1(ul�1) + 37f l�2(ul�2)� 9f l�3(ul�3)

�
;

ul+1 = ul +
�t

24

�
9f l+1(~ul+1) + 19f l(ul)� 5f l�1(ul�1) + f l�2(ul�2)

�
;

where f l(ul) = f(l�t;ul). In case the exact values of the boundary terms h01; h
0
2; v

0
1 and v02

in (4) are not available, they are calculated via the fourth-order central di�erence formula.

3 Existence of oscillatory waves of permanent form and their stability.

In paper [5], an exact oscillatory traveling-wave solution

uex(x; t; x0) = �15

2
sech2

�
3p
10

(x� x0 � 5

2
t)

�
;

�ex(x; t; x0) =
15

4

�
2sech2

�
3p
10

(x� x0 � 5

2
t)

�
� 3sech4

�
3p
10

(x� x0 � 5

2
t)

��
;

(6)



Exact solution subjected to an ocsilatary disturbance

Fig. 1. Overview of the wave pro�le

which consists a big trough in the middle, a smaller crest in front the trough and another
after the trough, was found. Solution (6) represents a zero-volume, namely

R
+1

�1
�exdx = 0,

traveling wave of permanent form. In this experiment, we subjected the exact solution to
two kinds of disturbances and observed the evolution of the wave for a relatively long time
interval. In both cases, we took L = 800, �x = �t = 1=64, and conducted the simulation
for t 2 [0; 180].

In the �rst case, the perturbation on the exact solution is oscillatory and has a volume
�0:0237. More precisely,

�0(x) = (1 + 0:01 sin(x))�ex(x; 0; 240);

u0(x) = (1 + 0:01 cos(x))uex(x; 0; 240);

was used as initial condition. An overview of the evolution is plotted in �gure 1, which
shows that a leading steady traveling wave followed by a small tail were developed as time
evolves.

In �gure 2, we compared the leading wave of the solution at t = 180 with the exact
solution (6). The trough of the leading wave has a depth �3:544 which is not as deep as
the one in (6), and the crests have a height 1:0265 which is about 82:1% of that in (6).
The velocity pro�le of the leading wave is very close to that in (6). Based on the numerical
data, we found that the phase velocity of the leading wave is approximately 2:4688 which
is slight smaller than 2:5, the phase velocity of the exact solution. It is worth to note that
the leading wave has a volume which equals to �0:41. Since our numerical computation
preserves the mass conservation, which was con�rmed throughout the computation, the tail
part of the solution has a volume 0:41� 0:0237 = 0:3827.

A closer look of the tail (by stretching the y-axis) can be found in �gure 3 which shows
that the tail consists a leading solitary wave followed by a dispersive tail of an even smaller
amplitude. The leading solitary wave can be understood by the positive volume of the tail,
which is equal to 0:3827.



680 681 682 683 684 685 686 687 688 689 690
−4

−3

−2

−1

0

1

2

x

Wave profile at t=180 compared with exact solution, hx=ht=1/64

680 681 682 683 684 685 686 687 688 689 690
−1

0

1

2

3

4

5

6

7

8

x

Velocity profile at t=180 compared with exact solution, hx=ht=1/64

Fig. 2. The leading wave pro�le of (�; u) at t = 180 (solid line) compared with (6) (dash line)
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Fig. 3. Wave and velocity pro�les at t = 180

In the second case, solution (6) was subjected to a volume-free disturbance, namely

�0(x) = (1 + 0:01)�ex(x; 0; 240);

u0(x) = uex(x; 0; 240);
(7)

was used as initial data. Although the disturbance in this case is rather di�erent from the
one in the �rst case, it is worth to note that the solutions at t = 180 are very similar. The
leading oscillatory wave developed in this case is almost identical to that in the �rst case.
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