MA 174: Multivariable Calculus
EXAM II (practice)

NAME \qquad INSTRUCTOR \qquad

NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper.

Points awarded

1. (5 pts) \qquad 9. (5 pts)
2. (5 pts) \qquad
3. (5 pts) \qquad
4. (5 pts) \qquad 9. (5 pts)
5. (5 pts) \qquad
6. (5 pts) \qquad
7. (5 pts) \qquad
8. (5 pts) \qquad
9. (5 pts) \qquad 9. (5 pts) \qquad

Total Points: \qquad

1. Suppose $z=f(x, y)$, where $x=e^{t}$ and $y=t^{2}+3 t+2$. Given that $\frac{\partial z}{\partial x}=2 x y^{2}-y$ and $\frac{\partial z}{\partial y}=2 x^{2} y-x$, find $\frac{d z}{d t}$ when $t=0$.
A. 3
B. 6
C. 15
D. 9
E. -1
2. Find the directional derivative of the function $f(x, y, z)=x^{2} y^{2} z^{6}$ at the point $(1,1,1)$ in the direction of the vector $\langle 2,1,-2\rangle$.
A. -6
B. -2
C. 0
D. 2
E. 6
3. Find the direction in which the function $z=x^{2}+3 x y-\frac{1}{2} y^{2}$ is increasing most rapidly at $(-1,-1)$.
A. $3 i$
B. $5 \vec{i}+2 \vec{j}-\vec{k}$
C. $-5 \vec{i}-2 \vec{j}$
D. $2 \vec{i}-5 \vec{j}$
E. $\sqrt{29}$
4. If $x z^{3}-x y z=4$, find $\frac{\partial z}{\partial x}$.
A. $\frac{\partial z}{\partial x}=\frac{x z}{z^{3}-y^{2}}$
B. $\frac{\partial z}{\partial x}=\frac{3 x z^{2}-x y}{z^{3}-y z}$
C. $\frac{\partial z}{\partial x}=2 x+x y$
D. $\frac{\partial z}{\partial x}=\frac{y z-z^{3}}{3 x z^{2}-x y}$
E. $\frac{\partial z}{\partial x}=z^{3}-y z$
5. The directional derivative of $f(x, y)=x^{3} e^{-2 y}$ in the direction of greatest increase of f at the point $(1,0)$ is
A. 6
B. 5
C. $\sqrt{5}$
D. 13
E. $\sqrt{13}$
6. By using a linear approximation of $f(x, y)=\sqrt{x^{2}+y}$ at $(4,9)$, compute the approximate value of $f(5,8)$.
A. 5.2
B. 5.3
C. 5.5
D. 5.7
E. 5.9
7. The max and min values of $f(x, y, z)=x y z$ on the surface $2 x^{2}+2 y^{2}+z^{2}=2$ are
A. $\pm \frac{\sqrt{2}}{9}$
B. $\pm \frac{\sqrt{3}}{9}$
C. $\pm \frac{\sqrt{6}}{9}$
D. $\pm \frac{2 \sqrt{2}}{9}$
E. $\pm \frac{2 \sqrt{3}}{9}$
8. Find the maximum value of $x^{2}+y^{2}$ subject to the constraint $x^{2}-2 x+y^{2}-4 y=0$.
A. 0
B. 2
C. 4
D. 16
E. 20
9. If we use the method of Lagrange multipliers to find the maximum of $f(x, y)=$ $2 x^{2}-y^{2}-y$ subject to the constraint $x^{2}+y^{2}=1$, the Lagrange multipliers λ that we find are:
A. $\lambda=2$
B. $\lambda=0$
C. $\lambda=-1$
D. $\lambda=2$ and $\lambda=-1$
E. $\lambda=0$ and $\lambda=-1$
10. For the function $f(x, y)=x^{3}+2 y^{2}+x y-2 x+5 y$, the point $(-1,-1)$ yields
A. a local minimum
B. a local maximum
C. a saddle point
D. $\nabla f(-1,-1) \neq 0$
E. The Second Derivative Test gives no information at $(-1,-1)$
11. Use the method of reversing the order of integration to compute $\int_{0}^{1} \int_{2 x}^{2} e^{y^{2}} d y d x$
A. $\frac{1}{4}\left(e^{4}-1\right)$
B. $\frac{1}{2}\left(e^{2}-1\right)$
C. $\frac{1}{6}\left(e^{3}-1\right)$
D. $\frac{1}{2}\left(e^{2}-e\right)$
E. $\frac{1}{4}\left(e^{2}-e\right)$
12. A flat plate of constant density occupies the region in the $x y$-plane bounded by the curves $x=0$ and $x=\sqrt{1-y^{2}}$. If (\bar{x}, \bar{y}) is the center of mass, then \bar{x} equals
A. $\frac{2}{3 \pi}$
B. $\frac{1}{2}$
C. $\frac{2}{\pi}$
D. $\frac{3}{2 \pi}$
E. $\frac{4}{3 \pi}$
13. Find the volume of the solid whose base is the region in the $x y$-plane that is bounded by the parabola $y=4-x^{2}$ and the line $y=3 x$, while the top of the solid is bounded by the plane $z=x+4$.
A. $\frac{625}{12}$
B. $\frac{625}{11}$
C. $\frac{542}{13}$
D. $\sqrt{15} \pi$
E. $\frac{\sqrt{8} \pi}{3}$
14. Which of the following integrals equals the volume of the solid bounded by $x=0, y=0, z=0$ and $2 x+y+z=4$.
A. $\int_{0}^{4} \int_{0}^{4} \int_{0}^{2} 1 d x d y d z$
B. $\int_{0}^{2} \int_{0}^{4-2 x} \int_{0}^{4-y} 1 d z d y d x$
C. $\int_{0}^{4} \int_{0}^{2 x} \int_{0}^{4-y} 1 d z d y d x$
D. $\int_{0}^{2} \int_{0}^{4-2 x} \int_{0}^{4-2 x-y} 1 d z d y d x$
E. $\int_{0}^{2} \int_{0}^{1} \int_{0}^{1} 1 d z d x d y$
15. Evaluate $\iint_{R}(x+2 y) d A$ where R is the region of the plane bounded by $x+y=2, x=y, y=0$.
A. $1 / 3$
B. $5 / 3$
C. $7 / 3$
D. $11 / 3$
E. $14 / 3$
16. Let

$$
S: x=u-v, y=u v, z=u+v^{2}
$$

If $(0, b, 5)$ is a point on the tangent plane to S at $(0,1,2)$ on S, then $b=$
A. 3
B. 1
C. -2
D. 0
E. 2
17. Find $\left(\frac{\partial w}{\partial y}\right)_{x}$ at $(w, x, y, z)=(4,2,1,-1)$ if

$$
w=x^{2} y^{2}+y z-z^{3}, \quad x^{2}+y^{2}+z^{2}=6
$$

A. -1
B. 1
C. 3
D. 5
E. 7
18. Consider the function $f(x, y)=2 x^{2}-3 x y+y^{2}$. Find two unit vectors such that the directional derivative of f at the point $(1,1)$ in these two directions is 1 . Answer: $(1,0)$ and $(0,-1)$
19. Find cubic approximation of $f(x, y)=\frac{1}{1-x-y+x y}$ near the origin.

Answer: $1+x+y+x^{2}+x y+y^{2}+x^{3}+x^{2} y+x y^{2}+y^{3}$
20. Find a equation for the tangent plane of

$$
\cos (\pi x)-x^{2} y+e^{x z}+y z=4 \quad \text { at } \quad(0,1,2)
$$

Answer: $2 x+2 y+z-4=0$
21. Find absolute maximum and minimum values of

$$
f(x, y)=x^{2}+2 y^{2}-x
$$

on the $\operatorname{disc} x^{2}+y^{2} \leq 1$.
Answer: $\max =\frac{9}{4}, \min =-\frac{1}{4}$

