MA 174: Multivariable Calculus
Final EXAM (practice)

NAME \qquad Class Meeting Time: \qquad

NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper.

Points awarded

1. (5 pts) \qquad 9. (5 pts) \qquad
2. (5 pts) \qquad
3. (5 pts) \qquad
4. (5 pts) \qquad
5. (5 pts) \qquad
6. (5 pts) \qquad
7. (5 pts) \qquad
8. (5 pts) \qquad
9. (5 pts) \qquad
10. (5 pts) \qquad 9. (5 pts) \qquad

Total Points: \qquad

Surface Integral:

If R is the shadow region of a surface S defined by the equation $f(x, y, z)=c$, and g is a continuous function defined at the points of S, then the integral of g over S is the integral

$$
\iint_{S} g(x, y, z) d \sigma=\iint_{R} g(x, y, z) \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A
$$

where \mathbf{p} is a unit vector normal to R and $|\nabla f \cdot \mathbf{p}| \neq 0$.

Green's Theorem:

$$
\oint_{C} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

where C is a positively oriented simple closed curve enclosing region R, and P, Q have continuous partial derivatives.

$\underline{\text { Divergence Theorem: }}$

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D} \nabla \cdot \mathbf{F} d V
$$

where D is a simple solid region with boundary S given outward orientation, and component functions of \mathbf{F} have continuous partial derivatives.

Stokes' Theorem:

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d \sigma
$$

where C, given counterclockwise direction, is the boundary of oriented surface S, \mathbf{n} is the surface's unit normal vector and component functions of \mathbf{F} have continuous partial derivatives.

1. The arclength of the curve $\vec{r}(t)=\frac{2}{3} t^{3 / 2} \vec{i}+\frac{2}{3}(2-t)^{3 / 2} \vec{j}+(t-1) \vec{k}$ for $\frac{1}{4} \leq t \leq \frac{1}{2}$ is:
A. $\sqrt{2} / 4$
B. $\sqrt{3} / 4$
C. $\sqrt{2} / 2$
D. $3 / 2$
E. $1 / 2$
2. Find the directional derivative of the function $f(x, y, z)=x^{2} y^{2} z^{6}$ at the point $(1,1,1)$ in the direction of the vector $\langle 2,1,-2\rangle$.
A. -6
B. -2
C. 0
D. 2
E. 6
3. The function $f(x, y)=3 x+12 y-x^{3}-y^{3}$ has
A. no critical point
B. exactly one saddle point
C. two saddle points
D. two local minimum points
E. two local maximum points
4. The function $f(x, y)=x^{3}+y^{3}-3 x y$ has how many critical points?
A. None
B. One
C. Two
D. Three
E. More than three
5. The max and min values of $f(x, y, z)=x y z$ on the surface $2 x^{2}+2 y^{2}+z^{2}=2$ are
A. $\pm \frac{\sqrt{2}}{9}$
B. $\pm \frac{\sqrt{3}}{9}$
C. $\pm \frac{\sqrt{6}}{9}$
D. $\pm \frac{2 \sqrt{2}}{9}$
E. $\pm \frac{2 \sqrt{3}}{9}$
6. Find the maximum value of $x^{2}+y^{2}$ subject to the constraint $x^{2}-2 x+y^{2}-4 y=0$.
A. 0
B. 2
C. 4
D. 16
E. 20
7. Find the parametric equations for the line passing through $P=(2,1,-1)$, and normal to the tangent plane of

$$
4 x+y^{2}+z^{3}=8
$$

at P.
A. $x=t+4, y=t, z=-t$
B. $x=4 t+2, y=2 t+1, z=3 t-1$
C. $\frac{x-2}{4}=\frac{y-1}{2}=\frac{z-1}{3}$
D. $\frac{x-4}{2}=\frac{y-3}{9}=\frac{2-3}{-1}$
E. $x=4 t-2, y=2 t-1, z=-3 t+1$
8. One vector perpendicular to the plane that is tangent to the surface $2 x^{2}+$ $x y^{2}+z^{3}=2$ at the point $(-1,1,1)$ is:
A. $-3 \vec{i}-2 \vec{j}+3 \vec{k}$
B. $-\overrightarrow{+} \vec{j}+\vec{k}$
C. $-\overrightarrow{+} 5 \vec{k}$
D. $2 \overrightarrow{-} \vec{j}+\vec{k}$
E. $5 \vec{i}+2 \vec{j}+3 \vec{k}$
9. Suppose $z=f(x, y)$, where $x=e^{t}$ and $y=t^{2}+3 t+2$. Given that $\frac{\partial z}{\partial x}=2 x y^{2}-y$ and $\frac{\partial z}{\partial y}=2 x^{2} y-x$, find $\frac{d z}{d t}$ when $t=0$.
A. 3
B. 6
C. 15
D. 9
E. -1
10. Find the equation in spherical coordinates for $x^{2}+y^{2}=x$.
A. $\rho=\sin \phi \cos \theta$
B. $\rho \sin \phi=\sin ^{2} \phi \cos \theta$
C. $\rho=\sin \phi \cos \phi$
D. $\rho^{2}=\rho \cos \phi$
E. $\rho^{2} \sin ^{2} \phi=\rho \sin \phi \cos \theta$
11. Let $S: x=u-v, y=u v, z=u+v^{2}$. If $(0, b, 5)$ is a point on the tangent plane to S at $(0,1,2)$ on S, then $b=$
A. 3
B. 1
C. -2
D. 0
E. 2
12. Find the area of the region bounded by $x=y-y^{2}$ and $x+y=0$
A. $1 / 3$
B. $2 / .3$
C. 1
D. $4 / 3$
E. $5 / 3$
13. Find the area in the plane that lies inside the curve $r=1+\cos \theta$ and outside the circle $r=1$.
A. $\pi / 2$
B. $1+\pi / 2$
C. $1+\pi / 4$
D. $2+\pi / 2$
E. $2+\pi / 4$
14. A sheet of metal occupies the region bounded by the x-axis and the parabola $y=1-x^{2}$. At each point, the density is equal to the distance from the y-axis. Find the mass of the sheet.
A. $1 / 4$
B. $1 / 3$
C. $1 / 2$
D. $2 / 3$
E. 1
15. Evaluate $\int_{C} y d x+x d y+2 z d z$, where

$$
C: F(t)=t(t-1) e^{\sqrt{t}} \vec{i}+\sin \left(\frac{\pi}{2} t^{2}\right) \vec{j}+\frac{t}{t^{2}+1} \vec{k}, \quad 0 \leq t \leq 1
$$

A. 1
B. $\frac{1}{2}$
C. $\frac{1}{4}$
D. 0
E. -1
16. Let C be the boundary of the triangle with vertices $(0,0),(1,0),(1,1)$ oriented counterclockwise. Then $\int_{C} y d x-x d y=$
A. -1
B. 0
C. $\frac{1}{2}$
D. $-\frac{1}{2}$
E. 2
17. Let $\vec{F}=\nabla f, f=\sqrt{x^{2}+y^{2}}$. If C is any smooth curve joining the points $(1,1),(2,2)$, then $\int_{C} 2 \vec{F} \cdot d \vec{r}=$
A. $\sqrt{2}$
B. $\sqrt{12}$
C. $-\sqrt{2}$
D. 1
E. $2 \sqrt{2}$
18. Let D be the solid region bounded by the surfaces $x^{2}+z^{2}=4, y=1, y=0$, and S be the boundary of D. If $\vec{F}(x, y, z)=\frac{1}{3}\left(x^{3} \vec{i}+y^{3} \vec{j}+z^{3} \vec{k}\right)$, then with \vec{n} being the unit outward normal, evaluate $\iint_{S} \vec{F} \cdot \vec{n} d \sigma$.
A. 8π
B. $\frac{28}{3} \pi$
C. 28π
D. 10π
E. 20
19. Find a, b in the following formula which connect the triple integral from rectangular coordinates to spherical coordinate

$$
\int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} \int_{0}^{\sqrt{x^{2}+y^{2}}} y d z d y d x=\int_{0}^{\pi / 2} \int_{a}^{\pi / 2} \int_{0}^{3 \csc \varphi} b d \rho d \varphi d \theta
$$

A. $a=0, b=\rho^{2} \sin \varphi$
B. $a=\pi / 4, b=\rho^{3} \sin \varphi \sin \theta$
C. $a=\pi / 4, b=\rho^{3} \sin ^{2} \varphi \sin \theta$
D. $a=\frac{\pi}{3}, b=\rho^{3} \sin ^{2} \varphi \sin \theta$
E. $a=-\pi / 2, b=\rho^{3} \sin ^{2} \varphi$
20. $\vec{F}=2 x y \vec{i}+\left(x^{2}+3 y^{2}\right) \vec{j}$ is a conservative vector field, i.e., $\vec{F}=\nabla f$. If $f(0,0)=0$, then $f(1,1)=$
A. 1
B. 2
C. 3
D. 2
E. 4
21. Evaluate $\iint_{S} y d S$, where S is the part of the plane $x+2 y+z=1$ in the 1st octant.
A. $\frac{1}{2 \sqrt{6}}$
B. $\frac{1}{2}$
C. $\frac{\sqrt{6}}{24}$
D. $\sqrt{5}$
E. $\frac{\sqrt{5}}{24}$
22. If $\vec{F}(x, y, z)=x z \vec{i}+x y z \vec{j}-y^{2} \vec{k}$, then curl \vec{F} evaluated at $(1,1,1)$ equals
A. $3 \vec{i}-\vec{j}+\vec{k}$
B. $3 \vec{i}+\vec{j}-\vec{k}$
C. $\vec{i}+\vec{j}-\vec{k}$
D. $-3 \vec{i}+\vec{j}+\vec{k}$
E. $\vec{i}-\vec{j}+2 \vec{k}$
23. Evaluate $\int_{0}^{2} \int_{x}^{2} e^{y^{2}} d y d x$.
A. $2\left(e^{4}-1\right)$
B. $e^{4}-1$
C. $\frac{e^{4}}{2}$
D. $\frac{e^{4}-1}{2}$
E. $e^{4}+1$
24. Let R be the region in the $x y$-plane bounded by $y=x, y=-x$ and $y=\sqrt{4-x^{2}}$. Evaluate the integral

$$
\iint_{R} y d A .
$$

A. $\frac{8 \sqrt{3}}{2}$
B. $\frac{8}{3 \sqrt{2}}$
C. $\frac{4}{\sqrt{2}}$
D. $\frac{8 \sqrt{2}}{3}$
E. $4 \sqrt{2}$
25. Find the surface area of the part of the surface $z=x^{2}+y^{2}$ below the plane $z=9$.
A. $\frac{\pi}{4}(3 \sqrt{3}-1)$
B. $\frac{\pi}{4}(3 \sqrt{3}-2 \sqrt{2})$
C. $\frac{\pi}{6}\left(37^{3 / 2}-1\right)$
D. $\frac{\pi}{6}\left(29^{3 / 2}-1\right)$
E. $\frac{\pi}{6}\left(2 y^{3 / 2}-1\right)$
26. Find a, b such that

$$
\int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} \int_{0}^{2} z^{2} x d z d y d x=\int_{0}^{2} \int_{0}^{a} \int_{0}^{b} z^{2} x d x d y d z
$$

A. $a=3, b=x$
B. $a=\sqrt{9-z^{2}}, b=3$
C. $a=3, b=\sqrt{9-y^{2}}$
D. $a=z, b=3$
E. $a=3, b=\sqrt{9-x^{2}}$
27. If $\vec{F}(x, y, z)=(x \sin x+y) \vec{i}+x y \vec{j}+(y z+x) \vec{k}$, then curl \vec{F} evaluated at $(\pi, 0,2)$ equals
A. $\pi \vec{i}-\vec{j}+\vec{k}$
B. $2 \vec{i}-\vec{j}-\vec{k}$
C. $2 \vec{i}-\pi \vec{j}+\vec{k}$
D. $2 \vec{i}-\vec{j}+\pi \vec{k}$
E. $2 \vec{i}+\vec{j}+\vec{k}$
28. Evaluate $\int_{C}(2 x+y z) d x+(2 y+x z) d y+x y d z$
where $c: \vec{r}(t)=t^{2}(1+t) \vec{i}+\cos \left(\frac{\pi}{2} t^{2}\right) \vec{j}+\frac{t^{2}+1}{t^{4}+1} \vec{k}, 0 \leq t \leq 1$.
A. 1
B. 2
C. 3
D. 4
E. 5
29. Evaluate $\iint_{S}\left(x^{2}+y^{2}+z^{2}\right) d S$ where S is the upper hemisphere of $x^{2}+y^{2}+z^{2}=2$.
A. 12π
B. 8π
C. 6π
D. 4π
E. 3π
30. Evaluate $\int_{C}-\frac{2 y}{x^{2}+y^{2}} d x+\frac{2 x}{x^{2}+y^{2}} d y$ where C is the circle $x^{2}+y^{2}=1$ oriented counterclockwise.
A. 2π
B. 4π, No to Green's theorem because the function is not continues at origin
C. 0
D. -4π
E. -2π
31. Calculate the surface integral $\iint_{S} \vec{F} \cdot \vec{n} d S$ where S is the sphere $x^{2}+y^{2}+z^{2}=2$ oriented by the outward normal and $\vec{F}(x, y, z)=5 x^{3} \vec{i}+5 y^{3} \vec{j}+5 z^{3} \vec{k}$.
A. $48 \sqrt{2} \pi$
B. 16π
C. 24π
D. $25 \sqrt{2} \pi$
E. 20π
32. What is the spherical coordinates $(\rho, \varphi, \theta)=$ \qquad and the cylindircal coordinates $(r, \theta, z)=$ \qquad for the point $(x, y, z)=$ $(1,1,1)$?
Answer: $\quad(\rho, \varphi, \theta)=\left(\sqrt{3}, \cos ^{-1}\left(\frac{1}{\sqrt{3}}\right), \frac{\pi}{4}\right)$
Answer: $(r, \theta, z)=\left(\sqrt{2}, \frac{\pi}{4}, 1\right)$

