MA 265: Linear Algebra

EXAM I (Practice)

Feb. 14, 2008

Points awarded			
	1. (6 pts)	10. (6 pts)	
	2. (6 pts)	11. (6 pts)	
	3. (6 pts)	12. (6 pts)	
	4. (6 pts)	13. (6 pts)	
	5. (6 pts)	14. (6 pts)	
	6. (6 pts)	15. (6 pts)	
	7. (6 pts)	16. (6 pts)	
	8. (6 pts)	17. (6 pts)	
	9. (6 pts)		

- 1. If $\begin{bmatrix} a-b & a+b \\ c-d & c+d \end{bmatrix} = \begin{bmatrix} 4 & 10 \\ 1 & -7 \end{bmatrix}$, find a,b,c, and d.
 - **A.** a = 7, b = 3, c = -3, d = -4.
 - **B.** a = -3, b = 3, c = 4, d = 7.
 - **C.** a = -7, b = -3, c = -3, d = -4.
 - **D.** a = 10, b = 6, c = -2, d = -5.
 - **E.** a = 10, b = 6, c = 9, d = 8.
- **2.** Let $A = [-1 \ 2 \ 4], \ B = [1 \ 2 \ -3]$ and $C = [-3 \ 0 \ 1]$. Compute $(BA^T)C$
 - **A.** $[-20 \ 0 \ -8]$
 - **B.** [20 0 8]
 - C. $[-27 \ 0 \ 9]$
 - **D.** $[27 \ 0 \ -9]$
 - **E.** $[11 \ 22 \ -33]$
- 3. For what values of a, b, and c is the following matrix symmetric:

$$\begin{bmatrix} 1 & 1 & a+1 \\ 1 & c & 2b \\ 2 & 4 & 1 \end{bmatrix}$$

- **A.** $a = \frac{1}{2}, \quad b = 2, \quad c = 1$
- **B.** $a=1, \quad b=2, \quad c=$ any number
- **C.** $a = \frac{1}{2}$, b = 1, c =any number
- **D.** $a = \frac{1}{2}, \quad b = 1, \quad c = 1$
- E. There is no such a, b, and c

4. Given
$$A = \begin{bmatrix} 1+i & 2-i \\ -3 & 1-2i \end{bmatrix}$$
 and $B = \begin{bmatrix} 2i & 1-i \\ 2+3i & 2 \end{bmatrix}$, then $AB = \begin{bmatrix} 2i & 1-i \\ 2+3i & 2 \end{bmatrix}$

A.
$$\begin{bmatrix} 5 - 6i & 6 - 2i \\ 8 - 7i & -1 + i \end{bmatrix}$$

B.
$$\begin{bmatrix} 5 + 6i & 6 - 2i \\ 8 - 7i & -1 - i \end{bmatrix}$$

C.
$$\begin{bmatrix} 5 - 6i & 6 + 2i \\ 8 - 7i & -1 + i \end{bmatrix}$$

D.
$$\begin{bmatrix} 5+6i & 6-2i \\ 8-7i & 1-i \end{bmatrix}$$

E.
$$\begin{bmatrix} 5 - 6i & -6 + 2i \\ 8 - 7i & -1 + i \end{bmatrix}$$

5. The reduced row echelon form of
$$A = \begin{bmatrix} 1 & 2 & 0 & -3 & 0 \\ 1 & 2 & 1 & -3 & 2 \\ 1 & 2 & 0 & -3 & 1 \\ 3 & 6 & 1 & -9 & 3 \end{bmatrix}$$
 is

$$\mathbf{A.} \begin{bmatrix} 1 & 0 & 0 & -3 & 0 \\ 0 & 1 & 0 & 2 & 1 \\ 0 & 0 & 1 & 3 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{B.} \begin{bmatrix} 1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{C.} \begin{bmatrix} 1 & 2 & 0 & -3 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{D.} \begin{bmatrix} 1 & 2 & 0 & -3 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{E.} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

6. Let

$$A = egin{bmatrix} 0 & 1 & 2 \ 1 & 1 & 1 \ 1 & 0 & 0 \end{bmatrix} \quad ext{ and } \quad extbf{x}_i = A^{-1} extbf{b}_i$$

with $\mathbf{b}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ and $\mathbf{b}_3 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$. Which of the following is true?

$$\mathbf{A.} \ \mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{x}_2 = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}, \ \mathbf{x}_3 = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{B.} \ \mathbf{x}_1 = \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \ \mathbf{x}_2 = \begin{bmatrix} 1\\-3\\2 \end{bmatrix}, \ \mathbf{x}_3 = \begin{bmatrix} 1\\-5\\3 \end{bmatrix}$$

C.
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} -5 \\ -3 \\ 1 \end{bmatrix}$, $\mathbf{x}_3 = \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}$

$$\mathbf{D.} \ \mathbf{x}_1 = \begin{bmatrix} 1 \\ -5 \\ 3 \end{bmatrix}, \ \mathbf{x}_2 = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}, \ \mathbf{x}_3 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

$$\mathbf{E.} \ \mathbf{x}_1 = \begin{bmatrix} -2\\0\\1 \end{bmatrix}, \ \mathbf{x}_2 = \begin{bmatrix} 2\\2\\1 \end{bmatrix}, \ \mathbf{x}_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

7. Suppose that the system of equations

$$x + 2y - 3z = a$$

$$2x + 3y + z = b$$

$$5x + 9y - 8z = c$$

has a solution. Which equation must a, b, and c satisfy:

A.
$$3a - b + c = 0$$

B.
$$a - 3b + c = 0$$

C.
$$3a + b - c = 0$$

D.
$$7a - b - c = 0$$

E.
$$a + b + c = 0$$

8. What value(s) of a can make the following linear equation system INCON-SISTENT.

$$\begin{cases} x+y-z = 2 \\ -x-2y+z = 3 \\ x+y+(a^2-5)z = a \end{cases}$$

- **A.** a = 2.
- **B.** a = -2.
- C. a = 2 or a = -2.
- **D.** $a \neq 2$ and $a \neq 2$.
- E. None of the above.
- 9. For what value(s) of t does the system with the following augmented matrix have no solution:

$$\begin{bmatrix} 0 & t+3 & 0 & 6 \\ 0 & 2 & 2t-2 & -2 \\ 1 & -1 & -2 & 1 \end{bmatrix}.$$

- **A.** t = 1 and t = -3
- **B.** t = 1 and t = 3
- **C.** t = 9
- **D.** t = -1 and t = 3
- **E.** t = -9
- 10. (True or False) The following statements is always TRUE.
 - A. If A is a singular matrix, then Ax = 0 has only trivial solution.
 - B. If A is non-invertible, then Ax=0 has only trivial solution.
 - C. If A is invertible, then $A^{-1}x = 0$ does not have trivial solution.
 - D. If A is a non-singular matrix, then $A^{-1}x = 0$ has only trivial solution.
 - E. If A is a non-singular matrix, then $A^{-1}x = 0$ has non-trivial solutions.

5

- **11.** If $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & a & 1 \\ 0 & 0 & 1 \end{bmatrix}$, then A^{-1} has the form $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ b & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$.
 - Find the sum a + b + c.
 - **A.** 0
 - **B.** 1
 - C. -1
 - **D.** 2
 - **E.** -2

- **12. Given** $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{bmatrix}$, then $A^{-1} =$
 - $\mathbf{A.} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -\cos\phi & \sin\phi \\ 0 & -\sin\phi & \cos\phi \end{bmatrix}$
 - $\mathbf{B.} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -\cos\phi & \sin\phi \\ 0 & \sin\phi & \cos\phi \end{bmatrix}$
 - C. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{bmatrix}$
 - $\mathbf{D.} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & \sin \phi \\ 0 & -\sin \phi & \cos \phi \end{bmatrix}$
 - $\mathbf{E.} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & \sin \phi \\ 0 & \sin \phi & -\cos \phi \end{bmatrix}$

- 13. For which value(s) of a is the matrix $A = \begin{bmatrix} 0 & 1 & a \\ 1 & 3 & 5 \\ a & 2 & a \end{bmatrix}$ singular?
 - **A.** a = -1, a = 0
 - **B.** a = 0 and a = -2
 - **C.** a = 0 and a = 2
 - **D.** a = 2
 - **E.** a = 0 and a = 1

- 14. Let A and B be 3×3 matrices with $\det A=3$ and $\det B=2$. Then $\det(A$ adj $BA^TB^{-1})$ is
 - **A.** 9
 - **B.** 18
 - **C.** 36
 - **D.** 1/2
 - **E.** 1

- 15. Let A be a $n \times n$ invertible matrix. Which of the following statements are NOT true:
 - (i). A^T is nonsingular.
 - (ii). Ax = 0 has only trivial solution.
 - (iii). A is row equivalent to a matrix B that has a row of zeros.
 - (iv). Ax = b has a unique solution for every $n \times 1$ matrix b.
 - (v). $|A| \neq 0$.
 - A. (i) and (iii).
 - B. (ii) and (v).
 - C. (iii) only.
 - D. (iii) and (iv).
 - E. (v) only.

- **16. Given** $\begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix} = 3$, then $\begin{vmatrix} -x & -y & -z \\ 3p + a & 3q + b & 3r + c \\ 2p & 2q & 2r \end{vmatrix} =$
 - **A.** -6
 - **B.** 6
 - **C.** 18
 - **D.** -18
 - **E.** -3

- **17. Find adj**(A) if $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & -1 & 3 \\ 2 & 1 & 5 \end{bmatrix}$
 - A. $\begin{bmatrix} -8 & -6 & 10 \\ 6 & -3 & -3 \\ 2 & 3 & -1 \end{bmatrix}$ B. $\begin{bmatrix} -8 & 6 & 2 \\ -6 & -3 & -3 \\ 10 & -3 & -1 \end{bmatrix}$

 - $\mathbf{C.} \begin{bmatrix} -8 & 6 & 2 \\ -6 & 3 & 3 \\ 10 & -3 & -1 \end{bmatrix}$
 - $\mathbf{D.} \begin{bmatrix} -8 & 6 & 10 \\ 6 & -3 & 3 \\ 2 & 3 & 1 \end{bmatrix}$
 - $\mathbf{E.} \begin{bmatrix} -8 & 6 & 2 \\ -6 & -3 & 3 \\ -10 & -3 & -1 \end{bmatrix}$
- 18. For $n \times n$ matrices with real entires A and B, decide which statements are ALWAYS true.

I.
$$det(A+B) = det(A) + det(B)$$

II. If
$$det(A) \neq 0$$
 then $det(adj(A)) = \frac{1}{det(A)}$

- III. For any real number c, det(cA) = c det(A).
- A. None of the statements are true
- B. I only
- C. II only
- D. III only
- E. II and III only

- 19. The matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is nonsingular if and only if
 - **A.** $a \neq 0, b \neq 0$
 - $\mathbf{B.} \ ad bc \neq 0$
 - C. a = b = c = d = 1
 - **D.** ad bc = 0
 - **E.** a = b = c = d

- 20. If A is an $n \times n$ singular matrix, then $A(\operatorname{adj} A) =$ (Note that $O_{n \times n}$ is the $n \times n$ matrix with all zeros while 0 means just the number 0).
 - **A.** $O_{n\times n}$
 - B. I_n
 - **C.** 0
 - **D.** A^{-1}
 - **E.** 1

21. Consider the solution
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 to the system $\begin{bmatrix} 11 & 7 & 13 \\ 4 & 12 & 8 \\ 3 & 7 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$. Decide

which equality below is true for all $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ in \mathbb{R}^3 .

$$\mathbf{A.} \ \, x_2 = \begin{vmatrix} 11 & a & 13 \\ 4 & b & 8 \\ 3 & c & 9 \end{vmatrix}$$

$$\mathbf{B.} \ \, x_1 = \begin{vmatrix} a & b & c \\ 4 & 12 & 8 \\ 3 & 7 & 9 \end{vmatrix}$$

$$\mathbf{C.} \ \ x_3 = -\frac{\begin{vmatrix} 4 & 12 & b \\ 11 & 7 & a \\ 3 & 7 & c \end{vmatrix}}{\begin{vmatrix} 11 & 7 & 13 \\ 4 & 12 & 8 \\ 3 & 7 & 9 \end{vmatrix}}$$

$$\mathbf{D.} \ \ x_2 = \frac{b}{\begin{vmatrix} 11 & 7 & 13 \\ 4 & 12 & 8 \\ 3 & 7 & 9 \end{vmatrix}}$$

$$\mathbf{E.} \ \ x_1 = \frac{\begin{vmatrix} a & 4 & 3 \\ b & 12 & 7 \\ c & 8 & 9 \end{vmatrix}}{\begin{vmatrix} 11 & 7 & 13 \\ 4 & 12 & 8 \\ 3 & 7 & 9 \end{vmatrix}}$$

- 22. The heads of three vectors OA, OB and OC (where O is the origin) are: $A=(1,2,5),\ B=(5,0,-1)$ and C=(-2,2,1) and they form a triangle, which side(s) of the triangle ABC is (are) the longest.
 - A. AB
 - B. AC
 - C. BC
 - D. AB and AC
 - E. AB and BC

- 23. Which of the following subset of \mathbb{R}^2 with the usual operations of vector addition and scalar multiplication are subspaces?
 - I. W_1 is the set of all vectors of the form $\begin{bmatrix} x \\ y \end{bmatrix}$, where $x \geq 0$.
 - II. W_2 is the set of all vectors of the form $\begin{bmatrix} x \\ y \end{bmatrix}$, where $x \ge 0$ and $y \ge 0$.
 - III. W_3 is the set of all vectors of the form $\begin{bmatrix} x \\ y \end{bmatrix}$, where x = 0.
 - A. W_1 only;
 - B. W_2 only;
 - C. W_3 only;
 - **D.** W_1 and W_2 ;
 - E. W_2 and W_3 .

- 24. Which of the following subsets of the vector space M_{nn} are subspace?
 - I. The set of all $n \times n$ symmetric matrices;
 - II. The set of all $n \times n$ diagonal matrices;
 - III. The set of all $n \times n$ singular matrices;
 - A. I only;
 - B. II only;
 - C. III only;
 - D. I and II;
 - E. II and III.