MA 265: Linear Algebra
 EXAM II (Practice Problems)

April 3, 2008

NAME \qquad

NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper.

Points awarded

1. (20 pts)
2. (10 pts) \qquad
3. (5 pts) \qquad
4. (5 pts) \qquad
5. (5 pts) \qquad
6. (5 pts) \qquad
7. (5 pts) \qquad
8. (5 pts) \qquad
9. (5 pts) \qquad
10. (5 pts) \qquad
11. (5 pts) \qquad
12. (5 pts) \qquad
13. (5 pts) \qquad
14. (5 pts) \qquad
15. (5 pts) \qquad
16. (5 pts) \qquad

Total Points: \qquad

1. Which of the following vector is in the span of $\{(1,2,0,1),(1,1,1,0)\}$
A. $(0,1,-1,1)$
B. $(1,1,-1,1)$
C. $(0,0,-1,1)$
D. $(0,1,0,1)$
E. $(-1,1,-1,1)$
2. The value(s) of a for which $\left[\begin{array}{c}a^{2} \\ -3 a \\ -2\end{array}\right]$ is in span $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right]\right\}$ are
A. $a=1,-2$
B. $a=-1,2$
C. $a=1,2$
D. any number
E. nothing
3. For what values of k is the vector $\mathbf{w}=(1,3, k)$ in the subspace spanned by the vectors $\mathbf{w}_{1}=(1,2,3), \mathbf{w}_{2}=(1,-2,-1), \mathbf{w}_{3}=(3,7,11)$?
A. $k=2$.
B. $k=3$.
C. $k=7 / 2$.
D. There is no such k.
E. k can be any number.
4. Determine if the following vectors are Linearly Independent (L.I.) or Linearly Dependent (L.D.)?
(a) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right]\right\}$
L.I. L.D.
(b) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 4\end{array}\right]\right\}$
(c) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 0\end{array}\right]\right\}$
L.I. L.D.
(d) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]\right\}$
(e) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}7 \\ 2 \\ 0\end{array}\right]\right\}$
L.I. L.D.

Answer: I, D, I, D, D
5. Find all the values of k for which the following vectors are linearly independent in \mathbb{R}^{4} are $(1,1,0,-1),(1, k, 1,1),(2,2, k,-2),(-1,1,1, k)$.
A. $k \neq 0,5,-1$
B. $k \neq 0,3,-1$
C. $k \neq 0, \pm \sqrt{5}$
D. $k \neq 1, \pm \sqrt{7}$
E. There is no such value.
6. Find all value(s) of k such that the vectors $\mathbf{V}_{1}=2 t^{2}+t+1, \mathbf{V}_{2}=3 t^{2}+t-5$, $\mathbf{V}_{3}=k t+13$ are linearly dependent.
A. $k=1$
B. $k=2$
C. $k \neq 1$
D. $k \neq 2$
E. k can be any value.
7. Let W be the subspace of \mathbb{R}^{5} defined by the equation $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=0$, i.e., $W=\left\{\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right] \in \mathbb{R}^{5} ; x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=0\right\}$. We know the following two vectors are in $W ; v_{1}=\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{c}0 \\ -1 \\ 0 \\ 0 \\ 1\end{array}\right] \in W$. Find two other vectors $\left\{v_{3}, v_{4}\right\}$ so that $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ forms a basis of W.
A. $\left\{v_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 1\end{array}\right], v_{4}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 1\end{array}\right]\right\}$
B. $\left\{v_{3}=\left[\begin{array}{c}0 \\ 0 \\ -1 \\ 0 \\ 1\end{array}\right], v_{4}=\left[\begin{array}{c}-1 \\ -1 \\ -1 \\ 0 \\ 3\end{array}\right]\right\}$
C. $\left\{v_{3}=\left[\begin{array}{c}0 \\ 0 \\ 0 \\ -1 \\ 1\end{array}\right], v_{4}=\left[\begin{array}{c}-1 \\ -1 \\ 0 \\ -1 \\ 3\end{array}\right]\right\}$
D. $\left\{v_{3}=\left[\begin{array}{c}0 \\ 0 \\ -1 \\ 0 \\ 1\end{array}\right], v_{4}=\left[\begin{array}{c}-1 \\ -1 \\ -1 \\ -1 \\ 4\end{array}\right]\right\}$
E. $\left\{v_{3}=\left[\begin{array}{c}1 \\ 1 \\ 0 \\ 0 \\ -2\end{array}\right], v_{4}=\left[\begin{array}{c}1 \\ 2 \\ 0 \\ 0 \\ -3\end{array}\right]\right\}$
8. Let W be the subspace of \mathbb{R}^{4} spanned by the following vectors $v_{1}=\left[\begin{array}{c}1 \\ 1 \\ -1 \\ 1\end{array}\right], v_{2}=$ $\left[\begin{array}{c}1 \\ 2 \\ -4 \\ -2\end{array}\right], v_{3}=\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 5\end{array}\right], v_{4}=\left[\begin{array}{c}-1 \\ 0 \\ -2 \\ -4\end{array}\right]$. Find the dimension of W.
A. 1
B. 2
C. 3
D. 4
E. 0
9. A basis for the subspace of P_{3} consisting of all vectors of the from $a t^{3}+b t^{2}+c t+d$ with $c=a-2 d, b=5 a+3 d$ is given by
A. $\left\{t^{3}-5 t^{2}+t, 3 t^{2}+2 t+1\right\}$.
B. $\left\{t^{3}-5 t^{2}-t,-3 t^{2}+2 t+1\right\}$.
C. $\left\{t^{3}+5 t^{2}-t, 3 t^{2}+2 t-1\right\}$.
D. $\left\{t^{3}+5 t^{2}+t, 3 t^{2}-2 t+1\right\}$.
E. $\left\{t^{3}+5 t^{2}+t, 3 t^{2}+2 t+1\right\}$.
10. Determine if the following sets of the vectors are bases for \mathbb{R}^{4} ?
(a) $[1,1,1,0],[2,2,0,0],[3,0,0,0]$.

Yes No
(b) $[1,1,1,0],[2,2,0,0],[3,0,0,0],[1,0,0,0]$.
(c) $[1,1,1,0],[2,2,0,0],[3,0,0,0],[8,7,9,2]$.
(d) $[1,1,1,0],[2,2,0,0],[3,0,0,0],[1,1,1,1]$.

Yes No
Yes No
(e) $[1,1,1,0],[2,2,0,0],[3,0,0,0],[7,2,0,0],[3,5,7,1]$.

Yes No
Yes No
Answer: $\mathbf{N}, \mathbf{N}, \mathbf{Y}, \mathbf{Y}, \mathbf{N}$
11. For what value(s) of a does the set $S=\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}a \\ 0 \\ 1\end{array}\right]\right\}$ span \mathbb{R}^{3} ?
A. $a=1$
B. all $a \neq-1$
C. all $a \neq 0$
D. all $a \neq 1$
E. There is no such a.
12. Find the dimensions of the given subspaces of \mathbb{R}^{3}.
(a) All vectors of the form $[a, b, c]$, where $a-2 b+5 c=0$. Dimension= \qquad
(b) All vectors of the form $[a, b, c]$, wher $a=2 b$ and $5 c=0$.Dimension= \qquad
(c) All vectors of the form $[a-c, 3 b+2 a, 4 c-2 a+b]$. Dimension= \qquad
(d) All vectors of the form $[a, b, c]$, where $a=b=c$.

Dimension= \qquad
(e) All vectors of the form $[a+c, 2 a+2 c, a+b]$.

Dimension= \qquad
Answer: 2, 1, 3, 1, 2
13. Determine if each of the following sets of the vectors forms a basis for \mathbb{R}^{4} ?
(a) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 0 \\ 0\end{array}\right]\right\}$.

Yes No
(b) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]\right\}$.

Yes No
(c) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}8 \\ 7 \\ 9 \\ 2\end{array}\right]\right\}$.

Yes No
(d) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right\}$.
(e) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}7 \\ 2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 5 \\ 7 \\ 1\end{array}\right]\right\}$.

Yes No

Yes No

Answer: N, N, Y, Y, N
14. Let $A=\left[\begin{array}{lllll}1 & -2 & 1 & 2 & 1 \\ 5 & -3 & 2 & 0 & 2\end{array}\right]$. The null space of A is
A. A 2-dimensional subspace of R^{3}.
B. A 2-dimensional subspace of R^{4}.
C. A 2-dimensional subspace of \mathbf{R}^{5}.
D. A 3-dimensional subspace of \mathbf{R}^{5}.
E. A 4-dimensional subspace of \mathbf{R}^{5}.
15. Let us consider the following matrix $A=\left[\begin{array}{llll}1 & -1 & 2 & 3 \\ 2 & -2 & 3 & 4 \\ 3 & -3 & 4 & 5\end{array}\right]$. Which of the following sets of vectors is a basis of the null space of A.
A. $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 2 \\ -1\end{array}\right]\right\}$
B. $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ 1 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 2 \\ -1\end{array}\right]\right\}$
C. $\left\{\left[\begin{array}{c}1 \\ 0 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 2 \\ -1\end{array}\right]\right\}$
D. $\left\{\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$
E. $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]\right\}$
16. Find the dimension of the null space of the following matrix
$\left[\begin{array}{cccccc}1001 & 1533 & 2687 & 5479 & 0 & 3008 \\ 0 & 0 & 2003 & 2004 & 2005 & 2006 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 2 & 2\end{array}\right]$
A. 2
B. 3
C. 4
D. 5
E. 6
17. Find the coordinates of vector $v=[1,2,3]$ in the basis consisting of vectors $v_{1}=[1,1,0], v_{2}=[1,0,1]$ and $v_{3}=[0,1,1]$.
A. $[1,2,3]$
B. $[3,2,1]$
C. $[1,0,1]$
D. $[0,1,2]$
E. $[0,2,1]$
18. Let A be a 3×3 matrix. Which of the following implies that A is non-singular?
A. The rank of A is 2 .
B. The nullity of A is $\mathbf{0}$.
C. $A x=0$ has nontrivial solutions.
D. The determinant of A is 0 .
E. A has a row of 0 's.
19. Let A be a 6×3 matrix whose null space is spanned by $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 3 \\ 0\end{array}\right]\right\}$ then the rank of A is:
A. 1
B. 2
C. 3
D. 4
E. Insufficient information
20. Let A be a 7×3 matrix with $\operatorname{rank}(A)=2$. Which statement is correct?
A. The columns of A are linearly independent.
B. The rows of A are linearly independent.
C. The nullity of A is zero.
D. The rows of A span \mathbb{R}^{3}.
E. The columns of A are linearly dependent.
21. A basis for the column space of $A=\left[\begin{array}{cccc}1 & 1 & 2 & 1 \\ 3 & 5 & 7 & 4 \\ 3 & -1 & 4 & 1\end{array}\right]$ is
A. $\left\{\left[\begin{array}{c}1 \\ -3 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]\right\}$
B. $\left\{\left[\begin{array}{l}1 \\ 3 \\ 3\end{array}\right],\left[\begin{array}{c}0 \\ -2 \\ -3\end{array}\right]\right\}$
C. $\left\{\left[\begin{array}{l}1 \\ 3 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]\right\}$
D.
$\left\{\left[\begin{array}{l}1 \\ 3 \\ 3\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -2\end{array}\right]\right\}$
E. $\left\{\left[\begin{array}{l}1 \\ 4 \\ 3\end{array}\right],\left[\begin{array}{c}1 \\ -3 \\ -3\end{array}\right]\right\}$
22. Let V be an inner product space. If u, v are vectors in V then which of the following is always true?
A. $\frac{1}{4}\|u+v\|^{2}=-\frac{1}{4}\|u-v\|^{2}+(u, v)$
B. $\frac{1}{8}\|u+v\|^{2}=-\frac{1}{4}\|u-v\|^{2}+(u, v)$
C. $-\frac{1}{4}\|u+v\|^{2}=\frac{1}{4}\|u-v\|^{2}+(u, v)$
D. $-\frac{1}{8}\|u+v\|^{2}=\frac{1}{4}\|u-v\|^{2}+(u, v)$
E. $\frac{1}{4}\|u+v\|^{2}=\frac{1}{4}\|u-v\|^{2}+(u, v)$
23. In \mathbb{R}^{3} with the standard inner product, the cosine of the angle between $u=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ and $v=\left[\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right]$ is:
A. $\frac{1}{6}$
B. $-\frac{1}{6}$
C. $\frac{1}{\sqrt{6}}$
D. $-\frac{1}{\sqrt{6}}$
E. $-\frac{1}{36}$
24. Let V be the inner product space defined by $(f(t), g(t))=\int_{0}^{1} f(t) g(t) d t$, then the distance between the vectors t and t^{2} is:
A. 1
B. $\frac{1}{4}$
C. $\frac{1}{2}$
D. $\frac{1}{30}$
E. $\frac{1}{\sqrt{30}}$
25. Which of the following is an orthonormal basis of \mathbb{R}^{3} :
A. $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]\right\}$
B. $\left\{\frac{1}{\sqrt{5}}\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right], \frac{1}{\sqrt{5}}\left[\begin{array}{c}2 \\ -1 \\ 0\end{array}\right], \frac{1}{\sqrt{6}}\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]\right\}$
C. $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ 0\end{array}\right]\right\}$
D. $\left\{\frac{1}{\sqrt{3}}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \frac{1}{\sqrt{6}}\left[\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]\right\}$
E. $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \frac{1}{2}\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$
26. Let W be the null space of the matrix

$$
\left[\begin{array}{lllll}
1 & 0 & 2 & 0 & 1 \\
0 & 0 & 0 & 1 & 3 \\
0 & 1 & 3 & 0 & 2 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

What is the dimension of W^{\perp} ?
A. 0
B. 1
C. 2
D. 3
E. 4
27. W is the subspace of \mathbb{R}_{4} spanned by

$$
\{(1,0,0,1),(1,0,1,0),(-1,0,0,1)\}
$$

What is $\operatorname{proj}_{W} V$ where $V=\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)$?
A. $\left(\begin{array}{llll}1 & 1 & 1 & 0\end{array}\right)$
B. $\left(\begin{array}{llll}0 & 1 & 1 & 1\end{array}\right)$
C. $\left(\begin{array}{llll}1 & 1 & 0 & 1\end{array}\right)$
D. $\left.\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right)$
E. $\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)$
28. If W is a subspace of \mathbb{R}^{4} spanned by $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]\right\}$, then the distance from $\mathbf{v}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]$ to W is
A. 0
B. 1
C. $\sqrt{2}$
D. 2
E. $\frac{1}{\sqrt{2}}$
29. Let W be the subspace of \mathbb{R}_{3} with orthonormal basis

$$
\left\{(1,0,0),\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)\right\}
$$

What is the distance from v to W where $v=(1,2,4)$?
A. 0
B. 1
C. $\sqrt{2}$
D. $\sqrt{3}$
E. $2 \sqrt{2}$
30. Let W be the subspace of \mathbb{R}^{3} spanned by $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$. For $V=\left[\begin{array}{l}8 \\ 0 \\ 2\end{array}\right]$, find $\operatorname{proj}_{W} V$
А. $\left[\begin{array}{l}9 \\ 4 \\ 5\end{array}\right]$
B.
$\left[\begin{array}{l}6 \\ 2 \\ 4\end{array}\right]$
C. $\left[\begin{array}{c}23 / 2 \\ 3 \\ 17 / 2\end{array}\right]$
D. $\left[\begin{array}{c}19 \\ 8 \\ 10\end{array}\right]$
E. $\left[\begin{array}{l}2 \\ 6 \\ 8\end{array}\right]$
31. The least squares fit line $y=x_{1}+x_{2} t$ for the data

t_{i}	-2	-1	1	2
y_{i}	3	1	-2	4

A. is given by $y=6-t$,
B. is given by $y=4+10 t$,
C. is given by $y=\frac{3}{2}-\frac{1}{10} t$,
D. is given by $y=-\frac{1}{10}+\frac{3}{2} t$,
E. does not exist.
32. The least squares solution \widehat{x} of

$$
\left[\begin{array}{cc}
1 & 1 \\
1 & 0 \\
1 & -1
\end{array}\right] \widehat{\mathbf{x}}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \text { is }
$$

A. $\widehat{\mathbf{x}}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
B. $\widehat{\mathbf{x}}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$
C. $\widehat{\mathbf{x}}=\left[\begin{array}{c}3 \\ -3\end{array}\right]$
D. $\widehat{\mathbf{x}}=\left[\begin{array}{c}2 \\ -1\end{array}\right]$
E. $\widehat{\mathbf{x}}=\left[\begin{array}{c}3 \\ -4\end{array}\right]$
33. Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that $L\left(\left[\begin{array}{c}1 \\ -1\end{array}\right]\right)=\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$ and $L\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. Then $L\left(\left[\begin{array}{l}2 \\ 1\end{array}\right]\right)$ is equal to
A. $\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right]$
B. $\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$
C.
$\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]$
D. $\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]$
E. $\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right]$
34. Let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation for which $L\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}-2 \\ 3 \\ 1\end{array}\right]$, $L\left(\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right], L\left(\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}3 \\ 1 \\ 3\end{array}\right]$. Then $L\left(\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right]\right)=$
A. $\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right]$
B. $\left[\begin{array}{c}7 \\ 6 \\ 10\end{array}\right]$
C. $\left[\begin{array}{c}1 \\ 7 \\ 12\end{array}\right]$
D. $\left[\begin{array}{l}1 \\ 7 \\ 6\end{array}\right]$
E. Insufficient information
35. The linear transformation $L\left(\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]\right)=\left[\begin{array}{l}a_{2} \\ a_{1}\end{array}\right]$ is
A. a 90° counterclockwise rotation
B. a 90° clockwise rotation
C. reflection through $y=x$
D. reflection through $y=-x$
E. reflection through the origin

