MA 271: Several Variable Calculus
 EXAM I (practice)

NAME \qquad Lecture Meeting Time

NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper.

Points awarded

1. (5 pts) \qquad
2. (5 pts) \qquad
3. (5 pts) \qquad
4. (5 pts) \qquad
5. (5 pts) \qquad
6. (5 pts) \qquad
7. (5 pts) \qquad
8. (5 pts) \qquad
9. (5 pts) \qquad
10. (5 pts) \qquad
11. (5 pts) \qquad
12. (5 pts) \qquad

Total Points: \qquad

1. Find the normal vector to the plane $3 x+2 y+6 z=6$
A. $(0,0,1)$
B. $(-3,-2,-6)$
C. $(1,1,1)$
D. $(0,0,1)$
E. $(1 / 3,1 / 2,1 / 6)$
2. Find distance from point $(1,1,3)$ to the plane $3 x+2 y+6 z=6$
A. $17 / 7$
B. 3
C. $12 / 5$
D. 0
E. $11 / 7$
3. The surface defined by $y^{2}-x^{2}=z$ is a
A. hyperbolic paraboloid
B. elliptical cone
C. elliptical paraboloid
D. ellipsoid
E. hyperboloid
4. Find the speed of the particle with position function $\vec{r}(t)=e^{3 t} \mathbf{i}+e^{-3 t} \mathbf{j}+t e^{3 t} \mathbf{k}$ when $t=0$.
A. $\mathbf{i}+2 \mathbf{j}+\mathbf{k}$
B. 1
C. $\sqrt{2}$
D. $\sqrt{17}$
E. $\sqrt{19}$
5. The plane S passes through the point $P(1,2,3)$ and contains the line $x=3 t$, $y=1+t$, and $z=2-t$. Which of the following vectors is normal to S ?
A. $\mathbf{i}+2 \mathbf{j}+\mathbf{k}$
B. $\mathbf{i}-2 \mathbf{j}+\mathbf{k}$
C. $\mathbf{i}+\mathrm{k}$
D. $\mathbf{i}-2 \mathrm{j}$
E. $\mathbf{i}+2 \mathbf{j}$
6. Which of the following statements is true for all three-dimensional vectors \vec{a}, \vec{b}, and \vec{c}, if θ is the angle between \vec{a} and \vec{b} ?
(i) $\vec{a} \times \vec{b}=\vec{b} \times \vec{a}$
(ii) $\vec{a} \cdot(\vec{b} \times \vec{c})=(\vec{b} \times \vec{c}) \cdot \vec{a}$
(iii) $|\vec{a} \times \vec{b}|=|\vec{a}| \cdot|\vec{b}| \cdot|\cos \theta|$
(iv) $(\vec{a} \times \vec{b}) \cdot a=0$
A. All are true
B. (i) and (ii) only
C. (i), (ii), and (iv) only
D. (iii) and (iv) only
E. (ii) and (iv) only
7. A particle starts at the origin with initial velocity $\vec{i}+\vec{j}-\vec{k}$. Its acceleration is $\vec{a}(t)=t \vec{i}+\vec{j}+t \vec{k}$. Find its position at $t=1$.
A. $\frac{1}{6} \vec{i}+\frac{1}{2} \vec{j}+\frac{1}{3} \vec{k}$
B. $\frac{7}{6} \vec{i}+\frac{1}{2} \vec{j}-\frac{5}{6} \vec{k}$
C. $\vec{i}+\vec{j}+\vec{k}$
D. $\frac{7}{6} \vec{i}+\frac{3}{2} \vec{j}-\frac{5}{6} \vec{k}$
E. $\vec{i}+2 \vec{j}-\vec{k}$
8. Find the arc length of the curve defined by $\vec{r}(t)=\left(t, \frac{\sqrt{6}}{2} t^{2}, t^{3}\right),-1 \leq t \leq 1$.
A. 5
B. 4
C. 3
D. 2
E. 6
9. Find the equation of the plane that contains the points $(1,2,1),(2,-1,0)$ and $(3,3,1)$.
A. $-x-2 y+9 z=4$
B. $x+2 y+7 z=12$
C. $x-2 y+7 z=4$
D. $x+2 y+z=6$
E. $-x+2 y+9 z=12$
10. Find parametric equations for the tangent line to the curve

$$
\vec{r}(t)=\left(t^{2}+3 t+2, e^{t} \cos t, \ln (t+1)\right)
$$

at $t=0$.
A. $x=2+3 t \quad y=1+t \quad z=t$
B. $x=2 t+3, y=e^{t}(\cos t-\sin t), z=\frac{1}{t+1}$
C. $x=3+2 t \quad y=1+t \quad z=1$
D. $x=3 t \quad y=2 t \quad z=1+t$
E. $x=2-t \quad y=1+t \quad z=3-3 t$
11. Let C be the intersection of $x^{2}+y^{2}=16$ and $x+y+z=5$. Find the curvature at $(0,4,1)$.
A. $\frac{1}{8} \sqrt{\frac{3}{2}}$
B. 5
C. 6
D. $\frac{2}{3}$
E. $\sqrt{9 / 10}$
12. The plane S passes through the point $P(1,2,3)$ and contains the line $x=3 t$, $y=1+t$, and $z=2-t$. Which of the following is an equation for S ?
A. $x+2 y+z=0$
B. $x-2 y+z=0$
C. $x-2 y+z=5$
D. $x+2 y+z=5$
E. $x-y+z=5$
13. Find the unit tangent vector \mathbf{T} of $\vec{r}(t)=(\sin (3 t)) \vec{i}+(\cos (3 t)) \vec{j}+(4 t) \vec{k}$ at any t.
A. $\mathbf{T}=\frac{3}{5} \cos (3 t) \vec{i}-\frac{3}{5} \sin (3 t) \vec{j}+\frac{4}{5} \vec{k}$
B. $\mathbf{T}=\frac{3}{5} \sin (3 t) \vec{i}-\frac{3}{5} \cos (3 t) \vec{j}+\frac{4}{5} \vec{k}$
C. $\mathbf{T}=3 \cos (3 t) \vec{i}-3 \sin (3 t) \vec{j}+4 \vec{k}$
D. $\mathbf{T}=\sin (3 t) \vec{i}-\cos (3 t) \vec{j}+4 t \vec{k}$
E. $\mathbf{T}=1$
14. Find the unit normal vector \mathbf{N} of $\vec{r}(t)=(\sin (3 t)) \vec{i}+(\cos (3 t)) \vec{j}+(4 t) \vec{k}$ at any t.
A. $\mathbf{N}=\frac{3}{5} \cos (3 t) \vec{i}-\frac{3}{5} \sin (3 t) \vec{j}+\frac{4}{5} \vec{k}$
B. $\mathbf{N}=\frac{3}{5} \sin (3 t) \vec{i}-\frac{3}{5} \cos (3 t) \vec{j}+\frac{4}{5} \vec{k}$
C. $\mathbf{N}=3 \cos (3 t) \vec{i}-3 \sin (3 t) \vec{j}+4 \vec{k}$
D. $\mathbf{N}=-\sin (3 t) \vec{i}+\cos (3 t) \vec{j}$
E. $\mathbf{N}=1$
15. Find the torsion of the curve $\vec{r}(t)=(\sin (3 t)) \vec{i}+(\cos (3 t)) e^{t} \vec{j}$ at any $t=3$.
A. $\cos (9) e^{3}$
B. e^{3}
C. 3
D. 0
E. 1
16. Find the equation for the surface consisting of all points P for which the distance to the x-axis is twice the distance from P to the $y z$-plane. Identify the surface.
17. Find an equation of the plane that passes through the point $P(-1,2,1)$ and contains the line of intersection of the planes $x+y-z=2$ and $2 x-y+3 z=1$.
18. (a) Find the point of intersection of the lines $x=2 t+1, y=3 t+2, z=4 t+3$ and $x=s+2, y=2 s+4, z=-4 s-1$.
(b) Find the plane determined by these lines.
19. Let C be the intersection of $x^{2}+y^{2}=16$ and $x+y+z=5$. Find a parametric equation for C.
20. Find the unit tangent vector T , the principle unit normal vector N and the unit binormal vector \mathbf{B} of $\mathbf{r}(t)=(3 \sin (t)) \mathbf{i}+(3 \cos (t) \mathbf{j}+4 t \mathbf{k}$ at any t. Recall: $\mathbf{N}=\frac{\frac{d \mathbf{T}}{d t}}{\left|\frac{d \mathbf{T}}{d t}\right|}$ and $\mathbf{B}=\mathbf{T} \times \mathbf{N}$.
21. Calculate the tangential and normal components of the acceleration for $\vec{r}(t)=$ $2 t \vec{i}+t^{2} \vec{j}+\frac{1}{3} t^{3} \vec{k}$.
Recall $a=a_{T} \mathbf{T}+a_{N} \mathbf{N}$ and $a_{T}=\frac{d}{d t}|v|$
22.

$$
\lim _{n \rightarrow \infty}\left(\sin \left(\frac{2}{n}\right)\right)^{1 / n}=
$$

A. 1
B. 0
C. 2
D. e
E. diverge
23.

$$
\lim _{n \rightarrow \infty} n \sin \left(\frac{2}{n}\right)=
$$

A. 1
B. 0
C. 2
D. e
E. diverge.
24. What is the sum of

$$
\sum_{n=1}^{\infty} \sin (n \pi)
$$

A. 1
B. 0
C. 2
D. $\frac{1}{2}$
E. diverge
25. What is the sum of

$$
\sum_{n=1}^{\infty} \sin \left(\frac{n \pi}{2}\right)
$$

A. 1
B. 0
C. 2
D. $\frac{1}{2}$
E. diverge
26. What is the value of m if

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n+5}}=\sum_{n=m}^{\infty} \frac{1}{2^{n}}=
$$

A. 1
B. 0
C. 5
D. -5
E. 6
27. What is the value b such that

$$
1+e^{b}+e^{2 b}+e^{3 b}+\cdot=9
$$

A. $-\ln \left(\frac{9}{8}\right)$
B. $\ln \left(\frac{9}{8}\right)$
C. $\frac{8}{9}$
D. -2
E. -1
28. Make up an infinite series of nonzero terms whose sum is 5 .
29. Make up two infinite convergent geometric series

$$
\sum_{n=1}^{\infty} a_{n}=A, \quad \sum_{n=1}^{\infty} b_{n}=B \text { and } \sum_{n=1}^{\infty} a_{n} * b_{n} \neq A B
$$

30. Find the values of x, such that the following series converge

$$
\sum \frac{(x-2)^{n}}{10^{n}}
$$

31. Determine whether the given series is convergent or divergent. In each case, name the test you used: n-th term test (divergence test), integral test, comparison test, limit comparison test, alternating series test, ratio test, root test and show your work. Namely, you are required to answer the following 4 questions.
Q1: converge or diverge;
Q2: which test is used;
Q3: state the test;
Q4: how it is used.
A. $\sum_{n=1}^{\infty} \frac{-5^{n-1}}{4^{n}}$
B. $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$
C. $\sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{2}}$
D. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{1+\sqrt{n}}$
E. $\sum_{n=1}^{\infty} \frac{(-n)^{n+1}}{1+3 n}$
F. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sqrt{n+1}}{\sqrt{n}+1}$
G. $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$
H. $\sum_{n=2}^{\infty} \frac{n}{(\ln (n))^{n}}$
I. $\sum_{n=1}^{\infty}\left(\frac{1}{1+n}\right)^{n}$
