MA 271: Several Variable Calculus

EXAM II

Nov. 2, 2017

NAME _____ Class Meet Time _____

NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper.

Points awarded

Total Points:	/120
11. (10 pts)	12. (10 pts)
9. (10 pts)	10. (10 pts)
7. (10 pts)	8. (10 pts)
5. (10 pts)	6. (10 pts)
3. (10 pts)	4. (10 pts)
1. (10 pts)	2. (10 pts)

1. Find L_1 and L_2 where $L_1 = \lim_{(x,y)\to(3,4)} \frac{5x}{\sqrt{x^2+y^2}}$ and $L_2 = \lim_{(x,y)\to(0,0)} \frac{5x}{\sqrt{x^2+y^2}}$. State the reason if any of them does not exist.

 $L_1 = _$ _____ $L_2 = _$ _____

Answer: $L_1 = 3$ and $L_2 =$ undefined.

2. Find $f_x(0,0)$ and $f_y(0,0)$ when

$$f(x,y) = \begin{cases} \frac{x^2 + y^2}{x^2 + y}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

State the reason if any of them does not exist.

 $f_x(0,0) = f_y(0,0) = f_y(0,0) =$ Answer: $f_x(0,0) =$ undefined and $f_y(0,0) = 1$. 3. Find

at
$$\left(\frac{\partial w}{\partial z}\right)_y$$

at $(x, y, z) = (1, -1, -3)$ if $w = x^2 + y^2 + z^2$ and $xz + y \ln x - x^2 + 4 = 0$.

Answer: _____

Answer: $-\frac{17}{3}$

4. Find the <u>unit</u> vector(s) such that the directional derivative(s) of $f(x,y) = x^3 e^{-4y}$ at the point (1,0) is 0.

Answer: _____

Answer: $(-\frac{4}{5}, -\frac{3}{5}), (\frac{4}{5}, \frac{3}{5})$

5. Use the degree two Taylor polynomial of $\ln(x)$ centered at $x_0 = 1$ to estimate the value of

$$I = \int_{0.7}^{1.3} \ln(x) dx.$$

The approximate value of *I* is ______.

Answer: -0.009

6. For what values of the constant k will the Second Derivative Test guarantee that $f(x, y) = x^2 + kxy + y^2$ has a minimum at (0, 0)?

Answer: _____

Answer: |k| < 2

7. Find the equation of the plane that is tangent to the surface $e^z = x^2y - xy^2$ at the point $(3, 2, \ln(6))$.

Answer:

Answer: $8(x-3) - 3(y-2) - 6(z - \ln(6)) = 0$

8. Find $\frac{\partial z}{\partial u}$ if $z = x^2 + xy^3$ where $x = uv^2 + w^3$ and $y = u + ve^w$ at u = -1, v = 2, w = 0.

Answer:

Answer: -40

9. Find absolute maximum and minimum values of

$$f(x,y) = x^2 + y^2 - x + y$$

on the disc $x^2 + y^2 \le 8$.

Answer: max = _____, min = _____

Answer: max=12, min=1/2

10. Find the largest product the positive numbers x, y and z can have if

$$x + y + z^2 = 5.$$

Answer:

Answer: 4

11. Evaluate

$$\int_0^4 \int_{\sqrt{x}}^2 9\sqrt{1+y^3} \, dy dx.$$

Answer:

Answer: 52

12. Find the second order Taylor approximation for e^{xy} near the point (0,1).

Answer:

Answer: $1 + x + \frac{x^2}{2} + x(y-1)$