MA 271: Several Variable Calculus

EXAM II
Nov. 2, 2017

NAME \qquad Class Meet Time \qquad

NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper.

Points awarded

1. (10 pts) \qquad
2. (10 pts) \qquad
3. (10 pts) \qquad
4. (10 pts) \qquad
5. (10 pts) \qquad
6. (10 pts) \qquad
7. (10 pts) \qquad
8. (10 pts) \qquad
9. (10 pts) \qquad
10. (10 pts) \qquad
11. (10 pts) \qquad 12. (10 pts) \qquad

Total Points: \qquad

1. Find L_{1} and L_{2} where $L_{1}=\lim _{(x, y) \rightarrow(3,4)} \frac{5 x}{\sqrt{x^{2}+y^{2}}}$ and $L_{2}=\lim _{(x, y) \rightarrow(0,0)} \frac{5 x}{\sqrt{x^{2}+y^{2}}}$. State the reason if any of them does not exist.

$$
L_{1}=\square \quad L_{2}=
$$

\qquad
Answer: $L_{1}=3$ and $L_{2}=$ undefined.
2. Find $f_{x}(0,0)$ and $f_{y}(0,0)$ when

$$
f(x, y)= \begin{cases}\frac{x^{2}+y^{2}}{x^{2}+y}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

State the reason if any of them does not exist.
$f_{x}(0,0)=\square \quad f_{y}(0,0)=$ \qquad
Answer: $f_{x}(0,0)=$ undefined and $f_{y}(0,0)=1$.
3. Find

$$
\left(\frac{\partial w}{\partial z}\right)_{y}
$$

at $(x, y, z)=(1,-1,-3)$ if $w=x^{2}+y^{2}+z^{2}$ and $x z+y \ln x-x^{2}+4=0$.

Answer: \qquad
Answer: $-\frac{17}{3}$
4. Find the unit vector(s) such that the directional derivative(s) of $f(x, y)=x^{3} e^{-4 y}$ at the point $(1,0)$ is 0 .

Answer: \qquad

Answer: $\left(-\frac{4}{5},-\frac{3}{5}\right),\left(\frac{4}{5}, \frac{3}{5}\right)$
5. Use the degree two Taylor polynomial of $\ln (x)$ centered at $x_{0}=1$ to estimate the value of

$$
I=\int_{0.7}^{1.3} \ln (x) d x
$$

The approximate value of I is \qquad .

Answer: -0.009
6. For what values of the constant k will the Second Derivative Test guarantee that $f(x, y)=x^{2}+k x y+y^{2}$ has a minimum at $(0,0)$?

Answer: \qquad

Answer: $|k|<2$
7. Find the equation of the plane that is tangent to the surface $e^{z}=x^{2} y-x y^{2}$ at the point $(3,2, \ln (6))$.

Answer: \qquad

Answer: $8(x-3)-3(y-2)-6(z-\ln (6))=0$
8. Find $\frac{\partial z}{\partial u}$ if $z=x^{2}+x y^{3}$ where $x=u v^{2}+w^{3}$ and $y=u+v e^{w}$ at $u=-1, v=2, w=0$.

Answer: \qquad

Answer: -40
9. Find absolute maximum and minimum values of

$$
f(x, y)=x^{2}+y^{2}-x+y
$$

on the disc $x^{2}+y^{2} \leq 8$.

Answer: $\max =$ \qquad , $\quad \min =$ \qquad

Answer: $\max =12, \min =1 / 2$
10. Find the largest product the positive numbers x, y and z can have if

$$
x+y+z^{2}=5 .
$$

Answer: \qquad

Answer: 4
11. Evaluate

$$
\int_{0}^{4} \int_{\sqrt{x}}^{2} 9 \sqrt{1+y^{3}} d y d x
$$

Answer: \qquad

Answer: 52
12. Find the second order Taylor approximation for $e^{x y}$ near the point $(0,1)$.

Answer:

Answer: $1+x+\frac{x^{2}}{2}+x(y-1)$

