MA 271: Several Variable Calculus

EXAM II (practice)

NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper.

Points awarded

Total Points: _____

1. Find the second degree Taylor polynomial of $f(x) = \frac{1 - \cos(2x)}{3x^2}$ with center $x_0 = 0$. Answer: $\frac{2}{3} - \frac{2}{9}x^2$

2. Find the second degree Taylor polynomial of $f(x) = \sqrt{x}$ with center $x_0 = 4$. Answer: $2 + \frac{1}{4}(x-4) - \frac{1}{64}(x-4)^2$

3. If
$$L = \lim_{(x,y,z)\to(0,0,0)} \frac{x^2 + 2y^2 - 3zy}{\sqrt{x^2 + y^2 + z^2}}$$
, then
A. $L = 1$
B. $L = -2$
C. $L = -3$
D. $L = 0$

E. the limit does not exist

- 4. If $L = \lim_{(x,y,z)\to(0,3,4)} \frac{x+5y-5z}{\sqrt{x^2+y^2+z^2}}$, then A. L = -3B. L = -2C. L = -1D. L = 0
 - E. the limit does not exist

5. If
$$L = \lim_{(x,y,z)\to(0,0,0)} \frac{x+2y-3z}{\sqrt{x^2+y^2+z^2}}$$
, then
A. $L = 1$
B. $L = -2$
C. $L = -3$
D. $L = 0$
E. [the limit does not exist]

6. If $f(x,y) = \ln(x+2y^2)$, then the partial derivative f_{xy} equals

A.
$$\frac{-2x}{(x+2y^2)^2}$$
B.
$$\frac{-4y}{(x+2y^2)^2}$$
C.
$$\frac{4xy}{(x+2y^2)^2}$$
D.
$$\frac{-8xy}{(x+2y^2)^2}$$
E.
$$\frac{4(x^2-y^2)}{(x+2y^2)^2}$$

7. Find
$$\frac{\partial z}{\partial y}$$
 at $(-2, 2, 2)$ if $z(x, y)$ is defined by the equation
 $xe^y + ye^z = 0$
A. -1
B. $-\frac{1}{2}$
C. 0
D. $\frac{1}{2}$
E. 1

8. Find $\frac{\partial z}{\partial y}$ at $(1, \ln 2, \ln 3)$ if z(x, y) is defined by the equation

 $xe^y + ye^z + 2\ln x - 2 - 3\ln 2 = 0.$

A. $2 + \ln 2$ **B.** $\frac{4}{3\ln 2}$ **C.** $-\frac{5}{3\ln 2+1}$ **D.** $\boxed{-\frac{5}{3\ln 2}}$ **E.** 1

$$f(x,y) = \begin{cases} \frac{y^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Find $f_x(0,0)$ and $f_y(0,0)$.

Answer: $f_x(0,0) = 0$ and $f_y(0,0)$ does not exist.

10. Let

$$f(x,y) = \begin{cases} 2x + 3y + 1, & xy \neq 0\\ 0, & xy = 0 \end{cases}$$

Find $f_x(0,0)$ and $f_x(0,1)$.

Answer: $f_x(0,0) = 0$ and $f_x(0,1)$ does not exist.

11.	Suppose $z = f(x, y)$, where $x = e^t$ and $y = t^2 + 3t + 2$. Given that $\frac{\partial z}{\partial y} = -x$, find $\frac{dz}{dt}$ when $t = 0$.	$\frac{\partial z}{\partial x} = x - y$ and
	A. -6	
	B. -4	
	C. 6	
	D. 9	
	E. 15	

- 12. Find the directional derivative of the function $f(x, y, z) = x^2 y^2 z^6$ at the point (1, 1, 1) in the direction of the vector $\langle 2, 1, -2 \rangle$.
 - **A.** -6
 - **B.** -2
 - **C.** 0
 - **D.** 2
 - **E.** 6

- 13. Find the direction in which the function $z = x^2 + 3xy \frac{1}{2}y^2$ is increasing most rapidly at (-1, -1).
 - **A.** 3*i* **B.** $5\vec{i} + 2\vec{j} - \vec{k}$ **C.** $-5\vec{i} - 2\vec{j}$ **D.** $2\vec{i} - 5\vec{j}$ **E.** $\sqrt{29}$

14. Consider the function $f(x,y) = 2x^2 - 3xy + y^2$. Find two unit vectors such that the directional derivative of f at the point (1,1) in these two directions is 1. Answer: (1,0) and (0,-1)

- 15. By using a linear approximation of $f(x,y) = \sqrt{x^2 + y}$ at (4,9), compute the approximate value of f(5,8).
 - **A.** 5.2
 - **B.** 5.3
 - **C.** 5.5
 - **D.** 5.7
 - **E.** 5.9

16. The volume of a right circular cone with base radius r and height h is $V = \frac{\pi}{3}r^2h$. Suppose the radius is measured to be $6m \pm .2m$, and the height is measured to be $12m \pm .3m$. The volume calculated use differentials is $a \pm b m^3$. What are the values of a and b?

Answer: $a = 144\pi, b = 13.2\pi$

17. Find a equation for the tangent plane of

$$\cos(\pi x) - x^2 y + e^{xz} + yz = 4$$
 at $(0, 1, 2)$

Answer: 2x + 2y + z - 4 = 0

18. Find a parametric equation for the line passing through P = (5, 2, 0), and normal to the tangent plane of

$$y^2 + z^2 = 4$$

at P.

A. x = 0, y = t, z = 0B. x = 5, y = 4t, z = 3tC. x = 5t, y = 2t, z = 3tD. x = 5, y = 4t + 2, z = 0E. x = 5t + 5, y = 2t + 2, z = 3t

19. For the function $f(x,y) = x^3 + 2y^2 + xy - 2x + 5y$, the point (-1,-1) yields

- A. a local minimum
- B. a local maximum
- C. a saddle point
- **D.** $\nabla f(-1, -1) \neq 0$
- E. The Second Derivative Test gives no information at (-1, -1)

- **20. The function** $f(x, y) = y \sin(x)$ has
 - A. infinitely many local maximum points.
 - B. infinitely many local minimum points.
 - C. | infinitely many saddle points.
 - D. exactly one local minimum point and one maximum point.
 - E. no critical point.
- 21. The max and min values of f(x, y, z) = xyz on the surface $2x^2 + 2y^2 + z^2 = 2$ are

A.
$$\pm \frac{\sqrt{2}}{9}$$

B. $\pm \frac{\sqrt{3}}{9}$
C. $\pm \frac{\sqrt{6}}{9}$
D. $\pm \frac{2\sqrt{2}}{9}$
E. $\pm \frac{2\sqrt{3}}{9}$

- 22. If we use the method of Lagrange multipliers to find the maximum of $f(x, y) = 2x^2 y^2 y$ subject to the constraint $x^2 + y^2 = 1$, the Lagrange multipliers λ that we find are:
 - A. $\lambda = 2$ B. $\lambda = 0$ C. $\lambda = -1$ D. $\lambda = 2$ and $\lambda = -1$
 - **E.** $\lambda = 0$ and $\lambda = -1$

23. Find the minimum value of $x^2+y^2+z^2$ subject to the constraint 2x+y-z-6=0.

- **A.** $\frac{25}{6}$
- **B.** 2
- **C.** 4
- **D.** 6
- **E.** 16

24. A rectangular box is to have volume 48 cubic feet, and is made of three different grades of material. The material for the front and back costs \$1 per square foot, the material for the top and bottom costs \$2 per square foot, and the material for the two ends costs \$3 per square foot. What are the dimensions of the box of minimal cost? Answer: 2 by 4 by 6

25. Find $\left(\frac{\partial w}{\partial y}\right)_x$, that is with x and y independent, at (w, x, y, z) = (4, 2, 1, -1) if $w = x^2y^2 + yz - z^3, \quad x^2 + y^2 + z^2 = 6$

- **A.** -1
- **B.** 1
- **C.** 3
- **D.** 5
- **E.** 7

26. Find cubic approximation of $f(x,y) = \frac{1}{1-x-y+xy}$ near the origin. Answer: $1 + x + y + x^2 + xy + y^2 + x^3 + x^2y + xy^2 + y^3$

27. Find cubic approximation of $f(x,y) = \frac{1}{1+x-xy}$ near (0, 1) Answer: 1 + x * (y - 1)

28. Evaluate
$$\int_0^{\pi} \int_x^{\pi} \frac{\sin(y)}{y} dy dx$$

A. -1
B. 0
C. 1
D. 2
E. $\frac{\pi^2}{2}$