MA 271: Several Variable Calculus
 EXAM II (practice)

NAME \qquad Lecture Time \qquad

NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper.

Points awarded

1. (5 pts) \qquad
2. (5 pts)
3. (5 pts) \qquad
4. (5 pts) \qquad
5. (5 pts) \qquad
6. (5 pts) \qquad
7. (5 pts) \qquad
8. (5 pts) \qquad
9. (5 pts) \qquad
10. (5 pts) \qquad
11. (5 pts) \qquad

Total Points: \qquad

1. Find the second degree Taylor polynomial of $f(x)=\frac{1-\cos (2 x)}{3 x^{2}}$ with center $x_{0}=0$.
Answer: $\frac{2}{3}-\frac{2}{9} x^{2}$
2. Find the second degree Taylor polynomial of $f(x)=\sqrt{x}$ with center $x_{0}=4$. Answer: $2+\frac{1}{4}(x-4)-\frac{1}{64}(x-4)^{2}$
3. If $L=\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x^{2}+2 y^{2}-3 z y}{\sqrt{x^{2}+y^{2}+z^{2}}}$, then
A. $L=1$
B. $L=-2$
C. $L=-3$
D. $L=0$
E. the limit does not exist
4. If $L=\lim _{(x, y, z) \rightarrow(0,3,4)} \frac{x+5 y-5 z}{\sqrt{x^{2}+y^{2}+z^{2}}}$, then
A. $L=-3$
B. $L=-2$
C. $L=-1$
D. $L=0$
E. the limit does not exist
5. If $L=\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x+2 y-3 z}{\sqrt{x^{2}+y^{2}+z^{2}}}$, then
A. $L=1$
B. $L=-2$
C. $L=-3$
D. $L=0$
E. the limit does not exist
6. If $f(x, y)=\ln \left(x+2 y^{2}\right)$, then the partial derivative $f_{x y}$ equals
A. $\frac{-2 x}{\left(x+2 y^{2}\right)^{2}}$
B. $\frac{-4 y}{\left(x+2 y^{2}\right)^{2}}$
C. $\frac{4 x y}{\left(x+2 y^{2}\right)^{2}}$
D. $\frac{-8 x y}{\left(x+2 y^{2}\right)^{2}}$
E. $\frac{4\left(x^{2}-y^{2}\right)}{\left(x+2 y^{2}\right)^{2}}$
7. Find $\frac{\partial z}{\partial y}$ at $(-2,2,2)$ if $z(x, y)$ is defined by the equation

$$
x e^{y}+y e^{z}=0
$$

A. -1
B. $-\frac{1}{2}$
C. 0
D. $\frac{1}{2}$
E. 1
8. Find $\frac{\partial z}{\partial y}$ at $(1, \ln 2, \ln 3)$ if $z(x, y)$ is defined by the equation

$$
x e^{y}+y e^{z}+2 \ln x-2-3 \ln 2=0 .
$$

A. $2+\ln 2$
B. $\frac{4}{3 \ln 2}$
C. $-\frac{5}{3 \ln 2+1}$
D. $-\frac{5}{3 \ln 2}$
E. 1
9. Let

$$
f(x, y)= \begin{cases}\frac{y^{2}}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

Find $f_{x}(0,0)$ and $f_{y}(0,0)$.
Answer: $\quad f_{x}(0,0)=0$ and $f_{y}(0,0)$ does not exist.
10. Let

$$
f(x, y)= \begin{cases}2 x+3 y+1, & x y \neq 0 \\ 0, & x y=0\end{cases}
$$

Find $f_{x}(0,0)$ and $f_{x}(0,1)$.
Answer: $f_{x}(0,0)=0$ and $f_{x}(0,1)$ does not exist.
11. Suppose $z=f(x, y)$, where $x=e^{t}$ and $y=t^{2}+3 t+2$. Given that $\frac{\partial z}{\partial x}=x-y$ and $\frac{\partial z}{\partial y}=-x$, find $\frac{d z}{d t}$ when $t=0$.
A. -6
B. -4
C. 6
D. 9
E. 15
12. Find the directional derivative of the function $f(x, y, z)=x^{2} y^{2} z^{6}$ at the point $(1,1,1)$ in the direction of the vector $\langle 2,1,-2\rangle$.
A. -6
B. -2
C. 0
D. 2
E. 6
13. Find the direction in which the function $z=x^{2}+3 x y-\frac{1}{2} y^{2}$ is increasing most rapidly at $(-1,-1)$.
A. $3 i$
B. $5 \vec{i}+2 \vec{j}-\vec{k}$
C. $-5 \vec{i}-2 \vec{j}$
D. $2 \vec{i}-5 \vec{j}$
E. $\sqrt{29}$
14. Consider the function $f(x, y)=2 x^{2}-3 x y+y^{2}$. Find two unit vectors such that the directional derivative of f at the point $(1,1)$ in these two directions is 1 . Answer: $(1,0)$ and $(0,-1)$
15. By using a linear approximation of $f(x, y)=\sqrt{x^{2}+y}$ at $(4,9)$, compute the approximate value of $f(5,8)$.
A. 5.2
B. 5.3
C. 5.5
D. 5.7
E. 5.9
16. The volume of a right circular cone with base radius r and height h is $V=\frac{\pi}{3} r^{2} h$. Suppose the radius is measured to be $6 m \pm .2 m$, and the height is measured to be $12 m \pm .3 m$. The volume calculated use differentials is $a \pm b m^{3}$. What are the values of a and b ?

Answer: $a=144 \pi, b=13.2 \pi$
17. Find a equation for the tangent plane of

$$
\cos (\pi x)-x^{2} y+e^{x z}+y z=4 \quad \text { at } \quad(0,1,2)
$$

Answer: $2 x+2 y+z-4=0$
18. Find a parametric equation for the line passing through $P=(5,2,0)$, and normal to the tangent plane of

$$
y^{2}+z^{2}=4
$$

at P.
A. $x=0, y=t, z=0$
B. $x=5, y=4 t, z=3 t$
C. $x=5 t, y=2 t, z=3 t$
D. $x=5, y=4 t+2, z=0$
E. $x=5 t+5, y=2 t+2, z=3 t$
19. For the function $f(x, y)=x^{3}+2 y^{2}+x y-2 x+5 y$, the point $(-1,-1)$ yields
A. a local minimum
B. a local maximum
C. a saddle point
D. $\nabla f(-1,-1) \neq 0$
E. The Second Derivative Test gives no information at $(-1,-1)$
20. The function $f(x, y)=y \sin (x)$ has
A. infinitely many local maximum points.
B. infinitely many local minimum points.
C. infinitely many saddle points.
D. exactly one local minimum point and one maximum point.
E. no critical point.
21. The max and min values of $f(x, y, z)=x y z$ on the surface $2 x^{2}+2 y^{2}+z^{2}=2$ are
A. $\pm \frac{\sqrt{2}}{9}$
B. $\pm \frac{\sqrt{3}}{9}$
C. $\pm \frac{\sqrt{6}}{9}$
D. $\pm \frac{2 \sqrt{2}}{9}$
E. $\pm \frac{2 \sqrt{3}}{9}$
22. If we use the method of Lagrange multipliers to find the maximum of $f(x, y)=$ $2 x^{2}-y^{2}-y$ subject to the constraint $x^{2}+y^{2}=1$, the Lagrange multipliers λ that we find are:
A. $\lambda=2$
B. $\lambda=0$
C. $\lambda=-1$
D. $\lambda=2$ and $\lambda=-1$
E. $\lambda=0$ and $\lambda=-1$
23. Find the minimum value of $x^{2}+y^{2}+z^{2}$ subject to the constraint $2 x+y-z-6=0$.
A. $\frac{25}{6}$
B. 2
C. 4
D. 6
E. 16
24. A rectangular box is to have volume 48 cubic feet, and is made of three different grades of material. The material for the front and back costs $\$ 1$ per square foot, the material for the top and bottom costs $\$ 2$ per square foot, and the material for the two ends costs $\$ 3$ per square foot. What are the dimensions of the box of minimal cost? Answer: 2 by 4 by 6
25. Find $\left(\frac{\partial w}{\partial y}\right)_{x}$, that is with x and y independent, at $(w, x, y, z)=(4,2,1,-1)$ if

$$
w=x^{2} y^{2}+y z-z^{3}, \quad x^{2}+y^{2}+z^{2}=6
$$

A. -1
B. 1
C. 3
D. 5
E. 7
26. Find cubic approximation of $f(x, y)=\frac{1}{1-x-y+x y}$ near the origin.

Answer: $1+x+y+x^{2}+x y+y^{2}+x^{3}+x^{2} y+x y^{2}+y^{3}$
27. Find cubic approximation of $f(x, y)=\frac{1}{1+x-x y}$ near $(\mathbf{0}, \mathbf{1})$ Answer: $1+x *(y-1)$
28. Evaluate $\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin (y)}{y} d y d x$.
A. -1
B. 0
C. 1
D. 2
E. $\frac{\pi^{2}}{2}$

