THIS EXAM IS CLOSED TO BOOKS AND NOTES. NO CALCULATORS ARE ALLOWED! Use the back of the **previous** page if more space is needed!

MA303	EXAMINATION I (Practice)	
Name	ID #	Section #
There are 11 Problems on this booklet. For All problems, mark the answers clearly. Points awarded		
1. (5 pts)		
2. (5 pts)		
3. (5 pts)		
4. (5 pts)		
5. (5 pts)		
6. (5 pts)		
7. (5 pts)		
8. (5 pts)		
9. (5 pts)		
10. (5 pts)		
Total Points:	_	

1. (5 points) Determine the radius of convergence of the series

$$\sum_{n=0}^{\infty} \frac{n}{2^n} (x-3)^n$$

- a) 3
- b) 2
- c) 1
- d) .5
- e) ∞

- 2. (5 points) The Taylor series of $\frac{1}{1-x}$ about $x_0=2$ is
 - a) $-1 + (x-2) (x-2)^2 + \cdots$
 - b) $-1 + (x-2) \frac{1}{2}(x-2)^2 + \cdots$
 - c) $1 + (x 2) + \frac{1}{2}(x 2)^2 + \cdots$
 - d) $1 + x + \frac{1}{2}x^2 + \cdots$
 - e) $1 + \frac{1}{2}x^2 + \frac{1}{24}x^4 + \cdots$

3. (5 points) Determine y''(1) and y'''(1) if y(x) satisfies

$$x^2y'' + (1+x)y' + 3(\ln(x))y = 0;$$
 $y(1) = 2,$ $y'(1) = 0.$

- a) y''(1) = 0; y'''(1) = 6
- b) y''(1) = 1; y'''(1) = -6
- c) y''(1) = 1; y'''(1) = 6
- d) y''(1) = 0; y'''(1) = 1
- e) y''(1) = 0; y'''(1) = -6

4. (5 points) In finding the power series solution $\sum_{n=0}^{\infty} a_n x^n$ of

$$y'' + xy' + 2y = 0,$$

what is the recurrence relation?

- a) $a_{n+2} = -a_n/(n+1)$, $n = 0, 1, 2, \cdots$
- b) $a_{n+2} = a_n/(n+2)$, $n = 0, 1, 2, \cdots$
- c) $(n+2)a_{n+2} a_{n+1} a_n = 0$, $n = 0, 1, 2, \cdots$
- d) $a_{n+2} = a_n/((n+2)(n+1)), \quad n = 0, 1, 2, \cdots$
- e) $a_2 = -a_0/2$; $(n+2)(n+1)a_{n+2} n(n+1)a_{n+1} + a_n = 0$, $n = 1, 2, \dots$

5. (5 points) Let $y(x) = \sum_{n=0}^{\infty} a_n x^n$. The recurrence relation reads

$$a_2 = -a_0/2$$
, $a_{n+2} = \frac{n}{n+2}a_{n+1} - \frac{a_n}{(n+2)(n+1)}$, $n = 1, 2, 3, \dots$

If $a_0 = 1, a_1 = 2$, the first four terms of the series solution is

- a) $y(x) = 1 + 2x + 3x^2 + 4x^3 + \cdots$
- b) $y(x) = 1 + 2x \frac{1}{2}x^2 4x^3 + \cdots$
- c) $y(x) = 1 + 2x \frac{1}{2}x^2 \frac{1}{2}x^3 + \cdots$
- d) $y(x) = 1 + 2x \frac{1}{2}x^2 \frac{1}{4}x^3 + \cdots$
- e) $y(x) = 1 + 2x 3x^2 4x^3 + \cdots$
- 6. (5 points) The general solution of

$$x^2y'' - 3xy' + 4y = 0, \quad x \neq 0$$

is

- a) $y(x) = c_1 e^{2x} + c_2 x e^{2x}$
- b) $y(x) = c_1 e^{4x} + c_2 x e^{-x}$
- c) $y(x) = c_1|x|^{-4} + c_2|x|$
- d) $y(x) = c_1|x| + c_2|x| \ln|x|$
- e) $y(x) = c_1|x|^2 + c_2|x|^2 \ln|x|$

7. (5 points) What is the value of y(3) if y(x) is the solution of

$$x^2y'' + 4xy' + 2y = 0$$
, $y(1) = 1$, $y'(1) = 2$

- a) -2
- b) -1
- c) 0
- d) 1
- e) 2

8. (5 points) Classify the singular points of the given equation

$$x^{2}(2-x^{2})y'' + (2/x)y' + 4y = 0.$$

The regular singular points are _____.

The irregular singular points are _____.

9. (5 points) What is the real part of the complex number 3^{4+5i} ?

- 10. (5 points) Determine the radius of convergence of the Taylor series of $\frac{1}{x(x-3)}$ about $x_0 = 1$
 - a) 2
 - b) 0
 - c) .5
 - d) 1
 - e) ∞

11.

EXAMINATION I (Practice) (Answer)

- 1. B
- 2. A
- 3. E
- 4. A
- 5. C
- 6. E
- 7. D
- 8. (a) $\pm \sqrt{2}$, (b) 0 9. $3^4 \cos(5 \ln(3))$
- 10. D