MA 440 (Honors)
Practice Problems For Final

NAME \qquad ID number \qquad

The practice problems for final include the problems from homeworks, quizzes, midterms and the following. The majority problems on the final will be similar to the problems in these 4 sets of problems.

1. If $\xi \in \mathbb{R}$ is irrational and $r \in \mathbb{R}$ and $r \neq 0$, show $r+\xi$ is irrational.
2. If $a>-1, a \in \mathbb{R}$, show that $(1+a)^{n} \geq 1+n a$ for all $n \in \mathbb{N}$ by using mathematical induction.
3. If $a>-1, a \in \mathbb{R}$, show that $(1+a)^{r} \geq 1+r a$ for all $r \geq 1$.
4. State the Supremum Property
5. Prove the Archimedean Property, namely, show for every $x \in \mathbb{R}$, there exists $n \in \mathbb{N}$, such that $x<n$.
6. State the Nested Cells Property
7. (Schwarz inequality) Let V be an inner product space. Define

$$
\|x\|=\sqrt{x \cdot x} \text { for } x \in V
$$

show $x \cdot y \leq\|x\|\|y\|$.
8. Let S be a set in \mathbb{R}^{p}. State the definition that a point x is a boundary point of S. State the definition that a point x is a cluster point of S. What are the differences?
9. Give an example such that x is a cluster point, but not a boundary point. Also give an example that x is a boundary point, but not a cluster point.
10. Show that if F is closed, then any cluster point of F is in F.
11. Show that if F is closed, then any boundary point of F is in F.
12. Prove that the set of all cluster points of A which is a subset of \mathbb{R}^{p} is closed.
13. Show that is $S \subset \mathbb{R}$ is open, then it is the union of a countable collection of open intervals.
14. State the definition for a set K to be compact. Show directly from definition that $K=$ $\{(x, y):|x|+|y|<1\}$ is not compact.
15. Show that if a set K in \mathbb{R}^{p} is compact, then it is bounded.
16. Show that if a set K in \mathbb{R}^{p} is compact, then it is closed.
17. Show that if a set K in \mathbb{R}^{p} is compact, then for a sequence $\left(a_{n}\right)$ in K, if $\left(a_{n}\right)$ converges to a, then a is in K.
18. Let D be a subset in \mathbb{R}^{p}, give the definition for D to be disconnected.
19. Using the fact that \mathbb{R}^{p} is connected, show that the only subsets of \mathbb{R}^{p} which are both open and closed are empty set ϕ and \mathbb{R}^{p}.
20. Let S be a subset in \mathbb{R}^{n} and denote ∂S be the set of all boundary points of S, Show that ∂S is closed.
21. Give an example that A and B are connected subsets in \mathbb{R}^{p}, but $A \cap B$ is disconnected.
22. Let K be a compact subset of \mathbb{R}^{p} and let x be any point in \mathbb{R}^{p} such that x is not in K. Prove that there exist open sets U and V, where U and V are disjoint, U contains K and V contains x.
23. Let K_{1} and K_{2} be compact subsets of \mathbb{R}^{p}. Then there exist $x_{1} \in K_{1}$ and $x_{2} \in K_{2}$ such that for all $z_{1} \in K_{1}$ and $z_{2} \in K_{2},\left\|z_{1}-z_{2}\right\| \geq\left\|x_{1}-x_{2}\right\|$.
24. Show that if a monotone sequence $\left(x_{n}\right)$ in \mathbb{R} is bounded, then it is convergent. Also $\lim _{n \rightarrow \infty} x_{n}=\sup x_{n}$.
25. Show Bolzano-Weierstrass Theorem. Namely, let $\left(x_{n}\right)$ be a bounded sequence in \mathbb{R}^{p} contained infinite distinct values. Then it has a convergent subsequence.
26. State the definition for $\left(x_{n}\right)$ to be a Cauchy sequence. Show that $\left(s_{n}\right)$ where $s_{n}=\sum_{n=1}^{\infty} \frac{1}{n}$ is not a Cauchy sequence.
27. Show that if a bounded divergent sequence $\left(x_{n}\right)$ must has two convergent subsequences which converge to different values.
28. Let $s_{n}=(-2)^{(-2)^{n}}$. Find limsup s_{n} and $\liminf s_{n}$ and justify your answer.
29. Let $\left(x_{n}\right)$ be a positive sequence and $\lim _{n \rightarrow \infty} x_{n}^{1 / n}<1$, show that there exists a r with $0<r<1,0 \leq x_{n}<r^{n}$ for sufficiently large $n \in \mathbb{N}$.
30. Give the definition for $u \in \mathbb{R}$ to be an infimum of a non-empty subset S of \mathbb{R}.
31. Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ be given and satisfy

$$
x_{n} \leq y_{n} \leq z_{n}, \quad \lim x_{n}=\lim z_{n}=L
$$

Prove by definition $\lim y_{n}=L$.
32. Show that if $\sum a_{n}$ converges and $a_{n} \geq 0$, then $\sum \frac{\sqrt{a_{n}}}{n}$ converges.
33. Show that if $\sum a_{n}$ diverges and $a_{n} \geq 0$, then $\sum \frac{1+a_{n}}{a_{n}}$ diverges.
34. Let $f(x)$ be continuous, $K \subset D(f)$ and K is compact. Show $f(K)$ is bounded.
35. Let $f(x)$ be continuous, $K \subset D(f)$ and K is compact. Show $f(K)$ is closed.
36. Show that if $f(x)$ is a contraction from R^{p} to R^{p}, then $f(x)$ has a fixed point.
37. Show that if $\left(f_{n}(x)\right)$ converges uniformly to $f(x)$ and $\left(f_{n}(x)\right)$ are continuous on D, then $f(x)$ is continuous on D. (Where the "uniformly" is used?)
38. Show that if $f_{n}^{\prime}(x)$ converges uniformly to $g(x)$ in $J=[a, b]$ and $f_{n}(x)$ converges at x_{0}, then $f_{n}(x)$ converges to $f(x)$ where $f^{\prime}(x)=g(x)$.
39. Let

$$
g(x)=\left\{\begin{array}{lll}
x^{2} & \text { for } & 0 \leq x<2 \\
x^{3} & \text { for } & 2 \leq x<3
\end{array}\right.
$$

Evaluate the Riemann-Stieltjes integral

$$
\int_{0}^{3} x d g(x)
$$

and briefly justifying your computation.
40. Let

$$
g_{n}(x)=\left\{\begin{array}{l}
n x \text { for } 0 \leq x \leq 1 / n \\
\frac{n}{n-1}(1-x) \text { for } 1 / n<x \leq 1
\end{array}\right.
$$

Show that $\left(g_{n}\right)$ converges pointwise on $[0,1]$ and find the limit function. Does it converge uniformly?
41. Let $\left(x_{n}\right)$ be a sequence of real numbers such that $\left|x_{n}\right| \leq \frac{1}{2^{n}}$, and set $y_{n}=x_{1}+x_{2}+\cdots+x_{n}$. Show the sequence (y_{n}) converge.
42. If a sequence $\left(f_{n}(x)\right)$ converges uniformly to a function $f(x)$ on $[a, b]$, and each $f_{n}(x)$ is continuous and bounded. Show that $f(x)$ is continuous and bounded.
43. If a sequence $\left(f_{n}(x)\right)$ converges uniformly to a function $f(x)$ on $[a, b]$, and each $f_{n}(x)$ is continuous and bounded. Show directly by definition that $f(x)$ is uniform continuous.
44. Show that if f is continuous and bounded on $[a, b]$, then f is Riemann integrable.
45. Show that if f is a bounded function on $[0,1]$ and if for every $a>0, f$ is Riemann integrable on $[a, 1]$, then f is integrable on $[0,1]$.
46. State Taylor's Theorem. Give Taylor's Formula using 3 terms (including the remainder) with $f(x)=\sqrt{x}$ and $x_{0}=1$. In the remainder term, find the point at which the second derivative is evaluated.
47. Prove that if f has a continuous third derivative and satisfies $f(0)=f^{\prime}(0)=f^{\prime \prime}(0)=0$ and $f^{\prime \prime \prime}(x) \leq 1$ for $x \geq 0$, then $f(x) \leq x^{3} / 3$ for $x \geq 0$.
48. Let

$$
f_{n}=\frac{(-1)^{n}}{2^{n}} \cos \left(2 \pi n x^{2}\right), x \in[0,1], n \in \mathbb{N}
$$

show that $\sum_{n=1}^{\infty} f_{n}(x)$ converges.
49. Prove or disprove the series $\sum_{n=1}^{\infty} \sin \left(n^{-2}\right) \cos \left(n^{-1}\right)$ converges.
50. Let $f, f^{\prime}, f^{\prime \prime}$ be bounded and continuous in \mathbb{R} and $f(0)=f^{\prime}(0)=0$. Show that $\sum_{n=1}^{\infty} f\left(\frac{x}{n}\right)$ converges.
51. Let $f(x)=\sum_{k=1}^{\infty} \frac{x^{k}}{k^{2}}$. Compute $f^{\prime}\left(\frac{1}{3}\right)$ and justify each steps which leads to the result.
52. Show there does not exist a continuous function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, such that
(a) $f\{(x, y):|x| \leq 1,|y| \leq 2\}=\mathbb{Q} \cap[0,1]$
(b) $f\{(x, y):|x| \leq 1,|y| \leq 2\}=[0, \infty)$
(c) $f^{-1}\{x:|x|<1\}=\{|x| \leq 1,|y| \leq 2\}$
(d) $f^{-1}\{x:|x| \leq 1\}=\{|x|<1,|y|<2\}$
53. Let A be a non-compact subset of the real line. Show that there exists a continuous function on A that is unbounded on A.
54. Prove that $2 \pi \sin (x)=1+x^{2}$ has at least two real roots and locate disjoint intervals $(a, b),(c, d)$ which contain them.
55. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and satisfy $\lim _{|x| \rightarrow \infty} f(x)=0$. Show that $f(x)$ is uniformly continuous.
56. $f(x)$ is continuous on $[0,1]$ Show that

$$
h(x)=\sum \frac{f(x)^{n}}{\left(1+\mid f(x \mid)^{n}\right.}
$$

is also continuous on $[0,1]$.
57. $f_{n}(x)=\frac{x n}{n+1}$ and let $f(x)$ be the limit function of $f_{n}(x)$. Find $f(x)$ and show that $f_{n}(x)$ does not converge to $f(x)$ uniformly.
58. Let $\left(x_{n}\right)$ be a sequence in R^{p} with the property that there exists a real number $0<r<1$, and an integer N_{0} such that

$$
\left\|x_{n+1}-x_{n}\right\| \leq r\left\|x_{n}-x_{n-1}\right\| \text { for } n \geq N_{0}
$$

Then prove $\left(x_{n}\right)$ converges.
59. Let $\left(x_{n}\right)$ be a sequence in R^{p} with the property that there exists an integer N_{0} such that

$$
\left\|x_{n+1}-x_{n}\right\|<\left\|x_{n}-x_{n-1}\right\| \text { for } n \geq N_{0}
$$

Can you show $\left(x_{n}\right)$ converges? Justify your answer.
60. Let $\left(x_{n}\right)$ be a sequence in a compact set $K \subset \mathbb{R}^{p}$ that is not convergent. Show there are two subsequences of this sequence that are convergent to different limit points.
61. Let $\left(x_{n}\right)$ be an unbounded monotone increasing sequence, show that $\lim x_{n}=+\infty$.
62. True or False. Justify your answer.
(a) Every sequence has an nondecreasing subsequence.
(b) Every sequence has a bounded subsequence.
(c) Every bounded sequence has an monotonic subsequence.
(d) Every subsequence of a bounded monotonic sequence converges.
(e) Every bounded sequence has a convergent sequence.

