MA 440 (Honors)
Practice Problems For Final (Revised on Dec. 11, 2009)

NAME \qquad ID number \qquad

The practice problems for final include the problems from homeworks, quizzes, midterms and the following. The majority problems on the final will be similar to the problems in these 4 sets of problems.

1. If $\xi \in \mathbb{R}$ is irrational and $r \in \mathbb{Q}$ and $r \neq 0$, show $r+\xi$ is irrational.
2. If $a>-1, a \in \mathbb{R}$, show that $(1+a)^{n} \geq 1+n a$ for all $n \in \mathbb{N}$ by using mathematical induction.
3. If $a>-1, a \in \mathbb{R}$, show that $(1+a)^{r} \geq 1+r a$ for all $r \geq 1$.
4. State the Supremum Property
5. Prove the Archimedean Property, namely, show for every $x \in \mathbb{R}$, there exists $n \in \mathbb{N}$, such that $x<n$.
6. State the Nested Cells Property
7. (Schwarz inequality) Let V be an inner product space. Define

$$
\|x\|=\sqrt{x \cdot x} \text { for } x \in V
$$

show $x \cdot y \leq\|x\|\|y\|$.
8. Let S be a set in \mathbb{R}^{p}. State the definition that a point x is a boundary point of S. State the definition that a point x is a cluster point of S. What are the differences?
9. Give an example such that x is a cluster point, but not a boundary point. Also give an example that x is a boundary point, but not a cluster point.
10. Show that if F is closed, then any cluster point of F is in F.
11. Show that if F is closed, then any boundary point of F is in F.
12. Prove that the set of all cluster points of $A \subset \mathbb{R}^{p}$ is closed.
13. Let S be a subset in \mathbb{R}^{p} and denote ∂S be the set of all boundary points of S, Show that ∂S is closed. Answer: Show the complement is open
14. Show that if $S \subset \mathbb{R}$ is open, then it is the union of a countable collection of open intervals.
15. State the definition for a set K to be compact. Show directly from definition that $K=$ $\{(x, y):|x|+|y|<1\}$ is not compact.
16. Show that if a set K in \mathbb{R}^{p} is compact, then it is bounded.

Answer: Let $G_{n}=B_{n}(0)$ which is the open ball centered at 0 with radius n, then $\cup_{n=1}^{\infty} G_{n}=\mathbb{R}^{p} \supset K$. So $\left\{G_{n}: n \in \mathbb{N}\right\}$ is an open covering of K. Since K is compact, there is a finite open covering, i.e. there exists m, such that

$$
K \subset \cup B_{n_{1}} \cup B_{n_{2}} \cup \cdots \cup B_{n_{m}} \subset B_{L}
$$

where $L=\max \left\{n_{1}, n_{2}, \cdots, n_{m}\right\}$. Therefore K is bounded.
17. Show that if a set K in \mathbb{R}^{p} is compact, then it is closed.
18. Show that if a set K in \mathbb{R}^{p} is compact, then for a sequence $\left(a_{n}\right)$ in K, if $\left(a_{n}\right)$ converges to a, then a is in K.
19. Let D be a subset in \mathbb{R}^{p}, give the definition for D to be disconnected.

Answer: There exist two open sets A, B such that $A \cap D$ and $B \cap D$ are disjoint, non-empty and have union D
20. Using the fact that \mathbb{R}^{p} is connected, show that the only subsets of \mathbb{R}^{p} which are both open and closed are empty set ϕ and \mathbb{R}^{p}.
21. Give an example that A and B are connected subsets in \mathbb{R}^{p}, but $A \cap B$ is disconnected.

Answer: $A=\left\{(x, y): x^{2}+y^{2}=1\right\}, B=\{(x, y): y=0\}$, then $A \cap B=\{(1,0),(-1,0)\}$
22. Let K be a compact subset of \mathbb{R}^{p} and let x be any point in \mathbb{R}^{p} such that x is not in K. Prove that there exist open sets U and V, where U and V are disjoint, U contains K and V contains x.

Answer: K is compact, from Heine-Borel Theorem, K is closed, and then $\mathcal{C}(K)$-the compliment of K-is open. Since $x \in \mathcal{C}(K)$ which is open, there exists a $\epsilon>0$, such that $B_{\epsilon}(x) \subset \mathcal{C}(K)$. Now let $V=B_{\epsilon / 2}(x)$ and $U=\{y:\|x-y\|>\epsilon / 2\}$, then U and V are open and disjoint, V contains x and U contains K because $K \subset \mathcal{C}\left(B_{\epsilon}(x)\right)=\{y$: $\|x-y\| \geq \epsilon\} \subset U$.
23. Let K_{1} and K_{2} be compact subsets of \mathbb{R}^{p}. Then there exist $x_{1} \in K_{1}$ and $x_{2} \in K_{2}$ such that for all $z_{1} \in K_{1}$ and $z_{2} \in K_{2},\left\|z_{1}-z_{2}\right\| \geq\left\|x_{1}-x_{2}\right\|$.
Answer: Let

$$
r=\inf _{z_{1} \in K_{1}, z_{2} \in K_{2}}\left\|z_{1}-z_{2}\right\| .
$$

By the definition of the infimum, there exist $a_{n} \in K_{1}, b_{n} \in K_{2}$, such that

$$
\lim _{n \rightarrow \infty}\left\|a_{n}-b_{n}\right\|=r
$$

By the Bolzano-Weierstrass theorem, a subsequence $\left(a_{n_{k}}\right)$ of $\left(a_{n}\right)$ will converge to a $x_{1} \in K_{1}$. Apply the Bolzano-Weierstrass theorem to the subsequence $\left(b_{n_{k}}\right)$, there is a subsequence $\left(b_{n_{k_{l}}}\right)$ that will converge to $x_{2} \in K_{2}$. Therefore

$$
a_{n_{k_{l}}}-b_{n_{k_{l}}} \rightarrow x_{1}-x_{2} .
$$

So, from homework 14.D

$$
\left\|a_{n_{k_{l}}}-b_{n_{k_{l}}}\right\| \rightarrow\left\|x_{1}-x_{2}\right\|
$$

and $L H S \rightarrow r$ yields $\left\|x_{1}-x_{2}\right\|=r$.
24. Show that if a monotone increasing sequence $\left(x_{n}\right)$ in \mathbb{R} is bounded, then it is convergent. Also $\lim _{n \rightarrow \infty} x_{n}=\sup x_{n}$.
25. Show Bolzano-Weierstrass Theorem. Namely, let $\left(x_{n}\right)$ be a bounded sequence in \mathbb{R}^{p} contains infinite distinct values. Then it has a convergent subsequence.
26. State the definition for $\left(x_{n}\right)$ to be a Cauchy sequence. Show that $\left(s_{n}\right)$ where $s_{n}=\sum_{k=1}^{n} \frac{1}{k}$ is not a Cauchy sequence.
27. Show that a bounded divergent sequence $\left(x_{n}\right)$ must has two convergent subsequences which converge to different values.
28. Let $\left(x_{n}\right)$ be a sequence in a compact set $K \subset \mathbb{R}^{p}$ that is not convergent. Show there are two subsequences of this sequence that are convergent to different limit points. Answer: same as previous
29. Let $s_{n}=(-2)^{(-2)^{n}}$. Find limsup s_{n} and $\liminf s_{n}$ and justify your answer. Answer: ∞, 0
30. Let $\left(x_{n}\right)$ be a positive sequence and $\lim _{n \rightarrow \infty} x_{n}^{1 / n}<1$, show that there exists a r with $0<r<1,0 \leq x_{n}<r^{n}$ for sufficiently large $n \in \mathbb{N}$.
31. Give the definition for $u \in \mathbb{R}$ to be an infimum of a non-empty subset S of \mathbb{R}.

Answer: u is greater than any other lower bound.
32. Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ be given and satisfy

$$
x_{n} \leq y_{n} \leq z_{n}, \quad \lim x_{n}=\lim z_{n}=L
$$

Prove by definition $\lim y_{n}=L$.
Answer:

$$
\begin{aligned}
& \forall \epsilon>0, \exists n_{1} \text {, for all } n>n_{1},-\epsilon<x_{n}-L<\epsilon \\
& \text { there also } \exists n_{2} \text {, for all } n>n_{2},-\epsilon<z_{n}-L<\epsilon
\end{aligned}
$$

since

$$
x_{n} \leq y_{n} \leq z_{n}
$$

we have

$$
-\epsilon<x_{n}-L \leq y_{n}-L \leq z_{n}-L \leq \epsilon \text { for all } n>\max \left\{n_{1}, n_{2}\right\}
$$

namely

$$
\left\|y_{n}-L\right\|<\epsilon \text { for all } n>\max \left\{n_{1}, n_{2}\right\}
$$

33. Show that if $\sum a_{n}$ converges and $a_{n} \geq 0$, then $\sum \frac{\sqrt{a_{n}}}{n}$ converges. Answer: $\frac{\sqrt{a_{n}}}{n} \leq a_{n}+\frac{1}{n^{2}}$
34. Show that if $\sum a_{n}$ diverges and $a_{n} \geq 0$, then $\sum \frac{1+a_{n}}{a_{n}}$ diverges. Answer: $\frac{1+a_{n}}{a_{n}} \geq 1$, divergence test gives the result.
35. Let $f(x)$ be continuous with domain $D(f), K \subset D(f)$ and K is compact. Show $f(K)$ is bounded.
36. Let $f(x)$ be continuous with domain $D(f), K \subset D(f)$ and K is compact. Show $f(K)$ is closed.
37. Show that if $f(x)$ is a contraction from R^{p} to R^{p}, then $f(x)$ has a fixed point.
38. Show that if $\left(f_{n}(x)\right)$ converges uniformly to $f(x)$ and $\left(f_{n}(x)\right)$ are continuous on D where D is a compact set in \mathbb{R}, then $f(x)$ is continuous on D. (Where the "uniformly" is used?)
39. If a sequence $\left(f_{n}(x)\right)$ converges uniformly to a function $f(x)$ on $[a, b]$, and each $f_{n}(x)$ is continuous and bounded. Show that $f(x)$ is continuous and bounded. Answer: $f(x)$ is continuous by uniform convergence and $f(x)$ is bounded by $f(x)$ is continuous on a compact set.
40. If a sequence $\left(f_{n}(x)\right)$ converges uniformly to a function $f(x)$ on $[a, b]$, and each $f_{n}(x)$ is continuous and bounded. Show directly by definition that $f(x)$ is uniform continuous.
41. Show that if $f_{n}^{\prime}(x)$ converges uniformly to $g(x)$ in $J=[a, b]$ and $f_{n}(x)$ converges at x_{0}, then $f_{n}(x)$ converges to $f(x)$ where $f^{\prime}(x)=g(x)$.
42. Let

$$
g(x)=\left\{\begin{array}{lll}
x^{2} & \text { for } & 0 \leq x<2 \\
x^{3} & \text { for } & 2 \leq x<3
\end{array}\right.
$$

Evaluate the Riemann-Stieltjes integral

$$
\int_{0}^{3} x d g(x)
$$

and briefly justifying your computation. Answer: $\frac{745}{12}$
43. Let

$$
g_{n}(x)=\left\{\begin{array}{l}
n x \text { for } 0 \leq x \leq 1 / n \\
\frac{n}{n-1}(1-x) \text { for } 1 / n<x \leq 1
\end{array}\right.
$$

Show that $\left(g_{n}\right)$ converges pointwise on $[0,1]$ and find the limit function. Does it converge uniformly?
44. Let $\left(x_{n}\right)$ be a sequence of real numbers such that $\left|x_{n}\right| \leq \frac{1}{2^{n}}$, and set $y_{n}=x_{1}+x_{2}+\cdots+x_{n}$. Show the sequence $\left(y_{n}\right)$ converge.
Answer: We will show that y_{n} is Cauchy. For any $j>k$:

$$
\left|y_{j}-y_{k}\right| \leq \sum_{n}=k+1^{j} \frac{1}{2^{n}}=\frac{1}{2^{j}}-\frac{1}{2^{k}} \leq \frac{1}{2^{j}}
$$

For any $\epsilon>0$, let K be $2^{K}=\epsilon\left(K=\frac{\ln 2}{\ln \epsilon}\right)$, then for $j, k>K\left|y_{j}-y_{k}\right|<\epsilon$.
45. Show that if f is continuous and bounded on $[a, b]$, then f is Riemann integrable.
46. Show that if f is a bounded function on $[0,1]$ and if for every $a>0, f$ is Riemann integrable on $[a, 1]$, then f is integrable on $[0,1]$.
47. State Taylor's Theorem. Give Taylor's Formula using 3 terms (including the remainder) with $f(x)=\sqrt{x}$ and $x_{0}=1$. In the remainder term, find the point at which the second derivative is evaluated.
48. Prove that if f has a continuous third derivative and satisfies $f(0)=f^{\prime}(0)=f^{\prime \prime}(0)=0$ and $f^{\prime \prime \prime}(x) \leq 1$ for $x \geq 0$, then $f(x) \leq x^{3} / 3$ for $x \geq 0$.
49. Let

$$
f_{n}=\frac{(-1)^{n}}{2^{n}} \cos \left(2 \pi n x^{2}\right), x \in[0,1], n \in \mathbb{N}
$$

show that $\sum_{n=1}^{\infty} f_{n}(x)$ converges.
50. Prove or disprove the series $\sum_{n=1}^{\infty} \sin \left(n^{-2}\right) \cos \left(n^{-1}\right)$ converges. Answer: yes. Use $\sin \left(n^{n^{-2}}\right)<1 / n^{2}$
51. Let $f, f^{\prime}, f^{\prime \prime}$ be bounded and continuous in \mathbb{R} and $f(0)=f^{\prime}(0)=0$. Show that $\sum_{n=1}^{\infty} f\left(\frac{x}{n}\right)$ converges. Answer: using Taylor's theorem $\sum_{n=1}^{\infty} f\left(\frac{x}{n}\right) \leq M x^{2} \sum \frac{1}{n^{2}}$
52. Let $f(x)=\sum_{k=1}^{\infty} \frac{x^{k}}{k^{2}}$. Compute $f^{\prime}\left(\frac{1}{3}\right)$ and justify each steps which leads to the result. Answer: $3 \log \left(\frac{3}{2}\right)$. Steps: $f(x)$ exists for $|x| \leq 1 . S_{n}^{\prime}(x)$ converges, so one can do term by term. Therefore $f^{\prime}(x)$ exists. $f^{\prime}(x)=\frac{1}{x} \sum \frac{x^{k}}{k}=\frac{1}{x} \sum \int_{0}^{x} t^{k-1} d t=\frac{1}{x} \int_{0}^{x} \sum t^{k-1} d t=$ $\frac{1}{x} \int_{0}^{x} \frac{1}{1-t} d t$.
53. Show there does not exist a continuous function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, such that
(a) $f\{(x, y):|x| \leq 1,|y| \leq 2\}=\mathbb{Q} \cap[0,1]$
(b) $f\{(x, y):|x| \leq 1,|y| \leq 2\}=[0, \infty)$
(c) $f^{-1}\{x:|x|<1\}=\{|x| \leq 1,|y| \leq 2\}$
(d) $f^{-1}\{x:|x| \leq 1\}=\{|x|<1,|y|<2\}$

Answer: For (a), (b) f maps compact set to compact set. For (c), (d): f^{-1} (open set) $=$ open set and f^{-1} (closed set) $=$ closed set
54. Let A be a non-compact subset of the real line. Show that there exists a continuous function on A that is unbounded on A. Answer: If A is unbounded, then let $f(x)=x$. If A is not closed, then there exists x_{n} in A and $x_{n} \rightarrow x$ where x is not in A. Let $f(y)=\frac{1}{y-x}$ then f is continuous but unbounded.
55. Prove that $2 \pi \sin (x)=1+x^{2}$ has at least two real roots and locate disjoint intervals $(a, b),(c, d)$ which contain them.
56. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and satisfy $\lim _{|x| \rightarrow \infty} f(x)=0$. Show that $f(x)$ is uniformly continuous.
57. Let $f(x)$ be continuous on $[0,1]$. Show that

$$
h(x)=\sum \frac{f(x)^{n}}{\left(1+\mid f(x \mid)^{n}\right.}
$$

is also continuous on $[0,1]$. Answer: Let $g(x)=\frac{f(x)}{(1+\mid f(x \mid)}$. Then $g(x)<1$ and continuous on a compact set. There exists $C<1,|g(x)| \leq C<1$. Therefore

$$
\sum \frac{f(x)^{n}}{\left(1+\mid f(x \mid)^{n}\right.}
$$

converges absolutely and uniformly (detail). So $h(x)$ is continuous on $[0,1]$.
58. Let $f_{n}(x)=\frac{x n}{n+1}$ and let $f(x)$ be the limit function of $f_{n}(x)$. Find $f(x)$ and show that $f_{n}(x)$ does not converge to $f(x)$ uniformly. Answer: $f(x)=x$ and $\left\|f_{n}-f\right\|_{\mathbb{R}}=\infty$
59. Let $\left(x_{n}\right)$ be a sequence in R^{p} with the property that there exists a real number $0<r<1$, and an integer N_{0} such that

$$
\left\|x_{n+1}-x_{n}\right\| \leq r\left\|x_{n}-x_{n-1}\right\| \text { for } n \geq N_{0}
$$

Then prove $\left(x_{n}\right)$ converges.
60. Let $\left(x_{n}\right)$ be a sequence in R^{p} with the property that there exists an integer N_{0} such that

$$
\left\|x_{n+1}-x_{n}\right\|<\left\|x_{n}-x_{n-1}\right\| \text { for } n \geq N_{0}
$$

Can you show $\left(x_{n}\right)$ converges? Justify your answer.
61. Let $\left(x_{n}\right)$ be an unbounded monotone increasing sequence, show that $\lim x_{n}=+\infty$.
62. True or False. Justify your answer.
(a) Every sequence has a nondecreasing subsequence.
(b) Every sequence has a bounded subsequence.
(c) Every bounded sequence has a monotonic subsequence.
(d) Every subsequence of a bounded monotonic sequence converges.
(e) Every bounded sequence has a convergent subsequence.

