MA 440 (Honors)
Midterm Examination
Oct, 7, 2009

NAME \qquad ID number \qquad

THIS EXAM IS CLOSED TO BOOKS AND NOTES.

Points awarded

1. (12 pts) \qquad
2. (4 pts) \qquad
3. (4 pts) \qquad
4. (4 pts) \qquad
5. (6 pts) \qquad
6. (10 pts) \qquad
7. (10 pts) \qquad
8. (10 pts) \qquad
9. (10 pts) \qquad
Total Points: /70
10. (12 points) Decide whether the following statements are true or false.
(a) (x, y irrational $\Rightarrow x+y$ irrational).

Answer: False
(b) (x^{2} irrational $\Rightarrow x$ irrational).

Answer: True
(c) (x irrational $\Rightarrow x^{2}$ irrational).

Answer: False
(d) (A sequence is bounded and monotone, then it is Cauchy).

Answer: True
(e) (A sequence is Cauchy, then it is monotone and bounded).

Answer: False
(f) (Let A_{1}, A_{2}, A_{3} be closed subsets of $[0,1]$, then $A_{1} \cup A_{2} \cup A_{3}$ is compact.) Answer: True
2. (4 points)
(a) Let $S=(0,1)$ and $C=\left\{A_{\alpha}=B_{\epsilon}(\alpha), \alpha \in S\right\}$, where $B_{\epsilon}(\alpha)$ is the open cell centered at α with radius $1>\epsilon>0$. What is the least number of A_{α} required to cover S ?

Answer: $1+[1 / \epsilon]$
(b) Let $S=(0,1)$ and $C=\left\{\left(\frac{1}{j}, 1\right)\right.$, for $\left.j \in \mathbb{N}\right\}$. What is the least number of sets in C required to cover S ?

Answer: ∞
3. (4 points) Give an example that A and B are connected subsets in \mathbb{R}^{p}, but $A \cap B$ is disconnected.
Answer: $A=\left\{(x, y): x^{2}+y^{2}=1\right\}, B=\{(x, y): y=0\}$, then $A \cap B=\{(1,0),(-1,0)\}$
4. (4 points) Consider the following statements:
(i) For every $M \in \mathbb{R}$, there is an $N_{0} \in \mathbb{N}$, such that for all $n>N_{0}, a_{n}>M$.
(ii) For every $M \in \mathbb{R}$, there is an $N_{0} \in \mathbb{N}$, such that $a_{N_{0}}>M$.
(a) Find a sequence $\left\{a_{n}\right\}$ which satisfies (i).
(b) Find a sequence $\left\{a_{n}\right\}$ which satisfies (ii) but not (i).

Answer: (a), $a_{n}=n, n \in \mathbb{N}$, (b) $a_{n}=(-1)^{n} n, n \in \mathbb{N}$
5. (6 points)
(a) Let D be a subset in \mathbb{R}^{p}, give the definition for D to be disconnected.

Answer: There exist two open sets A, B such that $A \cap D$ and $B \cap D$ are disjoint, non-empty and have union D
(b) Give the definition for $u \in \mathbb{R}$ to be an infimum of a non-empty subset S of \mathbb{R}.

Answer: u is greater than any other lower bound.
6. (10 points) Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ be given and satisfy

$$
x_{n} \leq y_{n} \leq z_{n}, \quad \lim x_{n}=\lim z_{n}=L
$$

Prove by definition $\lim y_{n}=L$.

Answer:

$$
\begin{aligned}
& \forall \epsilon>0, \exists n_{1} \text {, for all } n>n_{1},-\epsilon<x_{n}-L<\epsilon \\
& \text { there also } \exists n_{2} \text {, for all } n>n_{2},-\epsilon<z_{n}-L<\epsilon
\end{aligned}
$$

since

$$
x_{n} \leq y_{n} \leq z_{n}
$$

we have

$$
-\epsilon<x_{n}-L \leq y_{n}-L \leq z_{n}-L \leq \epsilon \text { for all } n>\max \left\{n_{1}, n_{2}\right\}
$$

namely

$$
\left\|y_{n}-L\right\|<\epsilon \text { for all } n>\max \left\{n_{1}, n_{2}\right\} .
$$

7. (10 points) Prove by using the definition that if $K \in \mathbb{R}^{p}$ is compact, then K is bounded. Answer: Let $G_{n}=B_{n}(0)$ which is the open ball centered at 0 with radius n, then $\cup_{n=1}^{\infty} G_{n}=\mathbb{R}^{p} \supset K$. So $\left\{G_{n}: n \in \mathbb{N}\right\}$ is an open covering of K. Since K is compact, there is a finite open covering, i.e. there exists m, such that

$$
K \subset \cup B_{n_{1}} \cup B_{n_{2}} \cup \cdots \cup B_{n_{m}} \subset B_{L}
$$

where $L=\max \left\{n_{1}, n_{2}, \cdots, n_{m}\right\}$. Therefore K is bounded.
8. (10 points) Let K be a compact subset of \mathbb{R}^{p} and let x be any point in \mathbb{R}^{p} such that x is not in K. Prove that there exist open sets U and V, where U and V are disjoint, U contains K and V contains x.

Answer: K is compact, from Heine-Borel Theorem, K is closed, and then $\mathcal{C}(K)$-the compliment of K-is open. Since $x \in \mathcal{C}(K)$ which is open, there exists a $\epsilon>0$, such that $B_{\epsilon}(x) \subset \mathcal{C}(K)$. Now let $V=B_{\epsilon / 2}(x)$ and $U=\{y:\|x-y\|>\epsilon / 2\}$, then U and V are open and disjoint, V contains x and U contains K because $K \subset \mathcal{C}\left(B_{\epsilon}(x)\right)=\{y$: $\|x-y\| \geq \epsilon\} \subset U$.
9. (10 points) Let K_{1} and K_{2} be compact subsets of \mathbb{R}^{p}. Then there exist $x_{1} \in K_{1}$ and $x_{2} \in K_{2}$ such that for all $z_{1} \in K_{1}$ and $z_{2} \in K_{2},\left\|z_{1}-z_{2}\right\| \geq\left\|x_{1}-x_{2}\right\|$.

Answer: Let

$$
r=\inf _{z_{1} \in K_{1}, z_{2} \in K_{2}}\left\|z_{1}-z_{2}\right\| .
$$

By the definition of the infimum, there exist $a_{n} \in K_{1}, b_{n} \in K_{2}$, such that

$$
\lim _{n \rightarrow \infty}\left\|a_{n}-b_{n}\right\|=r
$$

By the Bolzano-Weierstrass theorem, a subsequence $\left(a_{n_{k}}\right)$ of $\left(a_{n}\right)$ will converge to a $x_{1} \in K_{1}$. Apply the Bolzano-Weierstrass theorem to the subsequence $\left(b_{n_{k}}\right)$, there is a subsequence $\left(b_{n_{k_{l}}}\right)$ that will converge to $x_{2} \in K_{2}$. Therefore

$$
a_{n_{k_{l}}}-b_{n_{k_{l}}} \rightarrow x_{1}-x_{2} .
$$

So, from homework 14.D

$$
\left\|a_{n_{k_{l}}}-b_{n_{k_{l}}}\right\| \rightarrow\left\|x_{1}-x_{2}\right\|
$$

and $L H S \rightarrow r$ yields $\left\|x_{1}-x_{2}\right\|=r$.

