MA 440 (Honors) Midterm Examination Oct, 7, 2009

NAME _____

ID number _____

THIS EXAM IS CLOSED TO BOOKS AND NOTES.

Points awarded

1. (12 pts)	
2. (4 pts)	
3. (4 pts)	
4. (4 pts)	
5. (6 pts)	
6. (10 pts)	
7. (10 pts)	
8. (10 pts)	
9. (10 pts)	
Total Points:/70)

- 1. (12 points) Decide whether the following statements are true or false.
 - (a) $(x, y \text{ irrational} \Rightarrow x + y \text{ irrational}).$ Answer: False
 - (b) $(x^2 \text{ irrational} \Rightarrow x \text{ irrational}).$ Answer: True
 - (c) (x irrational $\Rightarrow x^2$ irrational). Answer: False
 - (d) (A sequence is bounded and monotone, then it is Cauchy). Answer: True
 - (e) (A sequence is Cauchy, then it is monotone and bounded). Answer: False
 - (f) (Let A_1, A_2, A_3 be closed subsets of [0, 1], then $A_1 \cup A_2 \cup A_3$ is compact.) Answer: True

2. (4 points)

(a) Let S = (0, 1) and $C = \{A_{\alpha} = B_{\epsilon}(\alpha), \alpha \in S\}$, where $B_{\epsilon}(\alpha)$ is the open cell centered at α with radius $1 > \epsilon > 0$. What is the least number of A_{α} required to cover S?

Answer: $1 + [1/\epsilon]$

(b) Let S = (0, 1) and $C = \{(\frac{1}{j}, 1), \text{ for } j \in \mathbb{N}\}$. What is the least number of sets in C required to cover S? ______ Answer: ∞

3. (4 points) Give an example that A and B are connected subsets in \mathbb{R}^p , but $A \cap B$ is disconnected.

Answer: $A = \{(x, y) : x^2 + y^2 = 1\}, B = \{(x, y) : y = 0\}, \text{ then } A \cap B = \{(1, 0), (-1, 0)\}$

- 4. (4 points) Consider the following statements:
 - (i) For every $M \in \mathbb{R}$, there is an $N_0 \in \mathbb{N}$, such that for all $n > N_0$, $a_n > M$.
 - (ii) For every $M \in \mathbb{R}$, there is an $N_0 \in \mathbb{N}$, such that $a_{N_0} > M$.
 - (a) Find a sequence $\{a_n\}$ which satisfies (i).
 - (b) Find a sequence $\{a_n\}$ which satisfies (ii) but not (i).

Answer: (a), $a_n = n, n \in \mathbb{N}$, (b) $a_n = (-1)^n n, n \in \mathbb{N}$

5. (6 points)

(a) Let D be a subset in ℝ^p, give the definition for D to be disconnected.
Answer: There exist two open sets A, B such that A ∩ D and B ∩ D are disjoint, non-empty and have union D

(b) Give the definition for $u \in \mathbb{R}$ to be an infimum of a non-empty subset S of \mathbb{R} . Answer: u is greater than any other lower bound. **6.** (10 points) Let $\{x_n\}, \{y_n\}$ and $\{z_n\}$ be given and satisfy

 $x_n \le y_n \le z_n$, $\lim x_n = \lim z_n = L$

Prove by definition $\lim y_n = L$.

Answer:

$$\forall \epsilon > 0, \exists n_1, \text{ for all } n > n_1, -\epsilon < x_n - L < \epsilon$$

there also $\exists n_2, \text{ for all } n > n_2, -\epsilon < z_n - L < \epsilon$

since

$$x_n \le y_n \le z_n,$$

we have

$$-\epsilon < x_n - L \le y_n - L \le z_n - L \le \epsilon$$
 for all $n > \max\{n_1, n_2\}$

namely

$$||y_n - L|| < \epsilon \text{ for all } n > \max\{n_1, n_2\}.$$

7. (10 points) Prove by using the definition that if $K \in \mathbb{R}^p$ is compact, then K is bounded. Answer: Let $G_n = B_n(0)$ which is the open ball centered at 0 with radius n, then $\bigcup_{n=1}^{\infty} G_n = \mathbb{R}^p \supset K$. So $\{G_n : n \in \mathbb{N}\}$ is an open covering of K. Since K is compact, there is a finite open covering, i.e. there exists m, such that

$$K \subset \cup B_{n_1} \cup B_{n_2} \cup \cdots \cup B_{n_m} \subset B_L$$

where $L = \max\{n_1, n_2, \cdots, n_m\}$. Therefore K is bounded.

8. (10 points) Let K be a compact subset of \mathbb{R}^p and let x be any point in \mathbb{R}^p such that x is not in K. Prove that there exist open sets U and V, where U and V are disjoint, U contains K and V contains x.

Answer: K is compact, from Heine-Borel Theorem, K is closed, and then $\mathcal{C}(K)$ -the compliment of K-is open. Since $x \in \mathcal{C}(K)$ which is open, there exists a $\epsilon > 0$, such that $B_{\epsilon}(x) \subset \mathcal{C}(K)$. Now let $V = B_{\epsilon/2}(x)$ and $U = \{y : ||x - y|| > \epsilon/2\}$, then U and V are open and disjoint, V contains x and U contains K because $K \subset \mathcal{C}(B_{\epsilon}(x)) = \{y : ||x - y|| \ge \epsilon\} \subset U$.

9. (10 points) Let K_1 and K_2 be compact subsets of \mathbb{R}^p . Then there exist $x_1 \in K_1$ and $x_2 \in K_2$ such that for all $z_1 \in K_1$ and $z_2 \in K_2$, $||z_1 - z_2|| \ge ||x_1 - x_2||$.

Answer: Let

$$r = \inf_{z_1 \in K_1, z_2 \in K_2} \|z_1 - z_2\|$$

By the definition of the infimum, there exist $a_n \in K_1, b_n \in K_2$, such that

$$\lim_{n \to \infty} \|a_n - b_n\| = r.$$

By the Bolzano-Weierstrass theorem, a subsequence (a_{n_k}) of (a_n) will converge to a $x_1 \in K_1$. Apply the Bolzano-Weierstrass theorem to the subsequence (b_{n_k}) , there is a subsequence $(b_{n_{k_l}})$ that will converge to $x_2 \in K_2$. Therefore

$$a_{n_{k_l}} - b_{n_{k_l}} \to x_1 - x_2.$$

So, from homework 14.D

$$||a_{n_{k_l}} - b_{n_{k_l}}|| \to ||x_1 - x_2||$$

and $LHS \rightarrow r$ yields $||x_1 - x_2|| = r$.