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Preface: These notes are concerned with some aspects of theoretical fluid
mechanics, especially wave propagation. Various problems arising in fluid
mechanics are treated in detail, calling on methods from modern functional
analysis, the theory of partial differential equations and numerical analysis
and simulation.
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Chapter 1

Introduction and a Brief
Review of the History

Model equations for waves that take account of both nonlinearity and dis-
persion have their genesis in the discovery of the solitary wave by John Scott
Russell. The story of Scott Russell’s encounter with the solitary wave in 1834
has been retold many times.

While working as a consultant for the xxx on the Edinburgh-Glasgow
canal, Scott Russell witnessed a heavily laden barge drawn by a pair of
horses come suddenly to rest, owing to an obstruction in the canal. This
sudden cessation of forward motion created various disturbances on the wa-
ter’s surface, including a long-crested wave some 18 inches in elevation that
went rolling off down the canal in the direction the barge had been traveling.
Scott Russell gave chase by horse and observed the wave, which was more or
less uniform in the spanwise direction, propagated with constant speed and
without change of shape. Fascinated, Scott Russell went on to conduct a set
of laboratory experiments on this phenomenon which he reported in 1841
and 1844 to the British Association (see Scott Russell 1845 [10]). Among
other appellations he called such waves solitary waves.

The more theoretically inclined scientists interested in fluid mechanics
soon took Scott Russell to task. The Astronomer Royal, Sir George Airy
addressed the issue of whether or not it was possible to have a steadily
propagating wave of permanent form on the surface of water. He concluded
such waves were not possible on the basis of analysis to be described presently.

Stokes, who was later also accorded the title Sir George, analyzed waves
on the surface of water, concluding on the basis of forthcoming analysis that
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6 CHAPTER 1. INTRODUCTION AND HISTORY

such wave motion was not possible.

Despite the mathematical theory, the experimental evidence in favor of
solitary waves was convincing. The issue lay unresolved until the seminal
work of Boussinesq in the 1870’s [2, 3, 4]. With the hindsight derived from
Boussinesq’s work, one sees clearly that both Airy and Stokes were on the
right track, and both had part of the issue in hand, as will become apparent
in the next section.

Lord Rayleigh also addressed the issue of existence of solitary waves, and
concluded in a long article on waves published in 1876 that there were such
motions. His paper is curious because, in addition to an approximate analysis
dealing successfully with solitary waves, he also has material analogous to
Airy’s shallow-water theory which was taken as evidence that such traveling
waves do not exist.

In the 1890’s, a couple of other significant papers were published. McKeon
(1894) [?]. The famous paper of Korteweg and de Vries (1895) [7] appeared
the next year. These Dutch scientists were apparently ignorant of the work
of Boussinesq, for they refer to Stokes’ much earlier paper (Stokes 1845 )
[11]. In a clear account which is very readable more than 100 years after
it was written, Korteweg and de Vries lay out the essential modelling and
mathematical issues that go into the 19th century analysis of Scott Russell’s
solitary waves.

At the turn of the century, it seems fair to say that Scott Russell, who
died in 18 , was vindicated in his view of traveling waves of elevation existing
on the surface of water. It is worth note that Stokes reversed himself in print
regarding whether or not solitary waves exist.

In the first half of the 20th century, solitary waves and related evolution
equations were not a major topic of scientific conversation. The notion of
a solitary wave was used in a descriptive manner, but it does not appear
as a central issue in theoretical discussion. For example, Lamb’s (1932)[9]
rendering of solitary waves accords Boussinesq a footnote, does not mention
the Korteweg-de Vries equation, but centers around Lord Rayleigh’s develop-
ment, which in retrospect was probably the least interesting approach since
he did not derive an evolution equation which could countenance a range of
disturbances, but rather passed directly to a traveling-wave description.

The oceanographer Keulegan pioneered the use of the idea of a solitary
wave, particularly solitary internal waves, in geophysical applications. Keule-
gan with Patterson (1940) wrote an article [6] that reviewed some of Boussi-
nesq’s ideas. As the original was somewhat inaccessible, this proved to be a



very helpful endeavor.

The linear heat equation features infinite speed of propagation. In prin-
ciple, a candle lit in Austin, Texas could be detected immediately in Floria-
nopolis, Brasil with sufficiently accurate instruments. In fact, heat does not
propagate at infinite speed. Enrico Fermi was looking for a model for heat
conduction that featured finite speed of propagation. With John Pasta and
Stanislaw Ulam, he put forward a discrete spring and mass model such as
one encounters in elementary physics courses. The difference was the springs
were not Hooksian, but instead the restoring force had a quadratic depen-
dence on the extension. Gravity is ignored, and so Newton’s laws lead to a
coupled system of nonlinear ordinary differential equations. Exact solutions
were not available, so they resorted to numerical simulation using Los Alamos
Laboratory’s ENIAC computer. What they found did not correspond well to
heat conduction; it seems this simple mass and spring systems features near
recurrence of initial states, and not the kind of thermalization one expects.
A Los Alamos report was duly constructed and the issue then lay dormant.
Fermi died in 195... holding the opinion that these numerical simulations
were somehow important, but not knowing exactly why.

A few years later, Gardner and Morikawa (1960) [?], studied the stability
of a cold collisionless plasma as it arises in a putative description of nuclear
fusion. Starting from the full Magneto-Hydrodynamic equations, and making
simplifying assumptions about the motion of the plasma, they derived the
same equations as had Boussinesq and Korteweg - de Vries, although the
physical context was different. Their work appeared initially as an NYU
report, but was published in the permanent literature only many years later.

At the Plasma Physics Laboratory in Princeton University, Martin Kruskal
knew of the work of Gardner and Morikawa. He also knew about the work of
Fermi, Pasta and Ulam and at a certain stage, in collaboration with Norman
Zabusky, he revisited their model. Kruskal and Zabusky took a continuum
limit of the original discrete system. The system of ordinary differential
equations goes over to a partial differential equation in this limit, and the
equation in question was the Boussinesq-Korteweg-de Vries equation again.
A well-conceived sequence of numerical experiments for the spatially-periodic
initial-value problem was carried out and reported (Kruskal and Zabusky 196
[8]). These experiments showed some of the same fascinating properties that
Fermi, Pasta and Ulam had seen earlier. The Korteweg-de Vries equation
had now arisen as a description of three, distinct physical systems.

Further study of the Korteweg-de Vries equation led to the inverse-scattering
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theory for the initial-value problem. This imaginative leap was first described
by Gardner, Greene, Miura and Kruskal (1967) and later amplified in a se-
ries of papers entitled Korteweg-de Vries Equation and Generalization (see
[?] ). Peter Lax (1968) [?] made a fundamental step forward by providing a
mathematical framework in which to consider the inverse-scattering theory
as it applies to initial-value problems for partial differential equations.

Shortly afterward, the subject began to assume industrial proportions
and it quickly becomes difficult to trace the developments. Indeed, many
areas of mathematics, physics and mechanics have been influenced by the
elaboration and extension of the ideas just outlined.



Chapter 2

Model Equations for Waves in
Dispersive Media

The Euler equation of fluid dynamics consists of Newton’s laws of motion
for continuous and homogeneous matter in the fluid state. We consider a
body of water of finite depth under the influence of gravity, bounded below
by an impermeable surface. Ignoring the effects of viscosity and assuming
the flow is incompressible and irrotational, the fluid motion is taken to be
governed by the Euler equations together with suitable boundary conditions
on the rigid surface and on the water-air interface. After briefly explaining
the Euler equations, further approximations are introduced and analyzed,
leading to a set of model equations formally valid for small-amplitude long
wavelength motion.

2.1 Derivation of Model Equations for Waves
in Dispersive Media

Let oxyz be a right-handed (Cartesian) coordinate system with oy pointing
in the direction opposite to that of gravity, oz to the right, and oz toward
us from the page. Let u(x,t) = (u,v,w) denote the velocity vector of the
mass at point x = (z,y, z) and at time ¢. We first introduce the definition of
convective derivatives.



10 CHAPTER 2. MODEL EQUATIONS

Convective derivatives (or material derivatives) Convective deriva-
tive, denoted by %, calculates the rate of a function F(x,y, z,t) varies for
a moving particle, namely the derivative following the motion.

Let a particle P be at (z,y,z) at time ¢t. At ¢ + 6t, where §t is an
infinitesimal increment of time, the location of P is (x 4+ udt, y + vdt, z + wit).
It is clear then that

DF 5 F(z + udt,y + vdt, z + wdt) — F(z,y, 2,t)

Dt 5o ot
= a—Fu + a—FU + 8—Fw + 6_F
- Oz oy 0z ot
Therefore,
DF  OF
- - .VF 2.1
bt~ TV (2.1)

graph coordinate and point (x,t) and (x + udt,t + 0t)

Convective derivative of a volume element Consider a rectangular
prism volume element which at time ¢ has endpoints P, L, M, N, A, B, C,
and D, where

P=(z,y,2),L=(x+dx,y,2), M = (x,y + oy, 2), N = (x,y, 2z + 0z),

so the volume Q) = dxdydz. At t+ dt, the same element will form an oblique
parallelepiped. The corresponding endpoints are

P' = (x + uydt, y + vp0t, 2 + wyot),

L' = (z + 6z + urdt, y + vt z + wrdt),
M' = (z + up6t, y + 0y + vardt, 2 + wprdt),
N' = (z + undt,y + vx0t, z + 6z + wydt)
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and A’, B’, C’, D’, where up = (up,vp,wp) is the velocity at point P and
similar notations are used for velocities at other points. The edge P’L’ is
(6z + (ur, — up)dt = 6z (1 + 6t), 226x6t, 226z6t). So, at ¢ + 6t, the length
of P'L’ is

62/ (1 + ugdt)? + (v50t)2 + (w,t)2.

Therefore,
Déx . \P'L'| - |PL| 5
Dt~ as0 ot - a0
Similarly,
Doy Déz 5
Dt v Tpp T
Using product rule,
D@  Dox Déy Déz
D = Ttéyéz + Ttéa:éz + Ft&réy = (ug + vy + w,)Q.
Therefore,
1D
@ﬁcfzv-u=div-u. (2.2)
graph element @) and @’
Exercise. Show rigorously
1D

by computing the change of volume from ¢ to ¢ + dt.

Mass conservation law  Since mass conservation means that

D(pQ)
Dt

=0,
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one obtains

1DQ 1Dp
Q Dt pDt
Using (2.1) and (2.2)
0
pV-u-l——p—f-(u-V)p:O
ot
therefore
dp
a5 + V- (pu) =0. (2.3)

If the consideration is restricted to incompressible fluid, p = constant, so

V-u=0. (2.4)

Momentum conservation law Newton’s second law of motion states
that: the rate of change of momentum is equal to the net applied forces. So,

D
Di (mu(x,t)) =f

where m is the mass of the volume element and f is the net force on it.
Assume that the fluid is inviscid and the mass is only acted upon by the
pressure and the gravity force . So along x-coordinate,

Du oP

where P = P(z,y, z,t) is the pressure. Using m = p@, one obtains
Du 10P
—+—-—=0
Dt pox
Similarly, along y-coordinate,
Dv oP
mﬁ = _8—yQ - pQg,

where ¢ is the gravity constant. Therefore

&_Fla_P_{_ —0
Dt p oy g="
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Combining three components, one obtains

Du 1
— +-VP+gj=0
Dt T P +9)
or 5 .
a—ltl +(u-Viju+ ;VP +4gj=0, (2.5)

where j = (0,1, 0) is the unit vector in direction opposite to gravitation.

Combining the mass conservation equation (2.4) with (2.5), we have four
equations for four unknowns u and P. With appropriate boundary condi-
tions, one should be able to solve the problem.

Remark 2.1.1. At first sight this doesn’t look very wavy. The waves come
from the effects of the free surface which are discussed next.

Water wave equations for irrotational low  Assume that the fluid is
irrotational, it follows that

curlu=V xu=0. (2.6)
In consequence, there is a velocity potential ¢ = ¢(z,y, z,t) such that
u = V. (2.7)
Combining with (2.4), it then follows that

Ao = 0. — Laplace equation
(2.8)
Thus we are reduced to solving (2.8) with the appropriate boundary condi-
tions and then the velocity field u may be read off from (2.7).

The relationship between pressure P and the velocity potential ¢
Recall that the conservation of momentum is expressed mathematically by
the relation,

Oou 1 .
a#—(u-v)u——sz—gj, (2.9)
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where P = P(z,y, 2,t) is the pressure, j = (0, 1,0) is the unit vector in the
direction opposite gravitation, and ¢ is the gravity constant.
Using (2.6) and

V(u-u)=2(u-V)u+2ux (Vxu),
conservation of momentum (2.9) may be rewritten as

ou 1 1
— ——VP — gj. 2.1
5 + = V(u u) = pv qj (2.10)

Combining (2.10) with (2.7), we come to the conclusion

v[2¢

P = 2.11
6t+ V¢ Vqﬁ—i—p +gy] 0, ( )

since Vy = j. The gradient of the quantity in square bracket vanishes in the
flow domain, and assuming the latter is simply connected, it follows that

99

8t+ qu Vo + P+gy—B(t), (2.12)

where B(t) is a constant independent of the spatial coordinates (z,y, z). The
latter expression may be written in another form, namely

9¢

1
o + ng V¢+p(P—P0)+gy:B(t), (2.13)

where P, is the pressure in the air near to the surface of the liquid. This
quantity will be taken to be constant in the present consideration. Let
o(z,y, 2,t) = ¢(z,y, 2,t) — fOtB(s) ds, and rewrite (2.13) in terms of ¢, viz.

0 1
8—f+ —Vé- v¢+p(P—P0)+gy:0. (2.14)

Dropping the tilde from ¢ and rearranging the order gives

P-P 9 1

S =T v ve-wy (2.15)

Therefore, the pressure P can be read off from (2.15) once ¢ is obtained.
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Boundary condition on the free surface Suppose the free surface of
the liquid is described by an equation of the form

f(z,y,2,t) =0. (2.16)

Since the fluid doesn’t cross this surface, the velocity of the fluid at the
surface must be the velocity of the surface. Therefore

Df
ot
which leads to

fitufs+vfy+uwf, =0. — kinematic boundary condition.
(2.17)

If the free surface can be described by a single-valued function of (z, z) for
some time interval, say,

f(xv Y, z, t) = 77(3:: 2 t) - Y
then the kinematic boundary condition (2.17) above becomes
n + ung +wn, —v =20,

or what is the same,
M+ Gulle + G2, = ¢y- (2.18)

There is also a dynamical condition on the free surface. Since the surface
has no mass, and if surface tension is neglected, the pressure in the water and
the air pressure must be equal on the free surface. Of course a disturbance in
the surface imparts some motion of the air. We argue, because of the small
density of air relative to the density of the water, that the air pressure is not
changed significantly, and so may be approximated by its undisturbed value.
Hence the second boundary condition on the free surface is

P=P, at y=rn(zz1), (2.19)

where P = P(x,n, z,t) is the pressure at the surface. Using (2.15) in con-
junction with (2.19), it is seen that

1
by + §(V¢)2 +gn=0 for y=m, — Bernoulli condition
(2.20)
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Because the lower, containing boundary is impermeable, the velocity nor-
mal to the bottom must be zero, which is to say, there is no flow through
the bottom. If the bottom profile is y = —hg(x, z), then u-n = 0, where
n = (hgy, 1, hg,) is the normal direction to the bottom; hence

Gzhoy + Gho, + 0y =0  at y=—ho(z, 2). (2.21)

Summary Summarize all the equations obtained so far, it might appear
that our system is a little overdetermined since we have A¢ = 0 inside the
flow domain, one boundary condition on the bottom, but two on the free
surface. This is contrary to what we know about elliptic equations. The
resolution of this conondrum lies in the free surface not being prescribed in
advance, but instead constituting part of solution of the problem. So, in
summary, assuming the free surface and the bottom profile can be described
as single-valued function of (z, z,t), the motion of the perfect liquid may be
described by the system:

NAp=0 in the flow domain — hy < y <7,
M+ Galle + G212 = By
¢ + %(Wﬁ)2 +gn=0
Gzhoy + ¢ ho, + ¢y =0 on the bottom y = —hg(z, 2).

at the free surface y=rn, (2.22)

It is sometimes interesting and appropriate to specialize to the case of
two-dimensional flow; i.e. motions which are independent of z say. Suppose
additionally that hg is constant, so the bottom is flat and horizontal. Then
the system (2.22) above reduces to

Guz + byy = 0 in the domain — hy <y <,

M+ Pally = ¢y

6 %(qﬁi . ¢§) +gm=0 at the free surface y=mn, (2.23)
¢y =0 on the bottom y = —hy,

together with appropriate initial conditions and other boundary conditions
if a lateral surface intrudes.
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2.2 Linear Dispersion Relation, Phase and Group
Velocities

If the propagation of infinitesimal waves is considered, then it is warranted
to linearize the equations of motion around the rest solution. Let § = y+ hy,
so in the new coordinate, the bottom of the channel is at 4 = 0 and the
still water surface is at § = hg. In the new coordinate, the linearized Euler
equation (2.23) reads (the tilde was dropped)

Ap=0 in 0 <y < hyg,

e =y on y = hy, (2.24)
¢t +gn=20

¢y =0 at y=0.

We start by looking for a particular traveling-wave solution of the form
d(z,y,t) = p(y)e®>=<t)  Substituting this form into (2.24) and simplify-
ing gives

U~ k=0,

/ll),(()) = OJ (2.25)

2
(o) = ¥/ (ho) = .
It follows that
¥ (y) = ¢ sinh(ky) + d cosh(ky). (2.26)

As ¢'(0) =0, ¢ = 0 and ¥(y) = d cosh(ky). Applying the second boundary
condition leads to the dispersion relation

@/)’(ho) — ok s1nh(kh0)

olhe) g cosh(khy) = gk tanh(khy).

W=y
Thus the frequency w is
w(k) = £4/gk tanh(khg). - Dispersion relation (2.27)

Remark 2.2.1. At first, one might think that the linearized Fuler equation
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should be

Ap=0 n 0<y<hy+n,

N = Gy

on y = ho+n, 2.28

bu+ gn = 0} ’ (228

¢y =0 at Yy = 0.
By looking for solution of the form ¢(z,y,t) = ¥(y)e'* =<t (2.28) reduces
to

Y- Ky =0,

2

bl 1) =¥/ (hy + 1) = 0.
It follows that
Y(y) = c sinh(ky) + d cosh(ky). (2.30)

As ¢'(0) =0, ¢ = 0 and ¥(y) = d cosh(ky). Applying the second boundary
condition leads to

W — gw = gk tanh(k(ho +n)).

Y(ho +n)

By keeping the leading term around the rest state, one recovers the dispersion
relation (2.27).

There are two important velocities associated to a propagating wave. One
is phase velocity defined by

cp(k) =: & - Phase velocity
and the other is group wvelocity. defined by

cy(k) =: dt;gfk) - Group velocity

Let us first consider a pure traveling sinusoidal wave,
A(t,z) = Ag cos(kx — wt)

where Ay is the wave amplitude. The angular frequency w of a wave is the
number of radians per unit time at a fixed position, whereas the wave number
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k is the number of radians per unit distance at a fixed time. We use the cosine
function rather than the sine merely for convenience, the difference being only
a matter of phase. The minus sign denotes the fact the wave is propagating
in the positive z direction. Reversing the sign gives Ay cos(kx + wt), which
is the equation of a wave propagating in the negative x direction. Since w is
the number of radians of the wave that pass a given location per unit time,
and % is the spatial length of the wave per radian, it follows that ¢ is the
speed at which the shape of the wave is moving, i.e., the speed at which any
fixed phase of the cycle is displaced. Consequently this is called the phase
velocity of the wave, denoted by c,.

In practice and common usage, though, we tend to define the “phase”
of a signal with respect to the intervals between consecutive local maxima
(or minima, or zero crossings). To illustrate, consider a signal consisting of
two superimposed cosine waves with slightly different frequencies and wave-
lengths, i.e., a signal with the amplitude function

cos((k + dk)x — (w + dw)t) + cos((k — dk)x — (w — dw)t)

= 2cos(kz — wt) cos((dk)z — (dw)t). (2:31)

It is clear that the phase velocity of this propagating wave is approximately
2 when dk and dw are small.

Formula (2.31) shows that the combination of two slightly unequal tones
produces a ”"beat”. It is a simple sinusoidal wave with the angular velocity
w, the wave number &, and the modulated amplitude 2 cos((dk)x — (dw)t).
In other words, the amplitude of the wave is itself a wave, and the phase
velocity of this modulation wave is ‘Z—‘;’. Since each amplitude wave contains
a group of internal waves, this speed is usually called the group velocity,
denoted by c,.

A typical plot of such a signal is shown below for the case

w = 6rad/sec, k = 6rad/meter,
dw = 0.1rad/sec, dk = 0.3rad /meter.

The “phase velocity” of the internal oscillations is w/k = 1 meter/sec,
whereas the amplitude envelope wave (indicated by the dotted lines) has a
phase velocity of dw/dk = 0.33 meter /sec.

As a result, if we were riding along with the envelope, we would observe
the internal oscillations moving forward from one group to the next. The
propagation of information or energy in a wave always occurs as a change
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N
=\

Figure 2.1: A function of form (2.31) The dashed line is the envelope
2 cos((dk)z).

in the wave. The most obvious example is changing the wave from being
absent to being present, which propagates at the speed of the leading edge of
a wave train, which is the group velocity. Incidentally, since we can contrive
to make the ”groups” propagate in either direction, it’s not surprising that we
can also make them stationary. Two identical waves propagating in opposite
directions at the same speed are given by function

Apcos(kz £ wt) + Ag cos(kz F wt) = 24, cos(kx) cos(wt).

Superimposing these two waves propagating in opposite directions yields
a standing pure wave.
For the linearized Euler equation, the phase velocity is

tanh(kh
Cp(k) = ++/gho #;

and the group wvelocity is
cy(k) = 2i(g tanh(kho) + gkhosech®(khyg)).
w

The quantity c,(k) is the speed of individual crests. The quantity v/ghg
is the so-called kinematic wave velocity, the velocity of extremely long waves.
According to the linearized theory, long waves travel faster than short wave-
length disturbances.

Exercise: Write a program to show the evolution of wave profile (2.31)
with
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Figure 2.2: The phase velocity (solid line) and the group velocity of linearized
Euler equations. g and hy are scaled to 1.

e Stationary group where the group velocity is zero. £k =12, w = 2,dk =
1,dw =0

e Moving group where the phase velocity is zero. £ = 12,w = 0,dk =
1,dw =2

e Moving group and phase where both velocities are nonzero. k£ =
12,w=5,dk=1,dw =15

2.3 Nonlinear Boussinesq Equations

To study waves that are not infinitesimally small, the nonlinear effects have to
be included in the consideration. We return to the nonlinear Euler equation
(2.23) with the object of further simplifying it. Let a = supyery>o|n(2,1)]
be the maximum amplitude of the contemplated wave motion, [ a typical
wavelength in the wave motion, and ¢y = v/ghg the kinematic wave velocity.
Assume that a << hy and that hy << [. It is natural to non-dimensionalize
the variables to bring these assumptions to the fore: let

It la
d=lz, y=h(y-1), t'=—, n'=an ¢=9—¢
Co Co
Here, the primed variables connote the original coordinates, while the un-
primed quantities are the new dimensionless variables. In the new variables,
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the system (2.23) becomes

( B¢ww+¢yy:0 in 0<y<1+a77,
¢y:0 at y:(),
4 1 (2.32)
M+ Pz — quy =0 :
at y=1+oan,
B o A

a h2
where @ = — and 3 = -2.
ho p [?
A formal expansion of ¢ in a power series in y is posited:

o(z,y,t) me z,t)y (2.33)

From the Laplace equation in (2.32), there follows
= ﬁ (bww + ¢yy

—Bmey +Z m —2) frmy™

(2.34)
=3 (B + (m+2)(m+ 1) frusz) 5™,
whence
Bfr = —(m+2)(m~+1)fmye for m>0. (2.35)
Since ¢,(z,0) = 0 is specified in the first boundary condition in (2.32),
fi(z,t) = 0, and so by recursion f3 = f5 = fr = ... = fo,41 = 0 foralln > 0.

2

If we write f(z,t) for fo(x,t), then fo = —%f”, fa= —%f;’ = % and so
forth. Thus, the Laplace equation together with the boundary condition at
the bottom leads to

o0

é(z,y, 1) ngm (2, )y =Y (~ yman v ),f@m)(x,t). (2.36)

m=0

Substituting (2.36) into the non-dimensional version of the Euler equa-
tions in (2.32), the kinematic boundary condition on the free surface yields

(1 + om) B*(1 + an)®

(2.37)
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Ignoring terms quadratic in « and 3, this simplifies first to

m+ (L+on)fo)a

{30+ 0 o + G2+ ) S} 5 O ) =0 B
and then even further to
Bt (U @) f2)a ¢ foeza + O(5, 08) = 0. (2:39)
The Bernoulli condition on the free surface gives, after simplifying,
W4 fit 302 = LB e+ O(F ) = 0. (2.40)

Since f, is the horizontal velocity at the bottom, it is a variable with a
direct physical interpretation. Writing w for f, and combining (2.39) and
(2.40) gives one version of the Boussinesq equations, namely

e+ [(1+ an)w], — é,@wmm =0,
(2.41)

1
Wi + 1Ny + QWWg — iﬁwzzt = 0.

Remark 2.3.1. If 8 << «, the nonlinear effect dominates. Dropping terms
that are O(f) in the above pair of equations yields a version of shallow water
theory

(2.42)

n + [(1 + an)w], = 0,
Wy + My + aww, = 0.

which is used to characterize near shore zone hydrodynamics.
If a << B, the dispersive effect dominates. We would be tempted to drop
the nonlinear terms and thereby arrive at the linear system

1
U + Wg — EIBwIII = O:
(2.43)

1
Wy + Ny — §/Bwa:a:t =0.

The behavior of solutions of such linear systems is determined by their disper-
ston relation. This is obtained in a straightforward way by first eliminating
n to reach the single equation

1 1
Wy — Wge + éﬁwmmmm - §wam‘tt =0. (244)
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5
san(@k

Figure 2.3: Comparison between the phase velocities from the linearized
Euler equations and a linearized Boussinesq system (2.43).

We refer to this as the linear Boussinesq equation. Substituting the form
w(x,t) = wee!**=wY into (2.44) leads to

—w2+k2+§k4—§w2k2:0,
SO
T 1+ 552
1+ 2k
and
1
w(k) 1+ 2522 1 5
k)= """ = 6 =+(1 - —Bk*+ —=B%* +---).
k) = =% 1+ 0g2 (1= G+ f k)

This agrees with the dispersion relation

tanh (82 k)
B2k

for the full, linearized Euler equations to the second order in k. But there
is a difficulty associated with large wavenumbers (small wavelengths), which
will be discussed presently.

If « =~ B, namely when g = O(1), the equations (2.41) is nonlinear
and dispersive. The solitary wave solutions might exist because the balance
between nonlinear and dispersive effects.

1 19
—1—2Bk2 4 T g2t
66k +120Bk +
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2.4 Effects of different terms

We now consider some simple equations and see what are the effects of dif-
ferent terms.

Example 1. Dispersive equation
Up + Ug + Uz = 0, u(z,0) = f(2). (2.45)

By taking Fourier transform, one finds

A

dy + (ik)a + (k)P =0, a(k,0) = f(k)

where the Fourier transform of a function f of the spatial variable x is

f = [ e pays

o0

Solving the ordinary differential equation on 4,
a(k,t) = e ORI ([,
Taking the inverse Fourier transform, the solution of (2.45) is obtained

1 [ . , N 1 [ . A
U,(LL', t) — %/ ezkze—zk(l—k2)tf(k)dk — % ez(k:c—wt)f(k)dk

where
w(k) = k(1 —k?)

is the dispersion relation.
If we let f(x) = €"™2, then

P e

—00

and o
u(z,t) = / e—i(km—k(l—kz)t)5(k — m)dk = eitma—w(m))

x
is the solution.
Since the wave travels with phase speed % which is a function of wave
number k, equation (2.45) is often called dispersive.
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Example 2. Dissipative equation
Up + Uy — Ugy = 0.
By searching for the solution of type
u(z,t) = gltka—wt)
one finds that
w =k — ik’ (2.46)

Therefore

u(x,t) _ eflc2t+ik(z7t)
is a solution with initial condition u(z,0) = e*®. It is clear that u(z,t) is
decaying with time. Therefore, equation (2.46) is often called dissipative.
Notice that the sign in front of u,, term is important here.

Example 3. Nonlinear equation (Burger’s equation)

Uy + g +uu, =0, u(z,0) = f(z). (2.47)
Since
dt T dt "

u is constant along the characteristic line z = (1 + u)t + ¢. Therefore, the
solution of (2.47) is
u=flz = (1+u)).

Above process offers an implicit solution for u and it is not always trivial
to solve u. But one can sometimes construct the solution geometrically. Let’s
consider a special case where

f(z) = cos(x).

The solution at ¢ = 0, 1, 2 are shown in figure (2.4). From the graph, one can
easily see that u is a single valued function only for a finite time. After that,
the solution will be either multi-valued or develop a discontinuity. In general,
the nonlinearity makes the wave steeper and eventually develop discontinuity.

It is worth to note that another effect of nonlinearity is that the super-
position of two solutions is not a solution.

Exercises 1: Find the solutions of



2.4. EFFECTS OF DIFFERENT TERMS 27

Figure 2.4: Solution of a nonlinear equation (2.47) with f(z) = cos(z) at

t=0,1,2.

o U+ u, =0,

o u —u,=0,

o U+ u,+u=0,

o U+ u,—u=0,

& U+ Uy —

Ugy = Oa

b Uy + Ug + Uz = 0,

® U+ Uy + Uyye =0,

L4 Up + Uy + Uz = 0

with initial value

Exercises 2:

u(z,0) = f(z).

Solve the equations in problem 1 with f(z) = cos(z) +

cos(3z) and plot each solution for ¢ = 0 : 0.4 : 5. Use one plot for one

solution.

Exercises 3:

Find the solution of

U+ Uy +uuy =0
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with initial condition

T, O<z <1
u(z,0) =< 2—umx, 1<r <2
0, otherwise

and plot out the solution for ¢t = 0,0.1,--- 1.

Exercises 4: Compare the dispersion relation for the equation

Up + Uy — Ugge = 0 '

particularly in the limiting cases of long and short waves.
Exercises 5: Find the dispersion relation for the Klein-Gordon equation

U — Ugr +u = 0.

2.5 One-way Propagation

Here, the Boussinesq system of equations is specialized to the description of
waves propagating just to the right. At the very lowest order where even the
terms of order a and 3 are dropped, there appears a factored version of the
one-dimensional wave equation, viz.

M+ wgy = 0,
Wy + Ne = 0)

A4
n(2,0) = (), (2:49)
w(z,0) = g(x),

posed with initial conditions on both 1 and w. The solution of (2.49) is

1(w1) = 51+ 1) + fo = 0]+ Slo@+0) — gl — 0]

and
w(e,t) = Sloa+1) + 9w = 0]+ 51/ @ +1) = flz = D)
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As the left-propagating component must vanish, it is required that f = g,
whence n(z,t) = f(x —t) = w(x,t). Thus, at the lowest order, we have

w=n+0(e,B) and m+n=0(,pB). (2.50)

The next step is to extend the relations just obtained via the linear wave
equation to obtain a model correct to order o and 3 while still maintaining
one-way propagation. Whatever the extensions are that lead to the next
order, it seems clear they will involve terms of order v and (. It is therefore
natural to try the Ansatz w = n+ aA+ B, where A = A(n, Nz, N, - -+ ), and
B = B(n, Nz, mt, - - - ). Putting this relation into the Boussinesq system (2.41)
results in the pair of equations

1
e+ g + @Ay + BBy + a{n[n + aA+ Bl}, — 65[77 + @A+ BB = 0,
nt + aAt + ﬂBt + 7738 + a(ﬂ + (l/A + 53)(% + Q’Az + BBw)

1
- iﬁ(na:a:t + aAmmt + 6Bzzt) = 0.

(2.51)
Collecting terms featuring the same power of o and 3 leads to the relations

1
Nt + Nz + a’(A:c + 2777):6) + ﬁ(Bw - g%m) = O(a2a aﬂa 52)a

1
nt + 77z + Oj(At + 77771) + /B(Bt - inzzt) = 0(062, a/ﬁa 52)7

or, dropping terms quadratic in @ and 8 and using (2.50)

1
U + Nz + a’(Aw + 2777758) + B(B;U - énzzz) = Oa
(2.52)

1
T + Ny + a(_A:v + 777735) + IB(_B:B - Enzzt) = 0.

This pair of equations can be made consistent by choosing A, = —%77%, or
A= —inZ, and B, = 1—127755555c — inmt, or B = %nm — inwt. It is worthwhile
noting that from the lowest-order theory, n, = —n, + O(a, 8) as o, 5 — 0. In
consequence, we may use 7; and —7), interchangeably in terms whose formal
order is « or B without affecting the overall level of the approximation. Thus,
at the formal level,

1 1 1

1
B = Enmz - ant — gﬂm + O(OJ, B) - _gnmt + O(Oé, /B) (253)
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as o, 3 — 0. Because B appears in (2.52) multiplied by §, the dispersive
terms in (2.52) could have either of the forms %nmw or —%nmt, or, indeed,
any convex combination of theses two forms. Taking only the pure forms
Ngzz O —Nggr, WE CcOme to

1 1
w=n--an + gﬁﬂm + terms quadratic in «, 3,

4
3 1 (2.54)
e+ 7 + Qs + éﬂnmmm = terms quadratic in «, £,
or
1 o 1 -
w=n-qen - — BNt + terms quadratic in «, 3,
] (2.55)

3 1 ..
N+ Ny + 50”77736 — 677”” = terms quadratic in «, 5.
We thus have two separate model equations for unidirectional propagation
of long waves of small amplitude. In fact, more models could be constructed
using the observation that d; = —0, + order(c, ), namely

( 1 3
+ gannw - éﬂﬂwwt
N+ 1N + 3 + < 1 > = 0. (2.56)
— 5V + éﬁﬂxtt =0
[ éﬂﬂttt =0 )

There are eight different model equations here, without doing anything more
complicated (like changing the dependent variable or allowing convex com-
binations of the individual nonlinear and dispersive terms).

Omitting the nonlinear terms yields four possibilities,

+ Tll'l'l'
1 —_
mAm =B A0, (2.57)
6 + Natt

— Nt
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Trying 1 = €*#*=%% leads to the linearized dispersion relations

( ﬂ 9
k(l—gk )s
k

14 2k2’

5 i,/1+§5k2—1]] ,

| solution of a cubic equation.

(2.58)

Bk

The associated phase speeds are
(
1— ékQ,
6
1
1+ Zk2’

k i,/1+§ﬂk2—1]] ,

| solution of a cubic equation.

(2.59)

Bk

The first two, the third with a + sign and the fourth if the right branch is
taken, all agree to order k? with the linearized dispersion relation for the full
two-dimensional Euler equations.
Consider the pure initial-value problem posed on R for the above models,
namely
77t+77z+§LU:0; fEER,tZO,
n(z,0) = g(x), z eR

(2.60)

where L represents one or another of the dispersion operator 82, —920;, 0,07,
or —03, at least for small values of 3 and order-one initial data. This should
represent a well posed problem if one is to take the equation seriously as a
model of physical phenomena. For the moment, attention is given over to
the cases where L is 93 or —920;. The other two cases are less interesting
because there is apparently insufficient data to initiate the motion uniquely.
They will be discussed in Appendix A.
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Taking the Fourier transform in the spatial variable z for the linearized
Korteweg deVries equation where L = 93 gives

M + i (k — gk?’)ﬁ =0,

whence o
Ak, t) = (k, 0)e~"*=ak",

Computing similarly for the linear regularized long-wave equation (RLW
equation or BBM equation where L = —929;) leads to

(1+ ng)ﬁt +ikA =0,

and so .

ik ¢
ik, t) = i(k,0)e 5+
For these two models, the frequency w(k) dispersion is modeled by &k — gk?’

and L}—Lék:?’ respectively. In terms of the phase speed ¢ = ¢(k) = %, these
are the 6tvvo alternatives
L RIW - L =-0
1 + ékQ - — ~ Uzt
c(k) = 6
1- §k2 KAV - L = Opga.
For values of k in the range |k| < 1, which is appropriate in the present
scaling, these two dispersion relations differ by less than %. As for the
nonlinear term nn, versus nmn;, the conservation laws
3
20z = 0,
Nt + Ne + 3 (2.61)
— — 0
2a7777t )
correspond to the characteristic equations
3
142
d:v| . + P (2.62)
dt n=constant — 1 .

1—%0&7
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respectively. For values of n with |n| < %, say, which is consistent with the

small-amplitude presumption in force, these differ by less than o?.

Thus for small values of a and [, these models appear likely to present
nearly identical outcomes. Nevertheless, there might be a marginal preference
for the choices —n,,+ and nn,. As far as the preference for 7,,; goes, observe
that short-wave components for the linear equation (2.57) with 7, can
propagate in the —z direction with arbitrarily large phase velocities (and the
group velocity is likewise unbounded), whereas the 7., term has bounded
(and positive) phase velocities (and bounded group velocity). Regarding
the nonlinear term, whilst one cannot really distinguish between the two
possibilities in (2.61) for n small, as n gets large, the nn; term has singular
characteristics, whilst nn, just propagates larger amplitude waves faster.

On the basis of these arguments, the model equations

3 B
M+ N + NNy — — Mgzt = 0,

?? 56 (2.63)
e+ N + 50377771 + gnw:cw =0,

are singled out for study. The second one is the famous KdV equation, first
derived by Boussinesq in 1871 and later by Korteweg and deVries in 1895.

With these formalities in front of us, the historical perspective presented
in Section 1 may be given more precision. The model put forward by Airy
in 1845 corresponds to taking « small and 8 = 0 in the present notation.
Thus, Airy put forward what we would now call shallow water theory as a
model for what Scott Russel observed. This is a model where small, but
finite amplitude effects are contemplated, but finite wavelength effects are
ignored. It is a model that retains validity only for waves of extreme length.
Indeed, it is an easy exercise to see that the evolution equation

3
M+ Nz + §a7777;c =0 (264)

does not possess a traveling-wave solution n(z,t) = ¢(z—ct), ¢ > 0 a positive
constant, that has the form of a solitary wave of elevation. Stokes, on the
other hand, viewed the regime in which Scott Russel made his experiments
as corresponding to infinitesimal waves. He ignored finite-amplitude effects
by taking o = 0. However, he kept the effects of finite wavelength on wave
speed by taking 8 small, but non-zero. He thus put forward the model

B
N+ Ne + 6771:1:1: = 07
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in the present notation. Fourier analysis shows that this model also has no
solution of the form n(x,t) = ¢(z — ct) where ¢ is an even function decaying
rapidly to zero at +-0o. There are periodic wavetrains traveling at constant
velocity, but a heap of water would decompose into components traveling at
different speeds, and so continuously spreading. Described in terms of the
Stokes or Ursell number (Stokes 1845 [11], Ursell 1953 [?])

Q
S = @,
Airy took this quantity to be infinite, Stokes took it to be zero, where as
the presumption that corresponds to Scott Rusell’s observations is S ~ 1.
In the latter regime, the nonlinear versus dispersive effects come in at the
same order, hence the equations in (2.63). In general, S is a rough measure
of the relative importance of nonlinear versus dispersive effects, with S small
corresponding to a linear system and S large a much more nonlinear regime.
Once the equations in (2.63) have been obtained, the need for the small
parameters disappears. For mathematical analysis, it is convenient to dis-
pense with «, 8 and the coefficients 2 and ¢. This may be accomplished by

redefining the variables n, = and t, viz. 7(%,1) = %om(\/éi", \/éf), namely

by introducing 7 = 3an, z = \/éa? and t = \/éf. Dropping the tildes, the
dimensionless equations

Mt + Nz + MMz — Naat = 0 (2.65)

and
N + Nz + MMz + Nggz = 0 (266)

emerge. The small parameters are not really absent, however; they appear
in the imposition of auxiliary conditions. For example, if it is supposed the
waveform is known initially, then we are concerned with the pure initial-value
problem with 7(z,0) given. In the variables appertaining to (2.63), n(z,0) is
of order one along with its derivatives, whereas in the (2.65)-(2.66) variable,

n(x,0) has the form %ozg(\/gx) to be physically relevant.



Chapter 3

Mathematical Theory for the
Initial-value Problems

In this chapter, the standard notation will be used. The L,(R) norm will
be written |- |, for 1 < p < co. If f € H* = H*(R), where s > 0, the
Sobolev-class of Lo-functions whose first s derivatives also lie in Lo, then its
norm is written || f||s. If s is not an integer, the notion is extended via the
Fourier transform in the usual way,

1= (5 [ Fwra+ k?)Sdk)% B.1)

21 J_ o

is a norm on H*(R) which is equivalent to the usual norm

(1)

when s is a positive integer (cf. [5]). When s = 0, Parseval’s formula implies

+00 % R
=1l = ([ 15t@)as) " = i

If X is any other Banach space, its norm will be denoted, unabbreviated,
as || - ||x- The product space X x X will be abbreviated by X? and it carries
the norm

£llx2 = (Il£ll% + 1 flI%)

35
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for f = (f1, f2). We denote by B(X,Y) the set of all bounded linear operators
from X to Y. The associated norm is denoted by || - || x,y. The domain of an
operator T is written D(T). If X is a Banach space, the continuous mappings
w : [a,b] = X, equipped with the maximum norm

ma ()] x

is again a Banach space denoted by C(a, b; X).

3.1 Theory for the BBM-RLW equation

The discussion of rigorous theory begins with the initial-value problem

n(z,0) = g(z), forz € R (3:2)

{nt+77z+7777z—77mt=0 for t>0,z€R
The following formal calculation gives an indication of some of the mathe-
matics that follows. Suppose 7 is a smooth solution of (3.2), that, with all
its derivatives, decays to 0 at too. Multiply the equation (3.2) by 7 and
integrate over R to obtain

o0

2 2
=_-— d

0= / (e + MMz + NNy — Mgat) d
R

after integration by parts and imposition of zero boundary conditions at £oo.
This is equivalent to

[ et + mute 7] da = Ol
- - (3.3)
~ ol = [ lota) + ulo) do

—00

Thus the H'-norm of solutions is a conserved quantity; the law (3.3) corre-
sponds to conservation of momentum in some physical systems. Similarly,
conservation of mass is expressed in the form

/_ " (1) dz = / " ola) do. (3.4)

o0 —00
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Rewrite (3.2) in the form
1
(1—-0Hu; = —(u+ §u2)w,

view it as an ordinary differential equation v—v" = f, where f = —(u—l—%uQ)z,
and take Fourier transform on the equation

(1 + kQ)’&,t - f
SO

)

1442
where * denote the convolution and F~! is the inverse Fourier transform. By
breaking the integral [ into ffoo and [, and integration by parts,

1 1 [ ; o 1
==z P = —|x| —ikx — —u —
.7:(26 ) 5 /Oo e e dx /0 cos(ku)e “du o

one therefore obtain the formula

wn(a,t) = M#f=— / " Mz — ) [y (1) + uly, By (9, 1)] dy,

utzf*]:_l(

where M (z) = 1e~I#l. Other methods such as variation of constants can also
be used to obtain the above formula. Provided that u is bounded (or at
least not exponentially growing as x — £00), integration by parts gives the
alternative

wie.t) = [ K@ =) a0 + 53%(0.0] dy (5.5)

where

K(z) = %sgn(z)e"zl.

Remark 3.1.1. To obtain (3.5), break the integral in the previous equation
at y = = and integrate these two by parts separately, viz.

/ e TV (y) dy = / e Y f!(y) dy + / e VI (y) dy

— 00 -0

—e=t) - [ ey e+ [T ey
@)= [ ety =@+ [ e dy

= — /oo sgn(z — y)e 1"V f(y) dy.

—0o0
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A formal integration with respect to time ¢ in (3.5) yields

u(z,t) — u(z,0) // K-y [( )+;u2( )]dydT

or, since u(z, 0) is known,

u(z, // Klz—y [( )—i—;u( )}dydT (3.6)

Write (3.6) in the form
u = Au, (3.7)

where A is the integral operator defined by the right-hand side of (3.6); that
is, if v = v(x, t) is a bounded continuous function, say, then

Av(z, // Klz—y [( )+;v( )}dydT (3.8)

The question of existence of a solution for the initial-value problem (3.2)
has thereby been converted into the issue of existence of a fixed point. At
least for some small values of ¢, existence of a fixed point follows from the
Contraction Mapping Principle.

Contraction Mapping Principle. Let M be a complete metric space with
metric d and A : M — M such that

d(Az, Ay) < 0d(z,y)

for any x,y € M, where 6 < 1. Then there exists a unique xq € M such that
Az = (. Moreover, if z; € M is arbitrary, and we define z;,, = Az; for
j > 1, then {xj};il converges to Zg.

This result applies in a straightforward manner to (3.7)-(3.8). Let 7" > 0
and let C'r be the Banach space

CT = CT(R X [O,T])

= {v :R % [0, 7] — R, v is continuous and sup |v| < +oo} ,
z,t
normed by |[v||c; = Supgegro<i<r |v(2,1)|. For the space M, choose Br =
{v :|]v|]lg; < R} in Cp, where the constants R > 0 and 7" > 0 remain to be
chosen. For any R > 0, the set Bp is a closed subspace of the Banach space
Cr, so it is certainly a complete metric space.
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Theorem 3.1.2. Let g be a bounded and continuous function, say, sup |g(x)| <
b. Then there is T = T(b) > 0 such that the integral equation (3.6) has a
solution in Cr.

Proof. The idea is to show that A is a contraction mapping of By into itself
for suitable choices of R and 7. The result then follows from the Contraction
Mapping Principle.

Step 1. v € Cp implies Av € Cr since ¢ and v are bounded and continuous
and K € L;(R). Indeed, we have

1
[Av]lc, < sup l9(@) + T(lvller + 5llvlle,) < oo (3-9)

since [ |K(z)|dz = 1.
Step 2. If v,w € Cr, then
' Lo 9
|Av — Aw||c, :sup‘ K(z —vy) [(v—w)+§(v —w )} dydT‘
at 1 Jo Jr
1
< Tl = wloy + 5 (Illex + lwlles ) Ilo = wle

1
<7(1+ 5 Wles + lwllen)) o = wlic-
(3.10)

Step 3. Now suppose v, w € Bg. Then (3.10) implies
|[Av — Awlle, <T(1+ R)ljv —wllc,-

To apply the Contraction Mapping Principle, first demand that 7" and R are
such that

1

say. Then choose R = 2b where b = sup, |¢g(x)| and notice this choice
means that

1 1
[Auller < [lAu = AOller +[|A0lcr < Ollu = Olley +b = Slluller + R < R

if u € Br. Thus A is a contraction of B and the result follows. [J
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Remark 3.1.3. Notice that
B 1
~2(1+R)’
so as the initial data gets larger, the interval of existence T obtained by the

above arqgument gets smaller.

To insure the fixed point u of (3.6) is a solution of the initial-value problem
(3.2), the regularity of u is brought into focus.
Let CF(R) be the Banach space

Cy =Gy (R)

= {v : R — R, 7 is continuous and sup [v7| < +o0, for 0 < j < k},

Tt

Proposition 3.1.4. If g € CZ(R) and u is a solution in Cr of the integral
equation (3.6), then u,u, and uz, are infinitely smooth functions of t, and u
solves (3.2) pointwise. More precisely, 0j"u € Cr, 0;"u, € Cr, 0"tz € Cr
for all m > 0, limy_ou(z,t) = g(z) in CZ(R), and the continuous function
Up + Uy + Uy — Uggy 1S identically equal to zero for (x,t) € R x [0,T].
Proof. We use bootstrap-type arguments.

Step 1. 0/*u € Cp, for all m > 0. Since

u(z,t) = g(x) +/0 /RK(x —y)(u+ %UQ) dy dr

where K (z) = Lsgn(z)e™, then plainly u is differentiable with respect to ¢
and

1
ut:/K(x—y)(u-i- §u2)dyECT
R

is a bounded and continuous function. Elementary considerations then imply
that u; exists and

Uy = / K(x — y)(us + uuy) dy € Cr
R

since u; € Cp. An inductive argument leads to the conclusion 0]*u € Cr for
all m > 0.
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Step 2. 0"u, € Cp, 0{"uy € Cp for all m > 0. Now write the integral
equation (3.6) as

u(z,t) = g(x)+/0t /_; K(x—y)(u+%u2) dy d7'~|-/0t /:0 K(x—y)(u+%u2) dy dr

and use Leibnitz rule

d u2($)F( d /w(w) Flo,0)d
x,a)da = —F(z,a)da
dac ul(m ul(m) 833
dus(x duq (x
+ Bl ua(e) P20 By () P
for the differentiation of the integrals to obtain
K 1
Uy —g'+/ [u( )+2u2(x,r) dr
(3.11)

/ / e 7Y (y + 2u %) dy dr.

This is plainly in Cr since u € Cr and g € C} (R). Note that u, is expressed
in terms of u, so another inductive argument demonstrates that 9;"u, € Cr
for m > 0. A similar argument shows u,, to exist and to be given by

Uzz = ¢ () +/O [ug(z, 7) + u(x, T)ug(z, 7)) dr

t o] 1
—|—/ / K(z—vy)(u+ §u2) dy dr.
0 —00

The right-hand side clearly lies in Cr, and again, as 0]"u, € Cr for m > 0,
so also 0]"uy, € Cr.

(3.12)

Step 3. limyou(z,t) = g(z) in CZ(R), and u; + uy + Uty — Uy = 0 for
(z,t) € R x [0,T]. Using (3.6) in (3.12) gives

t
Upp = ¢ + / (ug + vug) dr +u — g(x). (3.13)
0
Differentiating the last expression with respect to ¢, there appears

Ugrt = Uz + Uly + Uy,
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as hoped.
The fact that u(z,t) converges to g(z) as t | 0 is obvious and the propo-
sition is established. O

Proposition 3.1.5. If g € CF(R) for any k > 2 and u is a solution in Cy
of the integral equation (3.6), then u solves (3.2) pointwise and 0f*0%u € Cr,
forallm >0 and 0 < p < k.

Proof. By using previous proposition and taking derivatives on (3.13), the
result is straightforward by induction.

Remark 3.1.6. In fact, u is analytic function of t; i.e. u(z,t) can be ex-
panded as Y o_ Uy (x)t™ for suitable functions {tm}m>0, and the series has
a positive radius of convergence [?].

Remark 3.1.7. Note that a solution cannot acquire more spatial reqularity
than that of the initial data, namely, for any k > 0, if g € CF(R) but
g ¢ CFY(R), then u(-,t) ¢ CFT'(R) for any t > 0.

Suppose that for some t > 0, u(-,t) € CF(R), then at this value of t,

9(z) = u(e ) — / / Ko =)+ 50)(v. ) dy ds.

At time t, u(-,t) € CFT(R), and since u(-,t) € CE(R) for all t, so is u+ tu?.
Hence after convolution with K, there obtains a function in C’f“ in the
spatial variable. The integration with respect to t does not change the spatial
reqularity, and consequently it is adduced that g € CfH(R), contrary to
assumption.

Remark 3.1.8. What did we need for the contraction mapping arqument?
The answer is that we could have used any Banach space X = X(R) such
that if f € X, then ||f|lco < C||fllx, where ¢ is some universal constant. Let
Y =C(0,T;X), then

1
lully < llgllx + TIEzallu + 5u%]loo
<lgllx + T({lully + [lull),

1
[Av = Awlly <T(l[o —wlly + 5([[olly + l[wlly)llv = wllv)

1
ST+ 5(llly + llwlly Do = wlly-
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So letting M ={u € Y : ||ully < R}, and requiring

lgllx +T(R+R*) <R
T(1+R)=60<1

the contraction mapping arqument applies.

The issue in front of us now is how to extend the local existence theory
to arbitrary time intervals. The following result will be helpful in pursuit of
this goal.

Lemma 3.1.9. Let u be the solution in Cr of the integral equation (3.6)
constructed from the contraction mapping theorem, corresponding to given
initial data g € CF(R) for some k > 0. Suppose additionally that for some
p <k,

!

g,9 s g® =0 as T — Foo. (3.14)
Then for 0 <t <T,

OLo™u — 0 as x — oo, for 0 <1 <p and any m > 0. (3.15)

Proof. For n. > 1. let u, = Au,_1 where A is defined in (3.8) and let
uo(z,t) = g(x), for 0 < ¢ < T. By assumption, ug is null at +-oco.

Claim 1. If v € C, so is [ e " Ylu(y,t) dy and [, K(z—y)v(y,t) dy. Let
€ > 0 be given. For z > &,

[ e utnn
R

3 T o0
Se‘“/ 6y|v(y,t)|dy+sup|v(y,t)l(/ e"“"dy+/ e” " Vdy)
y>€

— 00 13 T

< e " sup v(y, t)| + 2sup Ju(y, t)|.
Yyt y>£

Since v — 0 at Foo, there exists £ such that |v(y,t)| < { for y > . At the
same time, r can be chosen large enough such that the first term is made
smaller than 7, hence the sum is smaller than €. A similar argument applies
as r — —o0.

Hence by Claim 1, u; = Aug is null at +o00 and inductively, u, = Au,_1
is null at +oo.

By A is a contraction mapping, u, — u in Cr.
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Claim 2. For v, € C where
Cl={v:veCprandv—0asz— +oo}
and v, — v in Cr, then v — 0 at +o0. To see this, fix ¢ € [0,7] and write
oz, )| < |v(2,t) = va(z, )] + |va (2, 2)].
Let € > 0 be given and choose a corresponding ny so large that

sup |v(z,t) — vny(x, t)| < <
z,t 2

£
2

Since vy, is known to be null at +oo, there exists M such that |v,,(z,1)| <
0 at

for |x| > M. Therefore if (x| > M, |v(z,t)| < €, which is to say v —
+o0.
By Claim 2, u is asymptotically null.

Now
1

up = /K(x —y)(u+ §u2) dy

is asymptotically null by step 2, and by induction, so too are higher temporal
derivatives. As discovered already, if p > 1,

¢ 1 t 1
Uy =g — / /e"”_y(u + §u2) dydr +/ [u + §u2] dr.
0o JR 0

Now u+%u2 is bounded and asymptotically null, and hence so is |, Ot [u + %UQ] dr
by the Dominated Convergence Theorem. Thus u, is asymptotically null by
Step 2. Then

t
Ugs = G +/ (ug + uug) drT +u — g(x)
0

is asymptotically null and so on. A double induction finishes the proof. [

Lemma 3.1.10. Suppose g € CF(R),k > 2 and g € H*(R). Then there
exists T > 0 such that the solution u of the initial-value problem

u(z,0) = g()
lies in H'(R) for all0 <t < T, and

[uCs Dl = gl

{ut+u$+uuz—umt:0,
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Proof. As we already know, u is a classical solution of the partial differential
equation. The existence of the solution in H! is obtained by Remark 3.1.8
and using Lemma 3.1.9. Multiply (3.2) by u, then integrate with respect to
x over R and integrate by parts to obtain

1d
wT R(UQ(x,t) +ui(z,t)) dz = 0.
It follows that for all ¢ for which the solution exists on [0, ¢],

/R (u2(2,1) + u2(2, ) dz = /]R (u2(z,0) + u2(z, 0)) de,

which is to say
[u(, )l @) = lgllm@)- O

This last point suffices to establish a global existence and uniqueness
theorem, after we introduce the Gronwall Lemma.

Lemma 3.1.11. (Gronwall Lemma) Let g, h,y be three locally integrable
function on (ty,00) such that y' is locally integrable on (ty,00) and which
satisfy

dy
pn <gy+h for t>tg, (3.16)

then

¢
y(t) < eJio 9T (y(to) +/ h(s)e” Jig g(T)des) , >t
to

Proof. Multiply (3.16) by exp(— ft 7)d7) and observe that the resulting
inequality reads

%(y(t)e_ fio 98747y < ()6 Jio 9071

The result follows by integration between ¢, and . O

Theorem 3.1.12. Suppose g € H'(R) N CZ(R), then there exists a unique
global solution u of the initial-value problem (3.2) such that the solution u
satisfies O 0%u € Cr for allT > 0,0 < k < 2, and m > 0, and asymptotically
null as well.
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Proof. First, note that if g € CZ N H' then g,¢' — 0 at oo (see (3.17)).
Hence there exists a local solution of the desired type at least on a small
interval [0, 7], where T depends only on sup, |g(z)| = b.

To extend this local solution to global, repeat this argument by using
u(z,T) as new data to extend the range of the solution. This would get
us out to 7' = oo if sup, |u(x,t)| is bounded on bounded time intervals. In
fact, instead of controlling sup,, |u(z,t)| directly, we control ||u(-,t)| g1, then
use the property sup |u| < ||u||gz:. The latter inequality follows because for

flz) e CEn H,

) =2 / ")) dy < / TPy
- o0 (3.17)
< / 2+ f2dy = |11,

o

So there is one bound for u(z,t), independent of t. The contraction mapping
argument may be iterated, then the global existence of the solution is proved.

Uniqueness: Let u,v be two solutions of BBM (3.2), w = u — v, then
w € H', w, € H?, and satisfies

+ +1[( + v)wy] 0

Wy + Wy + = |[(U + V)Wg| — Weze = 0,

! 2 ‘ . (3.18)
w(z,0) = 0.

Multiply ( w, then integrate over R :

3.18) by
o0 1
/ w (wt + wy + 5[(u +v)w]y — wmt) dr =0
d o

(w? + w?)dz = / (u + v)ww,dx

o0

dt J o

1
< —|u+v|oo/(w2+w§)da;
2 R

<ol [ (w? + u)do.
R
By Gronwall lemma with A =0, g = ||g||sz and t, = 0, we have
lwllz: < elélmw(z, 0)]|m =0,

so, w=u—v=0. O
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Remark 3.1.13. we can also prove the uniqueness by using implicit function
theorem.

Corollary 3.1.14. Let g € H*(R), for some k > 1. Then there exzists a
solution u(z,t) of the integral equation (3.6), i.e.

t o0 1
we.t) =g+ [ " K@= (utnr) + 5200 dyar
0 J—oo
where K(z) = Lsgn(z)e™?l. The solution u(z,t) is in C(0,T; H¥(R)), for
some T > 0. Moreover, u; € C(0,T; H*(R)).

Proof. H*(R) is a Banach space embedded in Cy(R), for k > 1, so the con-
tinuity of the solution is obvious according to the integral equation. Also
differentiate the integral equation with respect to ¢, we have

1
Uy = / K(z—y)(u+ §u2) dy, (3.19)
R
where u + u® € C(0,T; H¥), so that K * (u + zu?) € C(0,T; H**1). To see
this, let f € C(0,T; H), then
—_— /Lg ~

K*f:mf.

The variable £ (instead of k) is used for Fourier space so it will not confuse
with the k in the notation for space H*. Then

[ arernitaforas [Careriiera <o

It is also clear from (3.19) that wu; is a continuous function of ¢. Thus if
g € H'(R), then v € C(0,T; H') and u; € C(0,7T; H?). The result for k > 1
follows by taking derivatives (see the proof of Proposition 3.1.5). O

Theorem 3.1.15. (continuous dependence on the initial data). The mapping
g+ u is continuous from X = H'(R) N CZ(R) - Y = C(0,T; X).

Proof. Tt suffices to check this locally near the origin of time and then iterates.
Let g,h € X, and

u:Ag(u):g—i-/ot/RK(x—y)(U-l—%uQ)dyds
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and v = Ap(v). Since A is a contraction in W = C(0,¢; X) for ¢ small,

lu = vllw = [|Ag(u) = An(v)[lw < [|Ag(u) = Ag(v)]lw +[[Ag(v) = An(v)[lw
< Ollu —ollw + llg = hllx-

Therefore

1
u—vl|lw < ——llg—h
= vllw < 5 llg — bllx,
and the mapping g — u is Lipschitz continuous with constant ﬁ. Iterates
on time then yields the desired result. O

3.2 Bore Propagation

In this section, we consider BBM equation

Uy + Uy + Uy — Uy = 0, VeeR, t>0,
{ ! ! (3.20)

u(z,0) = g(z),

where ¢ € CZ(R), g(z) = aasz — +oo, g(r) — basz — —oo, and
g € Ly(R), (¢ = 0 as z — +00).

As before, we still discuss the local existence, regularity, and the global
existence of solution for (3.20). Notice that Theorem 3.1.12 does not apply
to this case, but the local existence and regularity results in Theorem 3.1.2,
Proposition 3.1.4 and 3.1.5 can be used.

We now prove the global existence of the solution. By changing variable
v=u— g in (3.20), (3.20) turns to be:

+(g+ LI S =0

Vi — Vg v+ = v+ -v9), =0,

¢ Vet T 9 2y TIVT 3 (3.21)
v(z,0) = 0.

Then (3.21) is equivalent to the following integral equation:

t
1 1
v:—/ M*(g+v+592+gv+§v2)yd7, (3.22)
0

where M(z) = 1e717l, or

¢ t
v= —/ M x (vy + vvy + gvy + g'v) dT — / M (¢ +gg')dr. (3.23)
0 0
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Since ¢’ — 0 at o0, f(f M x(¢g'+g¢')dr — 0 at +00. Now we can essentially
argue as in lemma 3.1.9 to conclude that v, v,, v, — 0 at +o0.

Multiply (3.21) by v and integrate over R and [0, ] :

1 o0
5/ (v* +v2) dx

—0oQ

- [T o siw e [ [T g @

t t (324)
< (14 lgllo) / 19/ e loll 2 + lglloc / lollz2 sl 2
0 0

¢
Sg//(UZ-i-Uz)dx-i-ng,
2 Jo Je 2

where C' and C; are constants only dependent on ||g||g:. Then a Gronwall
lemma yields

/_00 [UQ(.T,t) +v§(x,t)} dz < %(ed - 1),

o0

which is enough to extend to +o0, because for any 7" > 0, ||v||z: is bounded,
independent of ¢, so solution exists on [0, T].

Exercises 1:  Consider the two-point boundary value problem
Up + Uy + Uy — Ugyy =0, 1z €[0,L],¢>0,
u(z,0) = g(z), z€]0,L],
u(0,t) = hi(t),u(L,t) = ho(t), 0<t<T,
which satisfy the compatibility condition

g9(0) = hP(0), ¢D(L) = (0)

for j = 0,1,2. Then if g € C*(0,L) and hy,hy € C'(0,T), there exists a
unique classical solution v € C*(0,T,, C?([0, L])), where 0 < Ty < T
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3.3 Theory for the Korteweg-de Vries equa-
tion

Without the small parameters, the KdV equation can be written as

(3.25)

Up + Uy + UUG + Ugypr = 0, Ve eR, t>0,
u(z,0) = g(z).

Let us first shift to traveling coordinates. Set u(x,t) = u(x+t,t), then (3.25)
becomes

iy + Uiy + liggy =0, Vz€R, >0,
{ ! (3.26)

u(z,0) = g(z).

Now drop the tildes and study this one. We are going to follow the line of
proof in [1] by regularizing this differential equation as following:

Ut + UUy + Ugpy — EULe = 0 VeeR, t>0
{ ! ! (3.27)

u(z,0) = g(z),
where € > 0 is fixed for the time being.

Remark 3.3.1. Equation (3.27) looks a little peculiar, since the more stan-
dard regularization might be u; + Uy + YUy + Upgr — €Ugzee = 0 to make
the equation basically parabolic. However, we can answer certain interesting
questions later using the regularization in (3.27).

Proposition 3.3.2. Suppose g € H® where s > 2. Then there exists a unique
solution u to the regularized KdV equation (3.27) which lies in Hj. for any
finite T > 0. Furthermore, for 0 <1< s, dlu € H}”_l for any T > 0.

Proof. The proof is straightforward by considering the transform of variables
v(z,t) = eu(ez (x —t), €2t), so (3.27) becomes:

Ut + Vg + VVg — Vgt = 0,
(3.28)

v(z,0) = eg(e3 ),

and using Corollary 3.1.14. O
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We now study (3.27) which is easier to handle than the KdV equation for
the theoretical analysis, then if we let ¢ — 0, and hope to recover a solution
of KdV. To do so, we need e-independent bounds on the solutions of (3.28),
then pass to KdV (3.25) as € | 0.

We might as well work with a function g € H*(R), which are functions in
C* in z with all its derivatives in L2, since we have continuous dependence
results. The the solution u is then in C* in z and in ¢ and u(-,t) € L*(R)
with all its derivatives. Therefore, everything in sights goes to 0 at F-oo.

Proposition 3.3.3. The solution u of (3.27) corresponding to g in H® sat-
1sfies the inequality
[ulls < ai(llgll2) (3.29)

for all t > 0, independent of € € (0,1], where a; : Rt — RT is continuous,
monotone increasing with ay(0) = 0.

Proof. Multiply (3.27) by u, then integrated with = over line R :

o

/ (uty + Uty + Uty — Ulgyy) d = 0,
1d

T R(uQ + eu?) dz = 0.

S0,

/ (u + euy) dx:/ (9° +eg™) dz < ||gl3n,

o0 —0oQ
where we have taken ¢ < 1 without loss of generosity. Hence, independent of
€ >0,
[ullze < [|gl[ - (3.30)

Rewrite (3.27) as

1
up + (§u2 + Ugg — €Ugt)y = 0,

and multiplying it by %uQ + Uy, — €Uy then integrating over R gives:
d [*[1 1
E . (EUS — 5“2) dr = 0,

1.e.

00 1 o0 1
/ (ui — §u3) dx = constant = / (9'2 - 593) dr,

o0 —0o0
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so using (3.30),

1 1
/uidxg —\u\oo/u2dx+/gﬁdm+—\g|oo/g2dx
R 3 R R 3 R

1 1 1 1

< gllgllzr llullz=?llusllc2® + g7 + gllgll?}p (3:31)
1 3 1 9 1 3

< Zlgllzallucllz> + llgllzn + §||g||H1-

Let A = A(t) = ||us(+,t)||L,, then (3.31) is rewritten by using Young’s in-

equality
Poobe 1 1
abSa—+—wherea,b>0,p>1,—+—:1
p q p q

as
1
A2<CAz+D< ZA2 +Ci+D (3.32)
3 4
where € = 4gllZs, D = llglig: + Hllgllys and €y = 204 = Ljg|[% ave only
dependent on initial data g. So,

3
4

lug]* = A < 2(C1 + D) = Di([lgllm).

Q| v~

Thus in summary,
lullz < ar(llgllzr)- (3.33)

O

Next is the crucial step, obtaining an H? bound, which is a little involved.

Proposition 3.3.4. Let u be a smooth solution of reqularized KdV (3.27)
corresponding to g € H*®(R). Then there exists e = €o(T, ||g||gs) such that
if 0 < e < €, then

ullco.rmy < aa(llgllms),

where ag : Rt — RY is continuous, monotone increasing with as(0) = 0.

Proof. Multiply (3.27) by u® + 3u2 + 6utizy + 2Uys,, and integrate over R

by parts, after several simplification, we derive the identity:

d 9 1 18
g7 /R(guiz — 3uu? + ZU4) dr =€ /R(u3 + 3u? + 6utiy, + Eumm)umt dz.
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Integrating by parts gives over the right hand side:

d [*.9 1 9
= [(5 — 3eu)u2, — uu? + 4u + e5umz] dx
e © (3.34)
= —6/ (Bugu2, + 3uuglys + 6Uglpglyg) dT.
Define
/[(93) Bun? + b+ eonl,,] do,
= — — 3eu)us, — 3uus u* +e-u z
R 5 € 4 5 TXrxT
then after integration of (3.34) over [0, 7], we have
t o]
V(t) =V(0) — e/ / [Bugu?, + 3ulugss + 6Ug Uty d dt.
0 —00
Now by (3.29) we know that, independently of ¢ > 0, and € > 0,
sup |u(z,t)| < sup [|ullm < a(llg]|m)-
2€R,1>0 >0
Hence there exists ¢; > 0 such that for 0 < € < ¢;, we have
13 _ 9
E Z g — 3eu 2 ].,
i.e.
|3eu| < 4
— 5’
and
1 9
/ u? dm</ [——3euu +4u -l-geumm]da:
=V(t )+3€/ uu?, dx
e (3.35)
<V(0)+ 3/ u|[ug|? do
t o] -
+ e/ / 13usuZ, + 3uttptyy + 6UL Uy Uy| dodT;
0 —o0
where

13 1 9
V(0) < = llglle + 3llgllas + Zllallin + zellgllis = Clllgllas),
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and = ~
3 [ lulluaPde < Slulln [ u < 3fulls < salgln).

Thus,
V(t) <C(llgllz=)

t
+6/ (3lluelloolltiaell” + Bllullzellualll1uatll + 6]l |l uaslllluarl) dr
0

in which C(||gllzz) = C(llg]lzs) + 3a(||g||z)- From (3.36), (3.35) and the
definition of V' (t), we derive

A%(t) <C(llgll o)

t
+6/0 (3lluelloa A*(7) + BllullScllualllluatll + 6lluslloollual| A(T)) dr,

where A2%(t) = [%° w2, dz.

o0 XX
Now, we need some bounds of these temporal derivatives. Denote u; = v,

then v satisfies:

v+ (uV)g + Vggy — €Vzgr = 0. (3.36)
Multiply (3.36) by v and integrate over R,
1d 00 L, ] o
5 | (U + ev?) dr = /_oouvvwdm = —5/_001%0 §||u$||oo/_oov dzx.

Set B%(t) = [ (v + ev?) dz, then we have

B(t) < B2(0 /||u$||c,<,B2

Sublemma,
[utlloo < €7 B(t),

[talloo < V/l[tall|tiaall < CAZ(2),
lusel| < € 2B(2).
Remark 3.3.5. The sublemma can be proved by following:

luellZe = lloll% < (€ ol (Exlleall) < € 2[lvl* + e2[|us|* = € 7B(),
elluatll” = ellva|” < B*(1).
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Using this sublemma, we derive the pair of integral inequalities:

A%(t) < C + €C /O [e #B(r)AX(1) + € 2B(1) + € 1B(r)A%(r)]dr,

B(t) < B*(0) + c/otAé(T)B%T) dr,

(3.37)
where C's stand for constants independent of t. Next, we need a bound on
B(0), so multiply (3.27) by u; and integrate over R,

BA(t) = / (uf + eu?,) dx

—00
(o]
= / (—ugutiy — Upligyy) d
—0oQ
< el |ulloolluz]l + [Juell|vassl|
< B@)(llgll7 + l[taazl)-

Cancel off B(t) and evaluate at t = 0,

B(0) < (llgllz: + llgll)-
Now let’s go back to (3.37) again, define D*(t) = A%(t) +1, then it is implied
that .
D?*(t) < C + 6%0/ B(7)D*(7) dr,
. (3.38)
B21) < C + 0/ D} (r)B2(7) dr.
0

The reason to do so is that if D(t) can be bounded, then so can be A(t). The
claim is that the above (3.38) implies

D 1) < ( a 1)4+e%%/0t3(7)p2(7)d7,

1—e2
2 t
2
B(t) < ( b ) + —7/ D} (r)B2(r) dr,
1—e2 & Jo
where «, B, v do not depend on € < € provided that e < 1, as we now as-
sume. First choose ¢1 < % and in accordance with previous restriction. Next

choose a, [ large enough, and finally choose v large enough. Note a, [, v
do not depend on €, or on €.

(3.39)
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Define D and B by the equality in the last equality (3.39):

) (0% 4 14’)/ t727
D* = - +e2— DB dr,
1—e€2 B Jo

2 ¢

_ 2 _ 1 _

32:( b ) +—7/D%BQdT.
1—e2 @ Jo

This system of ordinary differential equations can be solved exactly, and the
solution bounds above D and B, respectively.

(3.40)

D= (L> . B P (3.41)

1—esert 1 — ezt
Choose €, such that
1 1
1—ele’ > 2’
and let ¢g = min(ey, €3), then we see that

D < (20)?, B < 2B for 0 <t <T.

In particular,
/uim dx < const(||g||as, T) for0<t<T,
R

where this const doesn’t depend on ¢, for € sufficiently small.

Now the going is much easier. Let m > 2 and suppose inductively that
we have and ||g||z=. We then show bounded ||u||¢(,r;am-1y is bounded, inde-
pendently of € < ¢;, with a bound dependent only on T, €;, that u is bounded
in C(0,T; H™) with a bound dependent only on T, €, ||g||zm and €z g|| gm-+1.
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Multiply (3.27) by u(») and integrate over R by parts,

T R(U?m) + €Ul 1) d2

= _/(UQ)(m-H)u(m)
R

= CO/UU(m+1)U(m) dx
R

B (3.42)
+e / (uxU?m + Um) Y Crhr) 1) + “?mn“(m)) du
—00 r=2
< |um|oo/Ru?m) + cf[ugm |2
< e llumll® + colluml-
and this does it, by Gronwall-type estimate. O

Now we look to the limit € | 0. There are two or three ways to handle the
passages to the limit. The way we choose leads to sharp regularity results,

but an easier method could be adopted, using weak compactness arguments
in L>(0,T; H?) for example.

Proposition 3.3.6. Let T > 0 and g € H™ be given. Let ¢y be as in
Proposition 3.3.4. Then for e < ey, and m > 3,

1
[ullm < a3(T, €0, [|gllms €7 [|gllm+1)-
Proof. [

Let’s fix initial data ¢ € H?®, where s > 3 and consider the regularized
equation,

Uy + Uly + Uggr — EUggt = 07
{ .

u(z,0) = ge(z),

where §.(§) = cb(e%f)g(f). The function ¢ is a C* function, with 0 < ¢ < 1
everywhere, ¢(0) = 1 and ¢ — 0 exponentially rapid at +oo, and
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has a zero of infinity order at £ = 0. That is, ¢ is very flat at 0. An example
T2
of such fuction is ¢(€) = e~
We need a lemma detailing how various Sobolev norms of g, behave. Here
it is.
Proposition 3.3.7. Let g € H®, s > 3 and let g. be as above. Then g. € H™,
and

gell e+ = O(e7%)

19 = gellmre=i = o(e
19 = gellms = o(1),

j:1:25"'
)a ]:1’25

[Tt

as € | 0. The first bound holds uniformly on bounded sets and the last two
hold uniformly on compact subsets of H®. (If o is replaced by O, then the
second bounds hold uniformly on bounded sets).

Since the Lebesgue’s Dominated Convergence Theorem will be used in
the proof of the proposition, we first recall it here.

Lemma 3.3.8. Lebesgue’s Dominated Convergence Theorem. Suppose
that f, is a sequence of measurable functions, that f, — f as n — oo
and that |f,| < g for all n where g is integrable. Then f is integrable and

Proof of Proposition. This is an easy calculation in the Fourier transformed
variables. Look at

gy, <0 [+ @l de

wis

. poo 2(s+7) 1

<ol | [%w(“f)] 1+E5©)de  (3.43)

{ i1+ 52(8-1-]')
€3 —————

< Csu
- £e£ 14 &%

as?(eés)} 9l

Let K = 6%5, suppose 0 < € < 1 as well, then

1 2(s+7) 1 & K)2(s+9)
sup LSS (e = sup 41T T
geR 1 +E% KeR 1+ (e s K)?
ﬁi .
K2(s+5)
< sup (k) < €,

Ker €3 + K2
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since ¢(K) — 0 exponentially as K — oo and %qﬁ (K) is bounded,
independent of €, for K bounded, so,

63 ||g€||s+j S C”g“%ls

The first estimate is proved.
To prove the second estimate,

|w—wmﬂsc/u+8“mwa—a@ﬁﬁ
R

< C/R[l + &0 )|(€) Py (es€) dE

|4 e2od) (3.44)
sqéﬁ%?rw(aﬂ+ﬁﬂ(W%

14 £ J)
<Csup ———— 1+§25 /17/) €6 1+§25)‘ (€ )\Qdf.

14 g26-4) 1 —& K)2(s—3)
sup Jrgizw(egf) sup — (2 K)
ger 1 +E&% KeR 1+ (e 6K)25
s i . .
€5 + €3 K279 € -9
= su 5 K) =su 653— K
Ke% €3 + K2 VK) Kelﬂ){ €s + K2 YK
j ' (S—j) j
< €3 sup P(K) < Ces,

s
Ker €3 + K23

since 0 < ¢ < 1 and ¢(0) = 0 supger %z/z(lﬂ is bounded, inde-
pendt of ¢, and

19 = gell%es < Cé,

that is ||g — gellgs-i = O(e%) uniformly on bounded sets of H®. Now by
dominated convergence, since the integral is o(1) as ¢ — 0 uniformly on
compact subsets of H® and integral is also bounded above by ||g||?, therefore

/R B E) (1 +€2) (€)1 d — 0.
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For the third inequality,
g = gells > 0ase—0

can be shown as before using dominated convergence theorem. Then note
that to demonstrate the uniformity on compact subsets, it is sufficient to
show that if g, — ¢ in H®, then ||g,e — gulls = 0 as € — 0 uniformly for
n =1,2,--- since sequential compactness is equivalent to compactness in a
metric space.

To prove this, let v > 0 be given. It is required to find an ¢y > 0 so that
if 0 < e < €, then ||gne — gnlls < 7y for all n =1,2,---. Notice that for all n,

e = gell2 < llgn — glI2. (3.45)

So, choose N so large that if n > N, then ||g, — g||s < 7. Then choose €,
so small that ||gee — gills < 37 for 1 < k < N and ||ge — g||s < 37 for € in
(0, €0]. Then certainly

”gne - gn“s <7
for 1 <n < N. If n> N, then by using (3.45),

”gne - gn”s < ||gne - ge”s + ||ge - g”s + ||g - gn“s
< lgn = glls + lge = glls + lg — gulls < v
The proposition is therefore proved. O

Corollary 3.3.9. Let u. be the solution of problem P., where € is in (0, 1]
and g € H® with s > 3. Then for each T > 0, and for m > 0, €su, is
bounded in C(0,T; H™™) independently of € sufficiently small.

Proof. We know from our “bounds” in Proposition 3.3.4 that, for T > 0
given, )

vellc,rms) < C(T €0, ||gell 5 €2 (| gel [ zs+1),
so m = 0 is straightforward, since both ||g¢||zs < ||g||s and e%||g€||Herl <
Cez||g||, are bounded. For m > 1, one needs to check that

1% el o < C(T 0, €% [|gellmssm, €52 gel osms), (3.46)

and then the conclosion follows by using Proposition 3.3.7.
To derive the inequality (3.46), we use s = 3 as a model case.
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Multiply the regularized KAV equation by ucg), use
(u€2)(5) = QOuézzuexmc + 10u€$u€(4) + 2“6“6(5)

and integration by parts, and use Proposition ??

d 2 2 / 2
— | (Ul Feussy)de = [ (ug) s Ueq) do
dt R( (4) (5) ) R( ) (5) “e(4)

< C(/ uEzug(4) dr + / UeggUe(3)Ue(4) da
R R

< Clucllollueco |2, + tcasloolttcnsall 2 e 122

< Clllollus) [ iy da+ ellgllns)y [ w2y do
R R

< c(llglus) / w2y do + c(llg]l )

Multiply above by €s

d
dt /R(eéu?(@ + 61+%uf(5)) dx < Cl/Reéu?(‘Q dr + 026%.

Applying Gronwall inequality leads to

1
/R(e%uf(@ + Ul ) da < eclt/R (6%9(24) + i) du + (et 1) da

C1
Therefoer (3.46) is valid for m = 1.
(iii)
4 (u2 + eu? ) dz = [ (u?) g tecs) dx
it [, \Uee) T ey ) 00 = [ ()t

:/Uexuz@) dm+/uex$u€(4)u€(5) d‘r+/uzzzzu5(4)u€(5) dz
R R R

< C/RUf(g,) dz + cl[teq[[|uee) | + cllte lue |

Wt

A

2 2 1 1
i+ iz ) de < /Resuf(s) dz-+ce3 gy 1€ e |
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So, m = 2 is proved.
In general, if we write

d(2 / 2
UL () T EUe(m, )dm: UL (1) Ue(m) AT
dt (m) (m+1) e D) (m)

o0

< C(||9||H2)/ Ug (m) 42 + D(Ilgll z2) 1ueqm—1) ey | + E(llgll2)

—00
o0

< Cllae | ey e+ DAl

Doing this for m = m + s, we get:
d
dt Jx
Multiply (3.47) above by €%,

d w2 1+2 92 m 9 m 2
E/R(€3U(m+s)+6+mu(m+s+l)> deSC/R€3’U,(m+s)d$+D€3||u||(m+s+1)

(u%m-l-S) + GU?WH-S-H)) dr < C/Ru?m+s) dz + D||u(m+s+1)||2 (347)

(3.48)

Notice that the D-term is bounded even tends to 0 as € | 0, by induction,
say.

Gronwall can now finish it off. O

Corollary 3.3.10. dyu, is bounded in C(0,T; H*%) and es 957 30,u, is
bounded in C(0,T; H®), independently of € sufficiently small, and m = 1,2,3,4, 5.

Proof. Since
Uet = (1 - eai)_l(_ueuez - uezzz)-

Hence,
[ttetlls—s < [luells-slwells—2 + [luells
< uelly + lludls < C.
Similarly,
6%”8;74—7”738?5”6“ < 6%||a?fue||s+m—3
m
<€ ([uellstm-slluells+m—2 + [[uells+m)
m m—3 m—2 m—(m—3+m—2)
< lucllsim + (€75 Nuellsrmosltllsim-ze ™" ) €5

<C+Ces <C
if m <5. ]
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Proposition 3.3.11. Let {u.} be the solutions of (P,), then {u.} is Cauchy
in C(0,T; H®), for g € H® with s > 3.

Proof. Let u = u, and v = ug, where 6 < € say. It is enough to show that
we can make ||u — v||ys as small as we like, independently of ¢ € [0,7T], by
choosing € small enough. Let w = u — v, then

1
wy + (uw + 511)2)3c + Wepr — OWazt = (€ — 0)Ugay (3.49)

with w(z,0) = gc(x) — gs(z) = h(x), say. Multiply (3.49) by w(s; and
integrate over R with respect to =, and play, to get

/R (w?y) + 0u?, ) d = / (W2, + Ok, ) da
¢ 1

_ 2/ / ((uw + §w2)(j+1) — (e — 5)ut,(j+2)) w;) da dr.
o JrR

Denote V(t) = [ (w +(5w (G+1) ) dz, let’s just write out the details for s = 3.
First for j = 0 the master relation looks like

(3.50)

/(w2 + dw?) dx
R
¢
= /(h2 + 8h2) dx — 2/ / ((vw)y + wwy — (€ — 0)Ugyr) w dadT
R o Jr

¢ 1
< /(h2 +6h2) dz + 2/ (||ws + §u$||oo / w? dx + e||ugzt|| g2 ||w]| L2 dr
R 0 R
(3.51)
From Corolarry 3.3.10, (||w, + %u$||oo < C(|lg]|s) and e%||uw:vt||L2 < ¢(|lgll3),
Then,

V2(8) < V2(0) +2/[01 7) + ere3 Vi(r)] dr-
Since V{(t) < e1Vo(t) + Coe3, applying Gronwall inequality,

lwll < V(t) < Vo(@)e™ + S (e — 1),

C1



64 CHAPTER 3. MATHEMATICAL THEORY

where

Vo(0) = [/R(ga —9)? +6(g5 — g')%dx ’

<llg = gsllmr + [lg — gell 1
< Ces for e<1.
Hence {u.} is indeed Cauchy in C(0,7; L?) and we have the estimate

||we — usl|z2 < Ces for 6 <e and e sufficiently small.

Next for j =1, from (3.50), we derive

t 1 3
VE(t) = V2(0) — 2/ / (—wi + —u$> w2 dodr
o Je \ 2" T2
t
—2/ / [Ugew — (€ — 0)Ugyys] Wy dzdT,
o Jr

where Wz ooy |Uz|cos |Uzz|oo and 6%||uwmt|| are all bounded, independently of
e sufficiently small. Hence,

t t
V12(t)§1/'12(0)+2/ 61V12(7')d7'+2/ [c2||w||vl(r)+c3e%vl(7) dr,
0 0

1
- B
Valt) < Va(0)eo” + oS looniy (ar )
4]

where
Vi(0) < llg = gells + lg = gsllx +621lg = gello + 62[lg — gsll:
< Ces.
Hence, .
|we|| < Vi(t) < Ces. (3.52)

Use the relation (3.50) for j = 2, we have:
/ (w?, + 6u?,,) da
R
! 1
:/ (hfm + (5h§m) dx — 2/ <(uw + §w2)xmww — (e — 5)ummtwm> dx dr
0

R
t 5
=9 / (—E(uz + W)W, — 3UppWoWay — uxmwwm) dz dr
0o JR

t
— (e =) / / UgrpatWay AT AT,
0o JR
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in which we know that, for 0 < ¢t < T |ug||w,| < O, |uge| < O, ||tgas| <

C, |[tgzat|| < %, |lws]| < Ces, |w| < Ce3, where C's stand for constants

dependent on T and on lg|| z. Hence,

/(w +ewl,,) d.’ré/(h2 +0h3,,) d$+2/ / (Cwl, + Ceb |wyy|) do
R
42 / lsalllltzsastll d
0

t
< [0 61y da 2 [ (€l + € e
0

where

V2(0) = /0 (h2, + 6h%,,) dz < Ces.

Thus,

t
V2(t) < Ces +2C / [V2(1) + €3 Va(r)] dr,

0

from which it follows that
wee|| < Va(t) < Ces  for 0<t<T. (3.53)
To finish off, let’s take 7 = 3 in the master relation (3.40), we have
! 1
VE(t) = V£(0) + 2/0 /R ((uw + §w2)mmwww — (e— 5)umwmtwwm> dx dr

where,

Q

||u:c:c:c:c:ct|| < 5

™
cnlcn

Hence,

. t
2(6 — 5)/ /uwwwwmtwwww dx < 2606_%/ ||wwww|| dr
0 JR 0
t
SQCeé/ Vs(7) dr,
0
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and the other term under the integral is estimated as following:

t
1
2 / /[(’U/LU + _wQ)IIIIw.z‘zJ;] d.T d’T
0o Jr 2
b
N 2/ / (5(11% + ww)wim — 4WalareWeze — OUssWeaWars — uwzzszJ$$$> dx dr
0 JR
t
<20 [ (el + el + kb)) ar
0
t 1
<20 [ (Vi) + Vi) dr
0

V2(0) = / (R + 612,,) dz = o(1),

o0

so it follows that
t
V2() < o(1) + C / (V2() + €5V (r) dr.
0

Applying the Gronwall’s lemma,
[wews|| < V3(1) <0(1)  asel 0.
Adding [lwl], |lwel], [|wzs|| and |[wezac|| all up leads to
[wl][ms =0(1)  asel0,
uniformly on 0 <¢ <T.
Corollary 3.3.12. {0uc}eso 98 Cauchy in C(0,T; H*3) as € — 0.

Theorem 3.3.13. Let g € H®,s > 3. Then there exists a unique solution u
in C(0,T; H®), for all T > 0, to the KdV equation posed with initial data g.

Proof. Uniqueness is a simple Gronwall estimate. Existence is likewise easy.
Let {uc} be associated solutions of problem {P,}. Then there exists u €
C(0,T; H?), for each T > 0, such that

Ue —> U in C(0,T;H®),

Optte = v in C(0,T;H*),

0y (u2) — 0, (u?) in C(0,T; H ),

Opzzlte — Oppztl in C(0,T;H*?),

€39%0u. is bounded in  C(0,T; H* ®),

so, €02 0yuc — 0 in C(0,T; H).



3.3. THEORY FOR THE KORTEWEG-DE VRIES EQUATION 67

We'd like to know that v = w,. This is easily established. Let ¢ € C§°(R x

[0,T7]), then
T T
/ /ueétdxd7—>/ /U¢td$dT as e | 0;
0 JR 0 JR

on the other hand,

/()T/Rueqﬁtdde:—/R/OT(atu€)¢dxdT—>/0T/Rv¢dde as el 0,

this shows that u is weakly differentiable and that u; = v. Since v € C(0,T; H*™3),
we get that u is strongly differentiable and that

u€ CH0,T; H*®).

This establishes the existence and uniqueness, and the continuous depen-
dence follows using the fact that the 0 bounds were uniform on compacts. [

Remark 3.3.14. g — C(0,T; H*) is sharp.

We now proceed to make use of the method of proof used for existence
of smooth solutions of KdV. Here we shall be interested in the regime that
is of physical interest, namely small waves of long wave length.

Let’s go back to dimensionless unscaled variables, where u and its deriva-
tives are all of order 1.

3 1
M+ N + —ane — BN = O(a®, B, B°)

2 6
3 1
T + Nz + 504777756 + éﬂnzwz = 0(042, aﬂ, /32) (354)
n(z,0) = g(z),
where the stokes number S = % = %2 Inherent in keeping both o and f

terms on an equal footing is that S «~ 1.

Now, over what time scales do we expect the model to be valid? Consider
m+n.=¢ n(z,0)=g().
The solution of this equation is

n(z,t) = g(x —t) + et.
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Thus the long-term effect of a small perturbation is, in general, to grow
linearly in time. Hence presuming S « 1, the effect of the small nonlinear
term and small dispersive term is to grow, over a time-scale of order é “ %,
to order 1. Thus these terms can have a significant effect on the shape of
the wave profile on a time-scale of order é Equally, the neglected terms of
order o v~ 32, can grow to an order-one contribution of a time scale of order

rea Thus we have the following situation:

t «~ =, nonlinear and dispersive effects can affect the basic wave profile.

t %, neglected can have accumulated to order of the basic wave, so the
model may no longer be reliable.
Now let’s consider the following pair of problems: take o = 3, S = 1.

3 1
N+ N + 50477% - éﬂnzzt = 0,

3 1
gt + gw + 50!6&5 + éﬁé-www =0,

n(z,0) = &(z,0) = g(z), an order one initial profile.

(3.55)

Over what time scales are n and & close together. By close together, we shall
mean that
n(z,t) — £(=,1)] < Ca.

This is the resolution of either n or &, so this result would mean practically
that we couldn’t tell the two apart.

Let @(z,t) = 2am(y/%x, \/%t), and 0(x,t) = 2aé(y/%, \/5t). Note that

Ja = ag(aiz),
Now, for u and v, we have
Up + Uy + Uty — Uggy = 0,
Uy + Uy + VU + VUgaze = 0, (3.56)
(z,0) = v(z,0) = ag(oz%x)

and we want |4 — 0| < Ca? as « | 0.
Now the parameter is hidden in the initial data. Let’s get out an appro-
priate magnifying glass, and follow the wave better. So let

w(z,t) = o YG(e 2z +a 2t o 2t),
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and ) \ ,
v(z,t) = o 'O(a" 2z + a2t " 2t),

then it is easy to verify that

U + Uy + Uggy — QUggr = Oa
Ut + (% + Vgzx = Oa
u(z,0) = v(z,0) = g(z).

This is just the problem we’ve just handled!! We know that, as a | 0, u — v,
we need more precise information than that. Let w = u—w, so that u = w+v,
then

Wy + WWy + Wygg — €Wggt = QUggt — (Uw)w

w(z,0) = 0.

We may now proceed to estimate ||dJw]||z2 for various values of j =
0,1,2,....In order to keep this sharp, we need to know more about solutions
of KdeV.

Let u be an H* solution of KdeV. It can be shown that the KdeV equation
possesses an infinite collection of polynomial invariants. There are various
ways to see this. There is a simple but ad hoc method which can establish
this. Let’s just state the result, for now, and then come back to its proof
later.

Theorem 3.3.15. Let g € H**S, where k > 0. Let o > 0 and let n® and £
be the unique solutions of

N+ Nz + anny — ANggr = 0,

and
é-t + fz + aéfw + afxwx = 07

respectively. Then there are order-one constants C; and D;, 7 = 0,1,2, ...
such that 4

gy = €& llz2 < Ciait3(abe),
and .

Iy — €5l < Dja**3(a2t)

at least for 0 <t < a~3. The constants C; and D; are not dependent on o
for a in a bounded domain [0, ay).
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5
2

Conjecture: these bounds hold right up to ¢ «~»~ a~2, thus the models

have diverged at the break-down time.

Numerical evidence supports this conjecture. But one must be careful in
. . 5 .
discounting the models beyond ¢ «~ o™z, for reasons that will appear later.

3.4 The Quarter-Plane Problem

The pure initial-value problem that has been treated is, in some aspects, not
as useful as a model problem as an initial-value and boundary-value problem
to be treated presently. The fact is that the pure initial value problem is not
at all well-suited to comparison with initial data.

A convenient experimental set-up is as follows. In a channel, a disturbance
is created at one end, which subsequently propagates down the channel. At a
certain point xy in the channel the disturbance is recorded as it passes by. One
wishes from this data, to predict what the wave will look like downstream.
This leads naturally to the initial and boundary value problems

3 1
N+ Ny + —onng — = BNgge = 0,

2 6
ft + gm + gaggm + éﬂgmxx =0,
with
77(3%0) :f(l‘,O) :f(l'), for 9629607
&(wo, t) = n(wo, t) = g(?), for x> .

Without loss of generosity we take xq = 0, and we scale out the %ﬂ and the

%a. Then we have

Up + Uy + Uy — Uggt = 0,
(3.57)
u(z,0) = f(x), u(0,t) = g(¢t), for > xy,t>0,

where we require f(0) = ¢(0) for consistency. This the problem posed in a
quarter plane. Then the question is: is it a well-posed problem?

The answer is ”yes” as we now show. The method is the same as for the
initial-value problem, so we shall just outline the situation.

Note that we still have H'(R") < Cy(R) with || f||z: > ||f]lc,-
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Proof. For

Pla) = -2 / T RO de < / TP + A dE = 1.

Hence,
[flloo < 11 fllar-

Let g be the function on R obtained by reflecting f about the origin, then
g € HY(R), so g is continuous and asymptotically null at +oo. Thus f is
continuous a.e and f — 0 at 400, and the above bound hold. O

Let’s now convert the differential equation to an integral equation, as for
the pure initial value problem,

(1 —0Huy = —0,(u+ %u2)

Again, regard this as an ordinary differential equation for u;, we can solve
for u; as:

1 [ 1
u(z,t) = —5/ e "9 (ut =

1 [ 1
u?) d§+—/ e~ 0, (ut-u?) dé+g' (t)e™,
; 2 2 /, 2

(3.58)
using the fact that u;(0,¢) = ¢'(¢), a formal integration by parts, followed by
integration over [0, ¢] yields

ue,t) = F(@)+ 00 - 9O)e "+ [ [ Kl ) (ute, )+ pucte. ) der
(3.59)
where K(z,£) = 1sgn(z — €)e”1"=¢ 4 Le~(#+0),

Lemma 3.4.1. Let f € Co(R") and g € C(0,T). then there exists S with
0 < 8 < T, dependent on || f|lc, and ||gllco,r such that there is a solution
of the integral equation.

Proof. Write (3.59) as u = Au = g(z) + e *(h(t) — h(0)) + B(u) say. View
this as a mapping of the space C(0,S;Cy(R")) into itself. We argue that,
by thinking R large and S small, A is a contraction mapping of Bx(0) C
C(0, S; Cp(R™)) into itself. The crucial estimate is

|Au — Av||c,s50,) = |1Bu — Bv||co,5,04)-

1
<5 (14 llullcwscy + Iollcasen]) = ol
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This is the fact that sup,s, [;° |K(x,€)|dé = 1. From this there follows the
estimate:

1
lAullee,y < lIflle, +2llglleon + Slulle( + 3llulle).

Since
|Aulle < ||Au — A(0)|lc + [|A(0)]|c

and now proceed as before, we get, for u,v € Bg(0),
JAulle < a+ SR(1+ R),

|Au — Av|lc < S(1+ R)||u — v||c.

Choose S(1+ R) = 5 or S + 2(1—iR)’ then choose R = 2a. The lemma is

proved. O

Theorem 3.4.2. Suppose f € CZ(R") and g € C'(0,T), then any solution
of the integral solution (3.59) has

0j0ju € C(0,T;Cy)  for0<i<1,0<5<2,
moreover, u is a classical solution of the problem (3.57).

Proof. More or less the same procedure as before for the pure initial-value
problem can derive the result. O

Corollary 3.4.3. If f € C{(R") and g € C*(0,T), k > 1,1 > 2, then any
solution u of the integral equation in C(0,T;Cy) has

0i0u € C(0,T; Cyp(RT)) for0<i<k0<j<I.

Remark 3.4.4. There is at most one bounded continuous solution of this
integral equation. For if we had two solutions u,v € C(0,T;C,), then by
choosing R large enough, both u,v € Br(0) C C(0,T;Cy), then, without loss
of generosity, we can assume v # u on any interval [0,t] for t > 0. But then,
for a sufficiently small interval, A is contractive in Bgr(0), so u = v in a
small interval, a contradiction.

Lemma 3.4.5. If f € C,ﬂ and g € C*(0,T),1 > 2, k > 1 and suppose
£y f!y . f®) are null at +oc for some p > 0, but p > I, then if u € C(0,T;Cy)
is the solution of the integral equation (3.59), then 0;0%u is null at +oo, for
0<i<k,0<j<p, uniformly for 0 <t <T.
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Proof. as same as before. O

Lemma 3.4.6. If f € CZ(R")NH'(R") and g € C*(0,T), then the classical
solution of the initial-value problem that exists on [0,S] for S small enough
satisfies an estimate of the form:

/Ooo[uQ(x,t)-l-ui(x,t)] dx—i—%/o u?,(0,7) dr < /OOO[fQ(x)-I—fg(x)] dz+C(t),

where C(t) depends only on g and ¢’ on [0,T].

Proof. Multiply (3.57) by u and integrate over RT with respect to spatial
variable x :

1d [, 1, 1, 1d /°° )
St ), U 29 (1) 3g (t) + g(t)ug(0,t) + 2di J, ugy =0,
or -
7 (u? + ul) dz = g*(t) + ¢°(t) — g(t)ua:(0, 2), (3.60)

the term u4(0,t) is not nice, so we need to work on it. Multiply (3.57) by
u? and integrate over R :

1 [ 1 1 o
3 / u?(z,t) do— gg?’(t) — 194(t)+92(t)u$t(0, t) +2/ UL = 0, (3.61)
0 0

that looks less then useful. Multiply (3.57) by us; and integrate over R* :

1 ! 2 —

§[g (t)] +2dt u +/ U Uy + u .(0,t) =0,
or g e -

—/ u? = —2/ Uz + g'(t)% — u2,(0,1). (3.62)

Now combine (??) through (3.62) by (?7)-(3.61)+(3.62) to come to

d = , o L3

el 2 =

it J, u” + 2uy, 3u

1 1
=¢'(t)” = 3 (0.1) = 20°(t) — 76" (0) + P (Duar(0,2)  (363)
2

+9°(8) + 39°(8) = 9(£)uz(0, 7).
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Integrate (3.63) up in time [0,t]:

/Ooou2+2u§ / u +/ P2 - —f3 /( — values) dr

<V+ —||u||H1 —|—/ (0 — values) dr,

where V = [ f2 4 2f2 — 3 f* is bounded since f starts life in H*.
Integrate (??) in time over [0,1] :

o) [e’s) t 2
/ u2+ui:/ f2+f§+/[92+—g3+guwt]d7.
0 0 0 3
Hence, *

/ u? + 2u?
0
t
<V + (W + / [0 — value) dT)% / (0 — value) dr

3
2

2
<V +( W+/[g + g dT /|g Yz (0, 7)| d7)

3
+ [l + 300 - ﬁgw i+ [0 = g)ua0,7) = (0.

§V+cl(t)+02(t)+(/0 o (r )dT)%(/ W2,(0,7) dr)

+/Ot(92(7')— o(r)? d7+4/ monT—// ,0,7)d

t
§V+cl(t)+cz(t)+03(t)+i/ mth—i-c(/ 2(1)dT)? — Z/ u?,(0, 70 dr,
0 0 0

1 t
/ W+ ul <V +CO) - —/ u2,(0,1) dr,
R+ 2 /o

where C(t) depends only on g and ¢’ over [0, t]. O

This H! bound is enough to pass to a global solution by way of iterating
the contraction mapping argument. The results of continuous dependence
may now be derived much as before, as well as further regularity results. We
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won’t go into this details now.
As far as the same initial-boundary-value problem for KdV, the results

are less conclusive. First note that, formally, the solution is uniquely specified
by f and g, for if u and v are two solutions and w = u — v, then

1
w(z,0) = 0,w(0,t) = 0.

(3.64)
Multiply (3.64) by w and integrate over R,

d 1
— + 202 + (u 4 )W 4 wwee | — / WypWasp
dt R+ 2 Rt

- /]R (oo, (3.65)

1 1
= —(u+v)w?[F - —/ (g + vg)w?,
2 2 Jos
or g
— w?(z,t) dz + w(0,t) < \ux—HJx\oo/ w?.
dt R+ R+

Assuming u, and v, are bounded, then Gronwall lemma finishes it off. N.B.
the sign of the term w,,, was important here.

Remark 3.4.7. Look at the equation

Ut + Uy — Ugge = 07
’U,(.T,O) = f(x),u((),t) = g(t),

just a change of sign in front of Uy., term in linearized KdV equation, but
the uniqueness of solution is no more true, even when requiring the solution
to decay at +oo. Eg. take the Laplace transform in t, with 0 initial and O
boundary condition, and denote v = Lu,

$U+Uz — VUggax = Oa

or
V" — v —sv=0,v(0,s) =MN(z =0) =0,
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where s is a parameter of course, s > 0. To solve this constant coefficient
problem, find the character equation:

r—r—s5=0,

let r,r1,79 be its roots, then the solution, in general, is
a(s)e™ + b(s)e™* + c(s)e™”,

according to the property of this cubic equation, one root is positive, r > 0,
say, other two are non-positive, r1 < 0,79 < 0, but not both 0.

Suppose that the solution a(s)e’™ +b(s)e™* 4 ¢(s)e™* decays at © = +00,
then a(s) = 0. The condition v(0,s) = 0 means that b(s) + c¢(s) = 0, or
b(s) = —c(s), hence a non-zero solution is b(s)(e"*—e"2*) with r; = r1(s) < 0,
re = 19(8) < 0, for s small anyway.So let b(s) be concentrated near s = 0,
with compact support in [0, s], then we have a perfectly good non-trivial
solution, where inverse Laplace transform is the desired non-trivial solution
of the linear problem. It is easy to derive that: 1) there is a family of
strong solutions in C(0,T; H*(R"), 2) there is a global weak solution in
L>(0,T; H'(R"), and there it stands.

Remark 3.4.8. Continuous dependence is different from stability.

e For continuous dependence: Given T > 0, given € > 0, there is a 6,
such that if ||g — h|| <9, then ||lu —v|| <€ for0<t<T;

o A solution u is stable means that for given € > 0, there is a 6, such
that if ||g — h|| <6, then ||u — v|| < € for any t.

In general, a solitary wave

Gelz,t) = Besech? (|~ i “(z = (c+1)1))

1s not stable in the above sense because ...




Chapter 4

Solitary waves, their existence,
stability and instability

The solitary wave, a special type of traveling waves, was first observed by
John Scott Russsel in 1844 on a surface of canal. Airy and Stokes began to
study this phenomenon, they derived governing equations

N+ Nz + €nng =0

and

N+ Mg + €Ngge =0
respectively in 1845 and 1849, but none of them has solitary wave. Boussinesq
(1871, 1872, 1877) and Rayleigh (1876) began with two dimensional Euler
equation, and Korteweg and DeVries (1895) derived the KdV equation

Nt + Ne + €Ny + Nygz = 07

which does have solitary wave. More general model equations can be written
as

up + f(u)g + Lug = 0,

u(z,0) = g(z),
where f : R — R is some nonlinear function in C*(R) space with f(0) =0
and L is an operator defined by Fourier symbol as m(f) = «a(§)u(€). The
general natural questions to ask are 1) is there solitary wave? 2) is the
solitary wave solution stable? 3) is the initial value problem well posed.

Experimental results show that the solitary wave is a very stable form, so

we turn first to the question of the stability of the solitary-wave solutions.

77
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4.1 Exact traveling wave solutions
We first consider the solutions of permanent form for the KdV equation
Ut + ULy + Ugzy = 0

We are looking for solutions of the form

u(z,t) = ¢(£) = ¢z — ct)

where ¢ is a real constant, representing the speed of the traveling wave.
Substitude the form and one obtains an ODE

_c¢l+¢¢l+¢lﬂ — O
Integrating once,
1
”:—5¢2+C¢+A

For fixed A and ¢, the phase diagram of this equation can be used to get
a general idea of the solutions. Let x = ¢ and y = ¢, then

=y
!

1
Y :—§x2+cx+A

4.2 Stability of the Solitary-waves
Consider the model equation

Uy + f(u)x - (Lu)a: =0,

u(z,0) = (),

where f : R — R is some nonlinear function in C*(R) space with f(0) = 0

and L is an operator defined by Fourier symbol as Lu(€) = a(£)a(€). Suppose
¢ = ¢c = ¢(x — Ct) is a solitary wave solution, then it satisfies the ordinary
differentiable equation

—C¢' + (f(¢)) — (L¢)' =0,

(4.1)

or

(C+L)¢=f(9),
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where C' > 0 is the velocity of wave propagation.

To establish stability, we would like to have the definition first. Naturally,
if the initial data v of (4.1) is closed to the solitary wave ¢, then we expect
that the solution of (4.1) u is closed to ¢ for all time, i.e. for any small € > 0
given, there is always 6 > 0 such that if ||t — @|| < 0 then ||ju(-,t) — (- —
Ct)|| < e for all time. However, we cannot expect a result like this, because
the speeds of propagation of ¢¢ and uw may be different. More precisely,
suppose we let ¢ = ¢p where D # C, then if D — C, ¢p — ¢¢ in any of
the norms we have been using. On the other hand we know u explicitly as

u(z,t) = ¢p(z — Dt),

hence,

lu = dcll = llép — écll
is always a positive constant, no matter how close D is to C, and for ¢ large
enough (¢ >> ﬁ), ¢c(x—Ct) and ¢p(x— Dt) will have essentially disjoint

supports and so the norm of the difference will not be small. In fact, for the
kind of spatially homogeneous norms we have been using

Jim [[po(z = Ct) = ép(z — D)[| = [|éc|l + ll¢nll-

Thus the result we’d like is too strong.

Similar happens to asymptotic stability:

| — ¢c|| << 1 = there exists d near to Cs.t.sup ||u — ¢pl|| << 1.
£>T

(777)
Two natural possible definitions of stability failed. Now let’s try a stabil-
ity in “shape” or “orbit” and just forget about speed altogether. This might

lead us to define a new measure of distance, eg. let f, g be elements in a
Banach space X = X (R), let

d(f,g) = ;gﬂgllf(-) —g(-+y)lx-

then this ”distance” is the closest approach of f and g under the translation
group in R, more precisely, d is defined on the quotient space X /7, where T
is the translation group.
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Definition 4.2.1. A function d: A X A — R is a metric on A if

Al. d(a,b) >0

A2. d(a,b) =0 if and only if a =10
A3. d(a,b) =d(b,a)

A4. d(a,b) < d(a,c)+d(c,b)

The function d is a pseudo-metric if it fulfils the same properties as a metric
except relazes the definition to allow the distance between two different points
to be zero.

Lemma 4.2.2. The operator d defined above is a pseudo-metric if the norm
in Banach space X = X (R) is invariant under translation.

Proof. We are assuming that if f € X then 7,f € X and ||f|| = |7, f|| for

any y € X, where (7,f)(y) = f(z + ).
Define X/7 or [f] = {g: g = 7, f for some y € R} let

d([f], lg]) = inf [|f — 7ygl|

then we claim
i) d is symmetric since,

d([f]lg]) =k [|f = mygl| = inf Iy (f —79)

= Inf Iy f — gl = inf [lg — 7, /1| = d(lg]. [/1).
ii) d has triangle inequality property since, for any [f], [¢], [h] € X/,

1f = mgll < If = 7all + l7ah = 7y,

and taking the inferior over y, we see that

d([f1;[g]) < IIf — mahll + d([7=h], [g])
= [If = 7hll + d([R], [9]),

taking the inferior over x, we have,

d([f], [g]) < d([f], [n]) + d([n], [9])-

Therefore, the lemma is proved. O
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This pseudo-metric measures the distance between functions in a broad
meaning. Now the stability of solitary waves can be redefined.

Definition 4.2.3. Solitary wave solution ¢c of (4.1) is said to be stable, if
for any € > 0 given there is always 6 > 0 such that if || — ¢¢|| < & then

infyer [[u(-,1) — ¢o(- +y)ll <e
Lemma 4.2.4. Let u be a "nice” solution of (4.1), then [ u(z)dz, V(u) =
[ uP(x,t) de and M(u) = [ [uLu(z,t) — F(u)(z)] dz are time indepen-

ol

dent, where F'(z) = f(z) and F(0) = 0.

Proof. : We already checked this early by multiplying (4.1) by v and f(u) —
Lu respectively then integrate over R. O

Intermediate hypothesis: For the time being, we assume ¢ is the fixed
solitary wave solution of KdV and  the perturbed initial data, and we as-
sume additionally that V' (¢) = V(¢). This restriction will be removed later.

Define A(u) = M(u) + CV (u), h(z,t) = u(z + a,t) — ¢(z — Ct), where C
is the phase speed of the solitary wave we are interested in. Denote ¢ = ¢¢,
then ¢ satisfies equation:

(C+L)p=f(4). (4.2)
Let T(u) = A(u) — A(¢), then T : 1) — R. Compute the difference:

A(w) = A(9) = A8+ h) = A9) = N(&)h+ 3 (N'($)h, ) + O],

or
/ %(¢ +R)L(6+ h)dz — F(é+ h) — / %ququx + F(6)
C c
+§/(¢+h)2d$— §/¢2d$
- /thde + /thdac _ /f(qﬁ)hdm + %f’(qb)hQ +O(h])
+C/gz5hda:+%/h2dx
Let A'(¢) = 0, then

mlhl* + all Pl > Aw) — A(@) = 5 (A"()h, h) + o[IRlI*) > AlIAI* — bl|Al|".

| =
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If A” is positive definite. then
& > m|h|* + allhl]® > A(u) = Al¢) > A|A|I* = bl|A|%,

for all £.
As A is constant in time, this means that if, at ¢ = 0, ||h||g: is small,
then A will keep small, just by the choice of the initial small data ).

Define £L = Lo = A"(a) = L+C — f'(a), then L(¢') = 0 since (L+C)¢' —
f'(¢)¢' =0, L has zero-eigenvalue with ¢’ as corresponding eigenfunction.

Consider the equation (??), denote ¢ = differentiate it with respect

to C, we have

dC’

(L+C)p— f(d)p+=0,

1.e.

(£8).6) = (6.9) = —3 =(6.6).

Assumptions:

L. 1)6(4,4) >0

Remark 4.2.5. then L is self-adjoint unbounded operator on Lo(R,)
and (£(9),8) = —1:4(6,9)

2. ii)spectra (£) = {0,C > 0....}(See April 8 note)

3. iii) 0 is simple eigenvalue.

4. iv) a(&) > plé| at least for |£] large for some p > 0. There is only one
negative eigenvalue, simple with eigenfunction X'.

Remember, A(c) = M(¢c )+ CV(gc), so N'(C) = (M' + OV')(éc) +
V(gc) =V (¢c), and A"(C) = 5V (dc) = 76(0, 9)-

Denotexz{feL2:f(1+a( |f|2d§<oo} then L: X — X*.
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Lemma 4.2.6. Suppose ¢ € X is such that 0 = (¢, ¢') = (¢, ¢), let
n=inf{< Lf, f> feX (f,¢)=(f¢)=0.|f[[=1}n>0.

Remark 4.2.7. n < 0 refers Lemma 5.1 of Bona et al. (1987)

Proof. Step 1, suppose n = 0, then there exists a sequence {g,} C X such

that (qn7 QS) = (Qna ¢I) = 0; (qn,qn) =1 for
n>1and < Lg,, g, >— 0 as n — oo.

Without loss of generosity, take g, infinitely smooth, then

o0

0 < (Ln; qn) = /

—00

()33 dE = (Lt ) ~Clans 1)+ | P9 (a) da,

{¢,} is bounded in X, hence there exists a subsequence {g¢,,}, still called
{¢s} such that,

Gn — g weakly in X.

Recall assumption iv), (&) > pl¢| for some p > 0, so X C Hz(R) C L,,
{¢,} is bounded in Hs (=M, M) for any finite number M and hence there is
a convergent subsequence of {¢,} in Ly(—M, M) and L,(—M, M). By taking
a suitable subsequence, we can suppose that

Gn — g weakly in X and ¢, — G pointwise a.e. in R.

To prove g, = G, let p € D(R) = C§°(R), and in Ly(—M, M), Ly(—M, M),

/ (4 () — G(@)p() dz < Nollzalln — Cliasummioy-

so ¢, — G in the sense of distribution, ¢, — G in D'. Therefore G = ¢,
moreover g2 — g2.
Now

0= lim (6,qn) = (¢,4: = lim (¢',40) = (¢, )
so,

1112 = (s, g« < liminf,, o (gn, gn) = 1.
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One more condition, lim, . (f'(¢), ) = (f'(#),¢?),
0 =1limn — 00(Lgn, ¢u) = (Lan, ) + C(Gn, gn) — (f'(¢),q2)

> (Lgqs) + C / f1(#) da
>0 / F(8)¢ d,

therefore, ¢, # 0.

Let’s normalize g, by f, = IIZIII’ then

2

1
L wxy Jx) — 7 H*; x) > U.

Making use of - ||¢[|> > 0 and (L + C)d — f(¢)p = —¢ leads to

(£,9) <.

Suppose the negative eigenvalue A of £ has corresponding eigenfunction X,
and 0 has corresponding eigenfunction ¢', decompose ¢ = aX’ + bg' + Py,
substitute it into (L, ¢) < 0, we have:

0> ((aX +b¢' + Ry),aX + b’ + Py)
=a*(LX,X) + b (L, ¢) + (LPy, P)
— A&?|| X[ + (LPy, Fy),
S0,
(LPy, Py) < A\a®.
Remember ({., f.) <0 and f.|¢, so f. = cX + P, and

0= (¢, f.) = —(Lo, f.) = —a®A+ (LPy, P),

({*: f*) =-c’A+ (P’P)
(LP, Py)?
|(Po, Po)l
ac))?
a?\?

— AN+

>\ +

=0.

Contradiction. The lemma is proved. O
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Corollary 4.2.8. (Ly,y) > nllyl|?> for any y € X, y|¢, y|¢..

Remember, the stability we are dealing with is orbital stability, solitary
wave ¢(z — Ct) of uy + f(u), — Lu, = 0 at time ¢ is just translate of the
initial data, orbit ¢ = {7.¢ : 7 € R}. So to prove the solitary wave is stable,
we need to prove that given € > 0, there is always § > 0 such that

o —¥||x0 = veld.={z:d(z,¢) <€}

Lemma 4.2.9. There exist e > 0, C > 0 and a unique C* mapping o : U, —
R such that for u € Uk,

2. ZZ) o (U( + 7")) = a(Tru) = a(u) -,

¢z(- — a(u))
T2 w(@) s (x — a(u)) dz”

Remark 4.2.10. To study stability of the solitary wave, we wish there exists
some.

3. i) o (u) =

Proof. Consider the functional

G : Ly x R — R defined by
G(u, ) = / u(r + a)dy(z) dz,

then
G(u, @)|(u=g,a=0) = 0
and

aG o0 oo
%\(u:qxa:m = / Uz (T + @) e () d2|(u=g,a=0) = / ¢s(2)* dx # 0.

By the implicit function theorem, there is a neighborhood B(¢) and a unique
C! functional « : B.(¢) — R satisfying

1) (U( + (l/), ¢SE) =0,

ii) by translation invariance u(- + o(u)) = u(- +r + (a(u) — r)) = ru(- +
a(u) — r), and by uniqueness, a(u) —r = a7, (u)),
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iii) Finally, i) can be rewritten by a variable change

0= /00 u(z)de(z — a(u)) dx.

o0

Differentiating it with respect to u leads

o0

o=¢m—aw»—/ u(2)22(z — alw)) dee (u),

-0

S0,

The proof is complete. O

Lemma 4.2.11. Let ¢ = ¢. be a fized solitary wave, then there exist con-
stants C > 0 and € > 0 such that

A(u) = M) > Cllu(- + a(u),t) — ¢||*
for all u € U, such that ||ul|L, = ||¢]|L,-

Proof. Let h(z,t) = u(z + a(u(z,t)),t) — ¢(z), so h is orthogonal to ¢,. u
can be written in form u = (14 a)¢$ + y, where y is orthogonal to ¢,, and ¢,
h = a¢ + y. By translation invariance and Taylor’s expansion theorem,

V(9) =V (u) =V(u(-+ a(u))) = V(¢) + 2(¢, k) + O(II1]]*),

1
a(6,6) = S IhIP,

A(u) = Alu(- + a(u)))
= A(¢) + %(ﬁh, h) +O(||Al[*)

A®)+ 5 (L(ab +y),a9+ 1) + O(JAP)
> A(8) + 0(a?) + Olallyll) + nllul? + o(14]1).

1yl = llh = ag|
> [|hl] = all@ll
= [Inll = O(lIAlI*)

1
> —||h||-
> bl



4.2. STABILITY OF THE SOLITARY-WAVES 87

Then,
1
Aw) 2 A(8) + Znllhll” + ol[IAI")
N
> A(¢) + 2l
so,
A(u) = A(¢) > C||A|?
for ||h|| small. O
Therefore,

E(u) — E(¢) > C||nf?
for ||h|| small.
Theorem 4.2.12. The solitary wave ¢ = ¢, is stable if and only if A" (c) > 0.
U
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