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Abstract. A highly efficient and accurate numerical scheme for initial
and boundary value problems of a two-dimensional Boussinesq system
which describes three-dimensional water waves is used to study in de-
tails the oblique interaction of a solitary wave and the evolution of
solitary waves coming out of a narrower channel.

1. Introduction

A Boussinesq system which models surface water waves on a chan-
nel with bottom topography h̃(x, y, t), which could be time-dependent,
and with surface pressure variation P (x, y, t) is used in this paper to
investigate various wave phenomena. The general system reads

ηt + ∇ · v + ∇ · (h + η)v −
1

6
∆ηt = F (hxxt, hxtt,∇P ),

vt + ∇η +
1

2
∇|v|2 −

1

6
∆vt = G(hxxt, hxtt,∇P ),

(1.1)

where h = h̃−h0

h0

with h0 being the average water depth. The detailed
derivation, justification and analysis of this system can be found in
[4, 8, 5, 6]. It is worth to note that the fluid is bounded by the bottom

topography h̃(x, y, t) and the free surface η(x, y, t) and η(x, y, t) is a
fundamental unknown of the problem. v(x, y, t) denotes the horizontal

velocity field at height
√

2

3
h0.

Some of the advantages of this Boussinesq system when it is com-
pared with the full Euler’s equation include, the equations are posed
on a fixed domain and the problem is no longer a moving boundary
problem; η is an unknown function in the equation, not in the bound-
ary condition; the unknown functions are with respect to (x, y, t), not
(x, y, z, t), one less space dimension in the computation; the equations
are regularized, and the boundary value problem is well posed. The
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three-dimensional velocity field at any other location (x, y, z) can be
obtained by

u(x, y, z, t) = (u, v) = (1 +
1

2
(
2

3
− z2)∆)v(x, y, t),

w(x, y, z, t) = −z(1 +
1

3
∆)∇ · v(x, y, t).

It is noted that this is only one member of a class of Boussinesq systems.
More references on Boussinesq systems can be found in [7, 16, 4, 13].

In this paper, we consider an L by H wave tank with flat bottom and
constant air pressure at the water surface. The Boussinesq system (1.1)
then has F = G = 0 and is valid on the domain Ω = (0, L) × (0, H).
Several physically relevant problems will be solved numerically.

The second-order semi-implicit Crank-Nicolson-leap-frog scheme (with
the first step computed by a semi-implicit backward-Euler scheme) is
used for time-discretization. At each time step, we only have to solve
a sequence of Poisson type equations. For space discretization, vari-
ous spectral method based numerical techniques are used depends on
the types of the boundary conditions imposed. For periodic boundary
conditions in the x-direction and Dirichlet boundary conditions in the
y-direction, the Fourier-Chebyshev Galerkin method is used. In con-
sequence, spectral accuracy is achieved and the total operation count
is O(NM log(NM)), where N and M are the number mode in x and
y directions, which is quasi optimal. When Dirichlet boundary con-
ditions are imposed on all four sides of the wave tank, the numerical
simulation is more costly. It is worth to note that in general, boundary
conditions on the four sides of the wave tank should be consistent at the
four corners of the wave tank. Furthermore, the initial and boundary
conditions should be consistent on where they intersect. The details of
the scheme are described in [10].

2. Preservation of solitary waves with varying channel

width

In this experiment, we study the evolution of a solitary wave coming
out a narrow channel to a wider channel. Because the lack of exact,
explicit solitary wave solutions for (1.1), the exact solution of one-way
BBM equation [2] with amplitude A

(2.1) η0(x, t) = Asech2(

√

3A

4K0

(x − K0t)
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withe K0 = 1 + A

2
together with the first order approximation for

velocity

(2.2) v(x, t) = η(x, t) −
η(x, t)2

4

will be used for the initial conditions.
By following the work in [15, 1], the simulation starts from an ap-

proximate “line-soliton” spanning only half the width of the tank. It
is noticed in paper [15], where numerical simulation was performed on
the KP equation, a equation with additional assumptions that the wave
is almost weakly three-dimensional and propagating predominantly in
one-direction (see [14, 9] for detail), that after the initial disturbance
is released, it bends backwards and slows down but, as soon as it feels
the presence of the side wall, it quickly adjust to form a KdV (or one-
dimensional) soliton with lower amplitude.

In this experiment, we take the width of channel to be 12 and the
length to be 100, and let the initial data be

η(x, y, 0) =

{

sech2(
√

1

2
∗ (y − 40)) for 3 < x < 9,

0 for other x,

v(x, y, 0) = η(x, y, 0)−
η(x, y, 0)2

4
,

u(x, y, 0) = 0.

(2.3)

The boundary data at two ends of the wave tank y = 0 and y = 100
are taken to be zero. The periodic boundary conditions are assumed
on the sides of the wave tank (x = 0 and x = 12). It is worth to note
that the middle section of the initial data (2.3) we choose here is not
an exact solution of (1.1), but the exact solution of a one-dimensional
Boussinesq equation associated with an approximate velocity field. But
previous simulation show that it is quite close to a solitary wave solution
of (1.1). If this initial data is imposed to span the whole width of the
wave tank, which is equivalent to consider the one-dimensional solitary
wave, it would develop into a solitary wave with height about 0.9 [3].

The solution η(x, y, t) at t = 0, 2, 5, 10, 20, 40 are plotted in Figure 1
and Figure 2. The solitary wave first bends backward with a trough be-
hind the leading wave. After it feels the boundary, it stretches and form
a “clean” straight solitary wave span the whole channel. At t = 40, the
tail part consists a traveling two-dimensional wave patten (a doubly
periodic solution, see [11, 12] for more information) and a stationary
tails. The qualitative behavior of the leading wave agrees with the
observation described in [15] where the KP equation was used. There
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Figure 1. Simulation of a solitary wave initially span-
ning half width of the cannel and propagating to form
a leading solitary wave spanning the whole width. The
surface profiles at t=0, 2, 5 are plotted where light area
are peaks and dark areas are troughs.

are also significant difference between the results of these two simu-
lations. Instead of a relative clean soliton, we see a leading solitary
wave followed by significant sized disturbances and the formation of a
two-dimensional wave pattern.

In Figure 3, the function η(6, y, 40) is plotted which shows that the
height of the leading solitary wave is a much smaller (about 0.43) com-
paring to the initial wave because the widening of the cannel.

In summary, when a solitary wave comes out a narrower channel to
a channel which is double the width, it develops into a smaller solitary
wave, with about half (or a little smaller) of the original height and a
structured tail wave.
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Figure 2. Continue from Figure 1 with surface profiles
at t=10, 20, 40.
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Figure 3. Wave surface at x = 6 and t = 40.
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3. Oblique interactions of solitary waves

In this sequence of experiments, we start with two approximate soli-
tary waves which form an oblique angle of θ and observe the oblique
interaction of such two solitary waves.

Again, due to the lack of exact solitary solutions, the solution (2.1)-
(2.2) with amplitude A will be used for the initial data. The initial
data for the wave traveling down and right reads, where θ1 = θ

2
,

η(x, y, 0) = η0(
1

√

1 + tan2(θ1)
(tan(θ1)x − y + y0 −

L

2
tan(θ1))),

u(x, y, 0) = −
tan(θ1)

√

1 + tan2(θ1)
(η(x, y, 0) −

1

4
η2(x, y, 0)),

v(x, y, 0) =
1

√

1 + tan2(θ1)
(η(x, y, 0)−

1

4
η2(x, y, 0)),

(3.1)

and the wave traveling down and left has the following form

η(x, y, 0) = η0(
1

√

1 + tan2(θ1)
(tan(θ1)x + y − y0 −

L

2
tan(θ1))),

u(x, y, 0) =
tan(θ1)

√

1 + tan2(θ1)
(η(x, y, 0)−

1

4
η2(x, y, 0)),

v(x, y, 0) =
1

√

1 + tan2(θ1)
(η(x, y, 0)−

1

4
η2(x, y, 0)).

(3.2)

It is assumed that the solution is zero at the two ends of the wave tank
and periodic on the sides of the wave tank.

We now study the oblique interaction of solitary waves in detail with
respect to various attack angle θ.

3.1. A = 0.2 and θ = 40o. The first experiment is performed for initial
data with A = 0.2, θ = 40o and y0 = 40. The computational domain
is taken to be [0, 200] × [0, 180] with 512 modes in each direction and
time-step being 0.025. The wave surfaces at t = 0, 40, 80 are plotted in
Figure 4. The wave surface at t = 0 is the initial wave profile, which
consists two solitary waves moving down. The solutions at times t = 40
and t = 80 are chosen, so we can study the interaction regions without
the influence of the boundary. At t = 40 and 80, the solution at the
interaction region, which is our first focus point, consists a four-sided
cell where the stem at the front is bigger but shorter than the stem at
the back. The heights of the front wave are about 0.4305 and 0.4372 for
t = 40 and t = 80 (see the last plot in Figure 4) which are larger than
double of the initial wave amplitude A = 0.2, a property which is often
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associated with nonlinear interactions. The center cell is qualitatively
resembles the solutions observed for KP equation. The size of the

Figure 4. Oblique interaction of two solitary waves
with amplitude A = 0.2 and attack angle θ = 40o.

center cell increased from t = 40 to t = 80 and the height of the front
waves also increased. Once the waves feel the sides of the wave tank,
they will straighten themselves near the sides and at the sides, the wave
at the back is bigger. To observe what happens for large t with the
influence of the side walls, a larger computational domain was taken
to compute the wave profile at t = 180 which is plotted in Figure 5.
The wave height in the middle (the front wave) is .38, smaller than the
corresponding values at t = 40 and t = 80.

To have a clear view of the functions at the sides of the wave tank,
the functions η(0, y, 180) and v(0, y, 180) are also plotted in Figure 5
and they are almost indistinguishable from the plots. The horizontal
velocity u at the sides is small with the maximum being 0.004, which is
what we hoped because its physical implication. In summary, the wave
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Figure 5. Oblique interaction of two solitary waves
with amplitude A = 0.2 and attack angle θ = 400.

profile at t = 180 is strongly two-dimensional and very different from
what we will observe in the next subsection for the case with θ = 10o.

3.2. A = 0.2 and θ = 10o. In this experiment, a much smaller attack
angle θ = 10o is taken with the amplitude A = 0.2 and y0 = 15.
The modes in the pseudo-spectral method are taken to be 512 in both
directions and the time-step size is 0.025. The surface profiles at t =
20, 40, 60 along with their detailed view at x = 100, which is at the
middle of wave tank in x-direction are plotted in Figure 6. At middle
of the tank, instead of a clear four-sided cell, one finds the front wave
and the back wave are almost detached. The height of the front wave
is much bigger than that of the back wave. The highest point of the
front wave is in the middle and moves faster, it will eventually lead the
rest of the wave, and therfore the wave front curves up. The reverse is
true for the wave at the back and the wave is curves down (see Figure
6 for detail). The height of the front wave starts from double of the
initial wave profile which is .4 to higher and then decreases between
t = 20 to t = 60.

Now, with the effect of the boundary, the whole picture of the waves
change. Since the middle of the front wave is bigger than its sides, the
middle moves faster and the whole front wave curves up, see Figure 7
with t = 150 and t = 200. In the mean time, the opposite is true for
the back wave. At t = 200, there is a curved up front wave and also a
curved down back wave. But at the sides, the back wave has a bigger
amplitude than the front wave. So an interaction of the front and back
waves happens during the time t = 200 and t = 240 near the sides.
The separation of the front and back wave is now complete. After that,
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Figure 6. Oblique interaction of two solitary waves
with amplitude A = 0.2 and attack angle θ = 10o.

both waves move move down and straighten themselves. It might still
take some time for them to evolve into two one-dimensional solitary
waves, cf. Figure 7.

3.3. A = 0.2 and θ = 90o. In this case, the center of the interaction
does not form a cell. When a large enough computation domain is
used, the two waves seems to travel without any changes at the center.
In Figure 8, the wave surface profiles at the center with t = 40 is
plotted to show the phenomena. But when the side walls are involved,
the front half of the initial waves is weakened significantly. There is
a big reflection about the side walls and the reflective waves have the
heights almost the same as the initial waves. The wave surface profiles
are plotted in Figure 8. Please note that the two pictures in Figure
8 are from two different computations. For the first one, a very large
computation domain is used and only part of the computational domain
is plotted to show the interaction zone of the solitary waves without
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Figure 7. Wave surface at A = 0.2 and θ = 10o.

the interference of the boundary. For the second one, the whole picture
of the wave profile is presented.

Figure 8. Wave surface at A = 0.2 and θ = 90o.
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3.4. A summary. In general, the oblique interactions of solitary waves
have several properties. For the case with attack angle θ = 90o, the
interaction is very weak and two waves seems to travel independently.
For the case with θ = 40o, a center four-sided cell is formed in the
middle of the interaction. The front stem is bigger and shorter than
the back stem. For the case with θ = 10o, two almost separated wave
are formed. The front one is large and curved up while the back one
is weak and curved down. Other numerical experiments are also con-
ducted. The results show that the transition from one scenario to the
other is gradual.
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