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Abstract
In this paper, two different techniques will be employed to study the cnoidal
wave solutions of the Boussinesq systems. First, the existence of periodic
travelling-wave solutions for a large family of systems is established by using
a topological method. Although this result guarantees the existence of cnoidal
wave solutions in a parameter region in the period and phase speed plane, it
does not provide the uniqueness nor the non-existence of such solutions in other
parameter regions. The explicit solutions are then found by using the Jacobi
elliptic function series. Some of these explicit solutions fall in the parameter
region where the cnoidal wave solutions are proved to exist, and others do not;
so the method with Jacobi elliptic functions provides additional cnoidal wave
solutions. In addition, the explicit solutions can be used in many ways, such as
in testing numerical code and in testing the stability of these waves.

Mathematics Subject Classification: 34L30, 35Q51, 35Q53, 35S15,42A16,
46N20, 65L10, 65T40, 65T50, 76B03, 76B15, 76B25

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In this paper, the existence of periodic travelling-wave solutions to a restricted four-parameter
family of Boussinesq systems

ηt + ux + (ηu)x + auxxx − bηxxt = 0,

ut + ηx + uux + cηxxx − duxxt = 0,
(1.1)

that was put forward by Bona, Chen and Saut (see [4,5]) to approximate the motion of small-
amplitude long waves on the surface of an ideal fluid under the force of gravity and in situations
where the motion is sensibly two-dimensional, will be discussed. The independent variable x is
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proportional to distance in the direction of propagation while t is proportional to elapsed time,
with time scale

√
h0/g, where g is the gravitational force and h0 (scaled to 1) the undisturbed

water depth. The dependent variables η and u have the following physical interpretation. The
quantity η(x, t) is deviation relative to the undisturbed surface, so η(x, t) + h0 corresponds
to the total depth of the liquid at (x, t) while u(x, t) is the horizontal velocity field at the
height θh0, where 0 � θ � 1. From the derivation of (1.1), the parameters a, b, c, d are not
independently specified but must obey the consistency conditions

a + b = 1

2

(
θ2 − 1

3

)
and c + d = 1

2
(1 − θ2) � 0. (1.2)

If a0 connotes a typical wave amplitude and µ a typical wavelength, the condition of ‘small
amplitude and long wavelength’ just mentioned amounts to

α = a0

h0
� 1, β = h2

0

µ2
� 1,

α

β
= a0µ

2

h3
0

≈ 1.

As with one-way models, there are potentially many different but formally equivalent
Boussinesq systems. The plethora of possibilities is owed in the main to the choice of the
dependent variable u at different water depths and to the fact that the lower-order relations
can be used systematically to alter the higher-order terms without disturbing the formal level
of approximation. Systems in (1.1) are first order approximations in α and β to Euler’s
equation, justified rigorously by Bona, Colin and Lannes (cf [6]). We refer the reader to
the papers [4, 5, 12] for a further discussion about the derivation and well-posedness of these
systems.

In this paper, we extend the results obtained in [7] (see also [1,2]) for a single equation to
systems of equations which are suitable for more general physical situations (namely, the waves
are no longer assumed to be uni-directional). It is noted later in remark 3.2 that, even though we
will be able to transform the system of ordinary differential equations in the travelling frame to
a single equation, the technique used in [7] still does not apply. We also employ a completely
different approach, namely the Jacobi elliptic function series, to find explicit solutions. These
two approaches are then compared at the end and they do complement each other.

In this paper, attention will be specially given to the coupled Benjamin, Bona and Mahony
(BBM)-system:

ηt + ux + (ηu)x − 1

6
ηxxt = 0,

ut + ηx + uux − 1

6
uxxt = 0,

(1.3)

which is when a = c = 0 and b = d = 1/6. This system is well-posed and with nice
properties, such as the presence of the operator 1 − 1

6∂2
x , the existence of Hamiltonian and

well-developed numerical schemes (see [3–5]).
The paper is organized as follows. Section 2 recalls definitions that will be used and gives

a brief review of the topological degree theory for positive operators. In section 3, the theory
is first applied to the coupled BBM-system to show the existence of periodic travelling-wave
solutions (η(x, t), u(x, t)) of the form

η(x, t) = η(x − ωt) =
∞∑

n=−∞
ηnei(nπ/l)(x−ωt),

u(x, t) = u(x − ωt) =
∞∑

n=−∞
unei(nπ/l)(x−ωt),

(1.4)
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where l and ω connote the half-period and the phase speed, respectively. It is proved that for any
|ω| > 1 and for any large enough l, there exists an infinitely smooth non-trivial solution in the
form of (1.4). The section ends with general results on systems (1.1) and (1.2), where b, d > 0
and a, c � 0. It is proved that for any |ω|2 > max{1, ac

bd
} or |ω|2 < min{1, − a+c

b+d
, ac

bd
}, and for

any large enough l, there exists an infinitely smooth non-trivial solution in the form of (1.4).
In section 4, attention will be directed to explicit periodic travelling-wave solutions of the

coupled BBM-system. The explicit series solutions in terms of Jacobi elliptic functions are
found for (ω, l(ω)), where ω is in (0, 0.3219) or in ( 5

2 , ∞). The solutions in this form also
exist for other systems in (1.1) and details will appear elsewhere.

2. Preliminaries and notation

In this section, we recall definitions that will be used and give a brief review of the topological
degree theory for positive operators.

For 1 � p < +∞ and � an open set in R, let Lp(�) be the usual Banach space of real or
complex-valued, Lebesgue measurable functions defined on � with the norm

‖f ‖p

Lp(�) =
∫

�

|f |p dx

and L∞(�) be the space of measurable, essentially bounded functions with the norm

‖f ‖L∞ = ess sup
x∈�

|f (x)|.
When it introduces no confusion, Lp(�) is simply written as Lp. Similarly, let C denote the
complex field and lp be the usual Banach space

lp ≡
{

u = {un}∞n=−∞ : un ∈ C,

∞∑
n=−∞

|un|p < ∞
}

with the norm

‖u‖p
p =

∞∑
n=−∞

|un|p,

whereas l∞ is defined as

l∞ ≡
{

u = {un}∞n=−∞ : un ∈ C, sup
−∞<n<∞

|un| < ∞
}

with its usual norm

‖u‖∞ = sup
−∞<n<∞

|un|.
The following elementary facts from analysis are recalled. Any f = {fn}∞n=−∞ ∈ l2 defines

a periodic function f of period 2l, where

f (x) =
∞∑

n=−∞
fnei nπx

l . (2.1)

Vice versa, if f ∈ L2(−l, l), then f can be expanded almost everywhere as a series in the
form (2.1), with fn = 1

2l

∫ l

−l
f (x)e−i(nπx/l) dx. In this sense, one can identify f ∈ L2(−l, l)

with the sequence of its Fourier coefficients f = {fn}∞n=−∞. Moreover, ‖f ‖L2 = (2l)
1
2 ‖f‖2.

For any u and v in l2, the convolution u × v is defined as

u × v = {(u × v)n}∞n=−∞,

where (u × v)n = ∑∞
k=−∞ un−kvk . Since ‖u × v‖∞ � ‖u‖2‖v‖2, it follows that u × v ∈ l∞.
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For the convenience of the reader, a brief review of the topological degree theory for
positive operators on Banach spaces is given here and we refer the reader to the works of
Krasnosel’skii [10, 11], Granas [9] and Benjamin et al [1] for details.

Let X be a Banach space equipped with the norm ‖·‖X. We define a closed subset K ⊂ X

as a cone, if the following conditions are satisfied:

(i) λK ≡ {λf : f ∈ K} ⊂ K for all λ � 0,

(ii) K + K ≡ {f + g : f, g ∈ K} ⊂ K ,
(iii) K ∩ {−K} ≡ K ∩ {−f : f ∈ K} = {0}.
For any 0 < r < R < ∞, denote

Br = {f ∈ X : ‖f ‖X < r}, ∂Br = {f ∈ X : ‖f ‖X = r},
Kr = K ∩ Br, ∂Kr = K ∩ ∂Br

and KR
r = {f ∈ K : r < ‖f ‖X < R}.

An operator A defined on K is said to be positive if AK ⊂ K . A positive operator A is
compact if A(Kr) has a compact closure. Note that the operator A is not necessarily linear. In
fact, for the remaining of our paper A will be nonlinear.

A triple (K, A, U) is called admissible if

(i) K is a convex subset of X,
(ii) U ⊂ K is open in the relative topology on K ,

(iii) A : K → K is continuous and A(U) is a subset of a compact set in K and
(iv) A has no fixed point on ∂U , the boundary of the open set U in the relative topology on K .

Denote the set of all admissible triples by T . Let (K, A, U) ∈ T and A be a constant
mapping on K , namely there is a point a ∈ K such that Au = a for every u ∈ K . The fixed
point index of the positive operator A on U is defined as

i(K, A, U) =
{

1 if a ∈ U,

0 if a /∈ U.

We mention here, among the many properties of i(K, A, U), the three that will be of use in
our current problem.

(a) (Homotopy invariance) If two triples (K, A, U) and (K, B, U) ∈ T and A is homotopic
to B on U , then i(K, A, U) = i(K, B, U).

(b) (Fixed point property) If (K, A, U) ∈ T and i(K, A, U) �= 0, then A has at least one
fixed point in U .

(c) (Additivity) If (K, A, U) ∈ T and U1, U2, . . . , Un is a collection of mutually disjoint
open subsets of U such that Au �= u for all u ∈ U \ ∪n

j=1Uj , then i(K, A, U) =∑n
j=1 i(K, A, Uj ).

The following three lemmas are taken directly from [1] in which K is a cone, the operator A
is positive, continuous and compact on K .

Lemma 2.1. Suppose that 0 < ρ < ∞ and that either

(a) Ax − x /∈ K for all x ∈ ∂Kρ or
(b) tAx �= x for all x ∈ ∂Kρ and all t ∈ [0, 1].

Then i(K, A, Kρ) = 1.
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Lemma 2.2. Suppose that 0 < ρ < ∞ and that either

(ã) x − Ax /∈ K for all x ∈ ∂Kρ or

(b̃) there exists a non-zero x̃ ∈ K such that x − Ax �= λx̃ for all x ∈ ∂Kρ and all λ � 0.

Then i(K, A, Kρ) = 0.

Lemma 2.3. Let (K, A, U) be admissible. If there exists a non-zero x̃ ∈ K such that
x − Ax �= λx̃ for all x ∈ ∂U and all λ � 0, then i(K, A, U) = 0.

The following theorem is an immediate consequence of the first two lemmas.

Theorem 2.4. Suppose that either (a) or (b) holds for an r satisfying 0 < r < ∞ and that
either (ã) or (b̃) holds for an R satisfying r < R < ∞. Then A has at least one fixed point in
KR

r ≡ {f ∈ K, r < ‖f ‖X < R}. Moreover, i(K, A, KR
r ) = −1.

The theory described above will be utilized in section 3 to establish the existence of cnoidal
wave solutions for (1.1) as follows. By substituting (1.4) into systems (1.1) and equating the
Fourier coefficients, one obtains an infinite system which can be posed as a fixed point problem
on a certain cone. Using the theory above, the index of the operator associated with this fixed
point problem is shown to be non-zero (hence, there must exist at least one solution in the
cone). The analysis is complicated a bit by the fact that the trivial (constant) solution lies in the
cone. By choosing the half-period l large enough, however, one can then exclude this trivial
solution.

3. Existence theorem

3.1. The coupled BBM-system

Let η(x, t) = η(x − ωt), u(x, t) = u(x − ωt) be the travelling-wave solution. Substituting it
into (1.3) yields

−ωη′ + u′ + (ηu)′ +
1

6
ωη′′′ = 0,

−ωu′ + η′ +
1

2
(u2)′ +

1

6
ωu′′′ = 0,

(3.1)

where the primes denote the derivatives with respect to the moving frame ξ = x − ωt . By
integrating once and letting the constants of integration be C1 and C2, the system becomes

−ωη + u + ηu +
1

6
ωη′′ = C1,

−ωu + η +
1

2
u2 +

1

6
ωu′′ = C2.

Assuming (f, g) is a constant solution, we see that

−ωf + g + fg − C1 = 0,

−ωg + f +
1

2
g2 − C2 = 0.

Solving f from the second equation and substituting it into the first, one sees that g satisfies
a cubic equation which is for sure to have a real root. Hence there is at least one constant
solution.
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By introducing the new dependent variables η̄ = η − f and ū = u − g, the system in η̄

and ū then reads as

−ωη̄ + ū + (η̄ū) +
1

6
ωη̄′′ + f ū + gη̄ = 0,

−ωū + η̄ +
1

2
ū2 +

1

6
ωū′′ + gū = 0.

(3.2)

For simplicity in notation, we will study the case with f = g = 0, namely the case where
C1 = C2 = 0. The system then becomes

−ωη + u + (ηu) +
1

6
ωη′′ = 0,

−ωu + η +
1

2
u2 +

1

6
ωu′′ = 0.

(3.3)

It will become clear later that the method used in (3.3) can be extended to some other cases
with non-zero C1 and C2.

Remark 3.1. Notice that the result obtained here will only be an existence theory due to several
factors, such as the method of index theory and the integrating constants being taken to be
zero. It is easy to see that there are other solutions. For example, η = c1, u = c2 with c1 and
c2 being any constants are solutions to (3.1), but (3.3) only admits three constant solutions,
namely (0, 0), ((ω2 − 4 ± ω

√
ω2 + 8)/4, (3ω ∓

√
ω2 + 8)/2), for any real ω.

The study of the existence of periodic solutions to (3.3) is carried out as follows.
Substituting (1.4) into (3.3) and equating the Fourier coefficients yield the following infinite
system:

−ωηn + un − ω

6

(
nπ

l

)2

ηn = −(η × u)n,

−ωun + ηn − ω

6

(
nπ

l

)2

un = −1

2
(u × u)n,

(3.4)

where η = {ηn}, u = {un} and −∞ < n < ∞.
The system (3.4) can be put into a more convenient matrix form

Tn

[
ηn

un

]
=


(η × u)n

1

2
(u × u)n


 , (3.5)

where

Tn =




ω

(
1 +

1

6

(
nπ

l

)2)
−1

−1 ω

(
1 +

1

6

(
nπ

l

)2)

 . (3.6)

For the phase speed |ω| > 1, Tn is invertible for all n with

Tn
−1 = 1

ω2

(
1 +

1

6

(
nπ

l

)2)2

− 1




ω

(
1 +

1

6

(
nπ

l

)2)
1

1 ω

(
1 +

1

6

(
nπ

l

)2)

 . (3.7)
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The l∞−norm of T −1
n is defined as

‖T −1
n ‖l∞ = max

1�j�2

2∑
i=1

|T −1
n (i, j)| = 1

ω

(
1 +

1

6

(
nπ

l

)2)
− 1

,

where T −1
n (i, j) is the (i, j)th entry of the matrix T −1

n .
To set up the problem as a fixed point problem, a set K ⊂ l2 × l2 = X is defined by

K = {(η, u) = {(ηn, un)} ∈ X : (ηn, un) = (η−n, u−n),

η0 � η1 � · · · � 0, u0 � u1 � · · · � 0}.
One can easily verify that K is indeed a cone in X equipped with the norm

‖(η, u)‖2
X =

∞∑
n=−∞

(|ηn|2 + |un|2).

An operator A on K is now defined as follows: for any w ≡ (η, u) = {(ηn, un)} ∈ K ,
Aw = {(Aw)n}, where

(Aw)n = Tn
−1


(η × u)n

1

2
(u × u)n


 . (3.8)

Thus (3.5) can be written in the form w = Aw and the fixed points of operator A in the cone
K are solutions of (3.5).

Remark 3.2. Since (3.3) can be transformed into a single equation, by solving for η from the
second equation and substituting it into the first equation, it is natural to wonder if the existing
theorems for the single equation such as the ones in [7] can be applied directly. Unfortunately,
this attempt does not succeed since the nonlinear terms in the resulting equation

ω2u(4) + (u − ω)(12ωu′′ + 18u2 − 36wu) + 6ω(u′)2 − 36u = 0 (3.9)

are not of one sign.

Remark 3.3. The invertibility of T −1
n hinges on the condition that |ω| > 1. Thus the

existence result we are aiming to establish is only for the case when |ω| > 1. Notice that
if (η(x − ωt), u(x − ωt)) is a solution, (η(x + ωt), −u(x + ωt)) is also a solution; thus the
existence of a cnoidal wave solution for ω > 1 will imply the existence of a cnoidal wave
solution for ω < −1. For the rest of the section 3.1, ω > 1 will be assumed.

Lemma 3.4. For ω > 1, A is a continuous, positive and compact operator on the cone K .

Proof. The proof follows the same lines as in [7] and is reproduced here for the reader’s
convenience.

(a) A is a positive operator on K; i.e. A maps K into itself.
For any w = (η, u) ∈ K , let τn ≡ (η × u)n = ∑∞

k=−∞ ηn−kuk . It is easy to verify that
for all n � 0,

τ−n =
∞∑

k=−∞
η−n−kuk =

∞∑
k=−∞

ηn+kuk =
∞∑

k=−∞
ηn−(−k)u−k =

∞∑
m=−∞

ηn−mum = τn
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and

τn − τn+1 =
∞∑

k=−∞
ηn−kuk −

∞∑
k=−∞

ηn+1−kuk =
∞∑

k=0

ηn−kuk +
∞∑

k=0

ηn+k+1uk+1

−
∞∑

k=0

ηn+1+kuk −
∞∑

k=0

ηn−kuk+1 =
∞∑

k=0

(ηn−k − ηn+1+k)(uk − uk+1) � 0.

Therefore, τn is a decreasing function of |n| and

0 � τn � τ0 = (η × u)0 � ‖η‖2‖u‖2 � ‖w‖2
X. (3.10)

Since each entry T −1
n (i, j) of T −1

n is positive and even in n, decreasing with respect to
|n|, the sequence {‖T −1

n ‖l∞} is square-summable, i.e.
∑∞

n=−∞ ‖T −1
n ‖2

l∞ < ∞; it follows
immediately that AK ⊂ K .

(b) A is continuous.
Let w = (η, u) and w̄ = (η̄, ū) be two arbitrary elements in K . For all n, the difference
(Aw)n − (Aw̄)n can be bounded componentwise, namely,

|(η × u)n − (η̄ × ū)n| � ‖u − ū‖2‖η‖2 + ‖ū‖2‖η − η̄‖2,

|(u × u)n − (ū × ū)n| � ‖u − ū‖2(‖ū‖2 + ‖u‖2).

Hence, it follows that

‖Aw − Aw̄‖2
X � 2γ 2[‖u − ū‖2(‖η‖2 + ‖ū‖2 + ‖u‖2) + ‖ū‖2‖η − η̄‖2]2

� 2γ 2(‖η‖2 + ‖u‖2 + ‖η̄‖2 + ‖ū‖2)
2(‖η − η̄‖2 + ‖u − ū‖2)

2

� 4γ 2(‖η‖2 + ‖u‖2 + ‖η̄‖2 + ‖ū‖2)
2‖w − w̄‖2

X � γ 2D2‖w − w̄‖2
X,

where

γ =
[ ∞∑

n=−∞
‖T −1

n ‖2
l∞

] 1
2

=




∞∑
n=−∞


 1

ω

(
1 +

1

6

(
nπ

l

)2)
− 1




2 


1
2

(3.11)

and D = 2(‖η‖2+‖u‖2+‖η̄‖2+‖ū‖2). The operator A is now readily seen to be continuous
from K into itself.

(c) A is compact.
Consider a bounded set M in X, say M ⊂ {w = (η, u) ∈ X : ‖w‖X � B}. For each N , a
cut-off operator AN is defined as follows:

(ANw)n =
{

(Aw)n, for −N � n � N,

0, otherwise.
(3.12)

Then AN is a compact operator having a rank of (2N + 1) as A is continuous. Now, for
w ∈ M ,

|(Aw)n| � ‖T −1
n ‖l∞


‖η‖2‖u‖2 +

1

2
‖u‖2

2

‖η‖2‖u‖2 +
1

2
‖u‖2

2


 . (3.13)

Thus,

‖ANw − Aw‖2
X � 4B4γ 2

N � 4B4γ 2,
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where γN =
[ ∑

|n|�N

‖T −1
n ‖2

l∞

] 1
2

. Consequently, sup
w∈M

‖ANw − Aw‖2
X → 0 as N → ∞.

Thus A is compact as it is the uniform limit of compact operators on bounded sets.

�
Attention is now turned to the fixed points of A. A fixed point (p, q) = {(pn, qn)} is said

to be trivial if pn = qn = 0 for all n �= 0. It is fairly straightforward to check that for a
trivial fixed point of (3.5), p0 = 0 if and only if q0 = 0. A trivial solution with p0 = q0 = 0
corresponds to the origin while p0, q0 �= 0 corresponds to a non-zero constant solution.

Remark 3.5. As mentioned in remark 3.1 the operator A has three trivial fixed points, but only
two of them are in K . They are the origin and the constant travelling-wave solution (p∗, q∗),
where

p∗ = (· · · , 0, p0, 0, · · ·) and q∗ = (· · · , 0, q0, 0, · · ·)
with

p0 = 1

4
(ω2 − 4 + ω

√
ω2 + 8) and q0 = 3ω −

√
ω2 + 8

2
.

The other does not belong to K as 1
4 (ω2 − 4 − ω

√
ω2 + 8) < 0.

Proposition 3.6. Let γ be as defined in (3.11). Then for any r satisfying

0 < r < r0 ≡ min

{
1

2γ
, ‖(p∗, q∗)‖X

}
, (3.14)

w �= tAw for all w ∈ ∂Kr and for all t ∈ [0, 1].

Proof. Suppose there exist a w ∈ ∂Kr and a t ∈ [0, 1] such that w = tAw. Then using (3.13)
on all (Aw)n yields

‖w‖2
X = r2 = t

∞∑
n=−∞

((Aw)n)
2 � 4r4γ 2, (3.15)

which implies that r � 1
2γ

, a contradiction. �

Proposition 3.7. For any

R > R0 ≡ max
{2(ω2 − 1)

ω
(γ (ω2 − 1) +

√
3), ‖(p∗, q∗)‖X

}
, (3.16)

there exists a non-zero w̃ ∈ K such that w − Aw �= λw̃, for all w ∈ ∂KR and all λ � 0.

Proof. Following the same idea as in [7], let w̃ = {(η̃, ũ)n} be given by

[
η̃n

ũn

]
= 1

1 + n2

[
1
1

]
.

Clearly w̃ �= 0 and w̃ ∈ K . Again, suppose to the contrary that there exist a w = (η, u) ∈ ∂KR

and a λ � 0 such that for all n,

[
ηn

un

]
= 1

ω2

(
1 +

1

6

(
nπ

l

)2)2

− 1




ω

(
1 +

1

6

(
nπ

l

)2)
(η × u)n +

1

2
(u × u)n

ω

2

(
1 +

1

6

(
nπ

l

)2)
(u × u)n + (η × u)n


 + λw̃.

(3.17)
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In particular,

η0 = 1

ω2 − 1

(
ω

∞∑
k=−∞

ηkuk +
1

2
‖u‖2

2

)
+ λ,

u0 = 1

ω2 − 1

( ∞∑
k=−∞

ηkuk +
ω

2
‖u‖2

2

)
+ λ.

(3.18)

Since w = 0 /∈ ∂KR , and that η0 = 0 if and only if u0 = 0, η0 �= 0 and u0 �= 0. Consequently,

we obtain from (3.18) the bounds 0 < η0 � ω2 − 1, 0 < u0 � ω2 − 1

ω
, 0 � λ � ω2 − 1

ω
and

∞∑
k=−∞

ηkuk +
1

2
‖u‖2

2 � (ω2 − 1)2

ω
. (3.19)

One can see from (3.17) and from the fact that τn is decreasing in |n| that

ηn � ‖T −1
n ‖l∞

( ∞∑
k=−∞

ηkuk +
1

2
‖u‖2

2

)
+

λ

1 + n2
,

un � ‖T −1
n ‖l∞

( ∞∑
k=−∞

ηkuk +
1

2
‖u‖2

2

)
+

λ

1 + n2
.

Therefore,

R2 =
∞∑

n=−∞
η2

n + u2
n � 2

∞∑
n=−∞

{
‖T −1

n ‖l∞

( ∞∑
k=−∞

ηkuk +
1

2
‖u‖2

2

)
+

λ

1 + n2

}2

� 4
∞∑

n=−∞
‖T −1

n ‖2
l∞

( ∞∑
k=−∞

ηkuk +
1

2
‖u‖2

2

)2

+ 4
∞∑

n=−∞

λ2

(1 + n2)2
.

Hence, from (3.11), (3.19) and using the fact that
∑∞

n=−∞
1

(1+n2)2 � 3, the conclusion

R � 2(ω2 − 1)

ω
(γ (ω2 − 1) +

√
3) (3.20)

is drawn, which contradicts the assumption on R. �

Theorem 3.8. Let r and R be as above. Then the fixed point index of A on KR
r = {w ∈ K :

r < ‖w‖X < R} is i(K, A, KR
r ) = −1.

Proof. This follows immediately from theorem 2.4 and propositions 3.6 and 3.7. �

An immediate consequence of theorem 3.8 is that there must be at least one fixed point
of A in KR

r . However, the analysis is not yet complete since the constant periodic solution
(p∗, q∗) ∈ KR

r could be the only fixed point in KR
r . This case is excluded through the following.

Let ε = ε(l) > 0 be an arbitrarily fixed, sufficiently small number whose value will be
determined later. Let

Kε(p∗, q∗) = {w = (η, u) ∈ K : ‖(η, u) − (p∗, q∗)‖X < ε}
and

∂Kε(p∗, q∗) = {w = (η, u) ∈ K : ‖(η, u) − (p∗, q∗)‖X = ε}.
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Lemma 3.9. If (p∗, q∗) is the only fixed point of A in KR
r , then when the half-period l > 0 is

chosen large enough, i(K, A, Kε(p∗, q∗)) = 0.

Proof. The ε will be chosen small enough so K̄ε is in KR
r . Therefore, the lemma is proved,

owing to lemma 2.3, if one can show that (I − A)∂Kε(p∗, q∗) omits the ray {λw̃ : λ � 0},
where w̃ ∈ K is defined as in proposition 3.7.

Now suppose that there are a w = (η, u) ∈ ∂Kε(p∗, q∗) and a λ � 0 such that
w − Aw = λw̃. Then for all n ∈ Z,

[
ηn

un

]
= 1

ω2

(
1 +

1

6

(
nπ

l

)2)2

− 1




ω

(
1 +

1

6

(
nπ

l

)2)
(η × u)n +

1

2
(u × u)n

ω

2

(
1 +

1

6

(
nπ

l

)2)
(u × u)n + (η × u)n


 + λw̃.

(3.21)

In particular, for n = 1,

η1 � A(η0u1 + η1u0) + Bu0u1 + λ/2,

u1 � Au0u1 + B(η0u1 + η1u0) + λ/2,
(3.22)

where

A =
ω

(
1 +

1

6

(
π

l

)2)

ω2

(
1 +

1

6

(
π

l

)2)2

− 1

and B = 1

ω2

(
1 +

1

6

(
π

l

)2)2

− 1

.

Thus

η1 + u1 � u0(A + B)(η1 + u1) + (A + B)η0u1 + λ. (3.23)

Since w ∈ ∂Kε(p∗, q∗), it can be written as w = (η, u) = (p∗, q∗) + ε(η̃, ũ), where
‖(η̃, ũ)‖X = 1. Note that for n � 1{

η̃n = ηn/ε � 0,

ũn = un/ε � 0,
and

{
η̃n � η̃n+1,

ũn � ũn+1.

In terms of the new variables (η̃, ũ), (3.23) can be written as

ε(η̃1 + ũ1) � ε

ω +
ω

6

(
π

l

)2

− 1

(q0 + εũ0)(η̃1 + ũ1) +
εũ1(p0 + εη̃0)

ω +
ω

6

(
π

l

)2

− 1

+ λ. (3.24)

The half-period l can be chosen large enough so that

q0 = 3ω −
√

ω2 + 8

2
> ω +

ω

6

(
π

l

)2

− 1. (3.25)

The explicit condition for l is

l2 > L2
0 ≡ π2ω(ω + 2 +

√
ω2 + 8)

12(ω − 1)
. (3.26)

Notice that p0 � q0, so

p0 > ω +
ω

6

(
π

l

)2

− 1. (3.27)
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The number ε can then be chosen small enough to satisfy

q0 + εũ0 > ω +
ω

6

(
π

l

)2

− 1 and p0 + εη̃0 > ω +
ω

6

(
π

l

)2

− 1.

It follows immediately from (3.24) that λ = 0 and η̃1 = ũ1 = 0, which imply that η̃n = ũn = 0
for all n �= 0. Using (3.21) for n = 0 yields that η̃0 = ũ0 = 0. This contradicts the assumption
that w = (η, u) ∈ ∂Kε(p, q). �

Theorem 3.10. For w > 1, if the half-period l is chosen large enough as in (3.26), then the
operator A has a non-trivial fixed point w̄ = (η̄, ū) in the cone segment KR

r . Moreover,

(i) η̄n, ūn > 0 for every n ∈ Z and
(ii) for any σ � 0, the sequences {|n|σ η̄n} and {|n|σ ūn} are in l1. Therefore, the non-trivial

fixed point solution is infinitely smooth.

Proof. The existence of a non-trivial fixed point is the consequence of theorem 3.8 and
lemma 3.9. It is left to establish (i) and (ii).

Let n = N be the smallest non-negative integer such that either η̄N or ūN is zero. Notice
that N > 1 since the solution is non-trivial and η1 = 0 if and only if u1 = 0, which will lead
to the trivial solution. Recall that as a fixed point of A, w̄ = (η̄, ū) ∈ l2 × l2 = X is given by

[
η̄n

ūn

]
= 1

ω2

(
1 +

1

6

(
nπ

l

)2)2

− 1




ω

(
1 +

1

6

(
nπ

l

)2)
(η̄ × ū)n +

1

2
(ū × ū)n

ω

2

(
1 +

1

6

(
nπ

l

)2)
(ū × ū)n + (η̄ × ū)n


 . (3.28)

If η̄N = 0, it follows from (3.28) and from both η̄k and ūk > 0 for every k ∈ [−N + 1, N − 1]
that

0 = ω

(
1 +

1

6

(
Nπ

l

)2)
(η̄ × ū)N +

1

2
(ū × ū)N

� ω

(
1 +

1

6

(
Nπ

l

)2)
η̄N−1ū1 +

1

2
ūN−1ū1 > 0

which is certainly not true. The case ūN = 0 can be handled similarly. Thus η̄n, ūn > 0 for
every n ∈ Z and (i) is proved.

Since (η̄ × ū)n � ‖η̄‖2‖ū‖2 < ∞ and (ū × ū)n � ‖ū‖2
2 < ∞, it follows that for |n| � 1,

there exists a constant C0 independent of n satisfying

η̄n � C‖T −1
n ‖l∞ � C0

n2
and ūn � C‖T −1

n ‖l∞ � C0

n2
. (3.29)

Therefore, {η̄n} and {ūn} are in l1.
The continuous bootstrapping argument can now be utilized to show that for any σ � 0,

the sequences {|n|σ η̄n} and {|n|σ ūn} are in l1. The arguments start with noting from (3.29) that
for |n| � 1,

|n|η̄n � C0

|n| , |n|ūn � C0

|n|
and

∞∑
n=−∞

(1 + |n|)2η̄2
n � C,

∞∑
n=−∞

(1 + |n|)2ū2
n � C. (3.30)
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Therefore

(η̄ × ū)n =
∞∑

k=−∞
η̄n−kūk =

∞∑
k=−∞

(1 + |n − k|)η̄n−k(1 + |k|)ūk

(1 + |n − k|)(1 + |k|)

� 1

1 + |n|
∞∑

k=−∞
(1 + |n − k|)η̄n−k(1 + |k|)ūk � C

1 + |n| .

Similarly,

(ū × ū)n =
∞∑

k=−∞
ūn−kūk � C

1 + |n| .

It now follows that for |n| � 1,

η̄n � ‖T −1
n ‖l∞

(
(η̄ × ū)n +

1

2
(ū × ū)n

)
� C1

|n|3 ,

ūn � ‖T −1
n ‖l∞

(
(η̄ × ū)n +

1

2
(ū × ū)n

)
� C1

|n|3 .

Therefore the sequences {|n|η̄n} and {|n|ūn} are in l1.
Similarly, one can show that for any σ � 2 and for |n| � 1,

|n|σ η̄n � C

|n| , |n|σ ūn � C

|n| ,
∞∑

n=−∞
(1 + n2)σ η̄2

n � C,

∞∑
n=−∞

(1 + n2)σ ū2
n � C

(3.31)

and hence

η̄n � Cσ

|n|σ+2
and ūn � Cσ

|n|σ+2
(3.32)

which leads to the conclusion that the sequences {|n|σ η̄n} and {|n|σ ūn} are in l1. �

The results are now summarized in the following theorem.

Theorem 3.11. For any phase speed |ω| > 1 and for any l > L0 where L0 is defined in (3.26),
there exists an infinitely smooth non-trivial cnoidal wave solution with period 2l in the form of

η(x, t) = η(x − ωt) =
∞∑

n=−∞
ηnei(nπ/l)(x−ωt),

u(x, t) = u(x − ωt) =
∞∑

n=−∞
unei(nπ/l)(x−ωt).

Moreover, the norm of the solution satisfies

(2l)
1
2 r0 < ||(η, u)||L2×L2 < (2l)

1
2 R0,

where r0 and R0 are functions of ω and l defined in (3.14) and (3.16).
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3.2. The general case

Attention is now turned to the general four-parameter family of Boussinesq systems (1.1) and
(1.2). Upon substituting the form of the solution (1.4) into (1.1) and carrying out similar
calculations, the following infinite system is obtained:

Dn

[
ηn

un

]
=

[
(η × u)n
1
2 (u × u)n

]
, (3.33)

where

Dn =




ω

(
1 + b

(
nπ

l

)2) (
a

(
nπ

l

)2

− 1

)
(

c

(
nπ

l

)2

− 1

)
ω

(
1 + d

(
nπ

l

)2)

 .

To use the same argument as for the coupled BBM-system, the matrix

D−1
n = 1

det(Dn)




ω

(
1 + d

(
nπ

l

)2) (
1 − a

(
nπ

l

)2)
(

1 − c

(
nπ

l

)2)
ω

(
1 + b

(
nπ

l

)2)

 ,

where

det(Dn) = ω2 − 1 +

(
nπ

l

)2

(ω2(b + d) + (a + c)) +

(
nπ

l

)4

(ω2bd − ac)

is required to have positive and even entries for all n and each entry is to be square-
summable and decreasing with respect to |n|. Therefore ω has two admissible regions, namely
|ω|2 > max{1, ac

bd
} and |ω|2 < min{1, − a+c

b+d
, ac

bd
}. When a or c is zero, which includes the

case of the coupled BBM-system, the two regions degenerate to one which is |ω| > 1.
An operator B is now defined as follows: for any w = {(η, u)n} ∈ X, Bw = {(Bw)n},

where

(Bw)n = D−1
n


(η × u)n

1

2
(u × u)n


 .

System (3.33) can be written in the form w = Bw and the fixed points of operator B are
solutions of (3.33). Hence, one arrives at the following conclusions.

Theorem 3.12. For a Boussinesq system with b, d > 0, a, c � 0 which satisfy the consistency

condition (1.2) and for any phase speed |ω|2 > max
{

1,
ac

bd

}
and for l > L0, where L0

depends on ω and the dispersive constants a, b, c, d, there exists an infinitely smooth non-
trivial cnoidal wave solution with period 2l in the form of

η(x, t) = η(x − ωt) =
∞∑

n=−∞
ηnei(nπ/l)(x−ωt),

u(x, t) = u(x − ωt) =
∞∑

n=−∞
unei(nπ/l)(x−ωt).

By introducing the new variables (η̄, ū) = (−η, −u) and applying the same arguments
for small phase velocity, namely for |ω|2 < min{1, −(a + c)/(b + d), ac/(bd)}, the following
existence theorem is a straightforward consequence.
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Theorem 3.13. For a Boussinesq system with b, d > 0, a, c � 0 which satisfy the consistency

condition (1.2) and for any phase speed |ω|2 < min
{

1, − a + c

b + d
,
ac

bd

}
and for l > L0, where

L0 depends on ω and the dispersive constants a, b, c, d, there exists an infinitely smooth
non-trivial cnoidal wave solution with period 2l in the form of

η(x, t) = η(x − ωt) =
∞∑

n=−∞
ηnei(nπ/l)(x−ωt),

u(x, t) = u(x − ωt) =
∞∑

n=−∞
unei(nπ/l)(x−ωt).

4. Explicit cnoidal wave solutions

In this section, the explicit cnoidal wave solutions of the coupled BBM-system are found by
using the Jacobi elliptic function series on (3.9). The solutions in this form also exist for other
systems in (1.1) and details will appear elsewhere. For completeness, the definition of the
Jacobi elliptic functions is recalled here.

Let

v =
∫ φ

0

1√
1 − m2 sin2 t

dt for 0 � m � 1,

which is denoted as v = F(φ, m). Then φ = F−1(v, m). The two basic Jacobi elliptic
functions cn(v, m) and sn(v, m) are defined as

sn(v, m) = sin(φ) = sin(F−1(v, m)) and cn(v, m) = cos(φ) = cos(F−1(v, m)),

where m is known as the elliptic modulus. It is easy to see that cn(v, m) and sn(v, m) are
periodic functions in v with period

4
∫ π/2

0

1√
1 − m2 sin2 t

dt.

Moreover, these functions are generalizations of the trigonometric and hyperbolic functions
which satisfy

sn(v, 0) = sin(v), cn(v, 0) = cos(v),

cn(v, 1) = sech(v), sn(v, 1) = tanh(v).

To search for explicit solutions of (3.3), a function u in the form of the Jacobi elliptic
function series satisfying (3.9) is sought. The deviation η can then be evaluated from the
second equation in (3.3).

Let

u(ξ) =
M∑

j=0

aj cnj (λξ, m)

and substitute it into (3.9). Using the basic facts, such as

cn′(v, m) = −sn(v, m)
√

1 − m + m cn2(v, m) and

cn2(v, m) + sn(v, m)2 = 1,
(4.1)

an equation in terms of cn is obtained. By balancing the terms in the highest order, it yields
M = 2. Assuming, for simplicity, that u is an even solution, it then takes the form

u(ξ) = a0 + a2cn2(λξ, m). (4.2)
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The corresponding half-period l of u can therefore be computed using an elliptic integral

l = 1

λ

∫ π
2

0

1√
1 − m2 sin2 t

dt, (4.3)

by noting that in (4.2) there are no odd power terms of cn, so the fundamental period is half of
that for cn(λξ, m).

Substituting (4.2) into (3.9) and also using

(cn2)′′(v, m) = 2 − 2m + 4(2m2 − 1)cn2(v, m) − 6m2cn4(v, m),

one obtains an equation in the form of

c0 + c2cn(λξ, m)2 + c4cn(λξ, m)4 + c6cn(λξ, m)6 = 0,

where ci are functions of a0, a2, ω, λ and m. By requiring all the coefficients ci = 0, i = 0, 2, 4
and 6, one arrives at a nonlinear algebraic system in a0, a2, ω, λ and m. With the help of the
software Maple, a set of non-trivial solutions is found where

a0 = 1

9
ω(9 − 20m2λ2 + 10λ2), a2 = 10

3
ωλ2m2,

with λ being a root of

F(m2, λ2) ≡ 160(m2 − 2)(2m2 − 1)(m2 + 1)λ6 + 1188(m4 − m2 + 1)λ4 − 729 = 0 (4.4)

and ω2 satisfying

135(m2 − 2)(2m2 − 1)(m2 + 1)ω2 = −G1(m
2, λ2),

where

G1(m
2, λ2) = 270(m2 − 2)(2m2 − 1)(m2 + 1) + 3267λ2(m4 − m2 + 1)2

+440λ4(m2 − 2)(2m2 − 1)(m2 + 1)(m4 − m2 + 1). (4.5)

Therefore, for a fixed m ∈ [0, 1] and m2 �= 1
2 , the cnoidal wave solutions exist if there are

real positive solutions λ2 to F(m2, λ2) = 0 which satisfy

ω2(m2, λ2) = − G1(m
2, λ2)

135(m2 − 2)(2m2 − 1)(m2 + 1)
� 0. (4.6)

It is worth noting that without loss of generality, only the positive solutions of λ and ω need to
be considered because λ and −λ offer the same solution and ω and −ω offer a pair of solutions,
one is right propagating and the other is left propagating.

In figure 1, the curves where F(m2, λ2) = 0 are plotted and the regions are separated by
the signs of ω2(m2, λ2) which is calculated from (4.6). It is shown that for each fixed m2 > 1

2 ,
there are two positive λ2 satisfying F(m2, λ2) = 0. By denoting the two solutions of F = 0 as
λ2

1(m
2) and λ2

2(m
2) with |λ1| � |λ2|, it is clear that λ2

1 is in the ω2-positive region. This is also
the case for λ2

2 with 0.501 � m2 � 1. Figure 1(b) zooms in a region near the curve λ2
2(m

2) to
show this fact. For m2 in (0.5, 0.501), the loss of significant digits occurs in the computation.
Specifically, when m2 = 0.501, λ2

2 ≈ 1.24 × 103 and ω2 ≈ 8.82 × 10−7. The situation is
more severe as m2 → 1

2
+

with the resulting λ2
2 → ∞ and ω2 very close to 0. The sign of ω2,

which dictates the existence of the second branch of cnoidal wave solutions, is hard to identify.
It is worth noting that we are not particularly interested in this region since as λ2

2 → ∞ and
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Figure 1. (a) The location F(m2, λ2) = 0 and the region where ω2(m2, λ2) � 0 are indicated;
(b) same as (a) with a zoom in the boxed region.
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Figure 2. (a) Location where the cnoidal wave solutions exist: at any point above the solid line
(existence theory) and at any point on dashed lines (explicit formula); (b) same as (a) with a zoom
near the origin.

m2 → 1
2

+
, the corresponding half-period l, according to (4.3), is approaching zero. Therefore,

the wave length is small which is outside the validity region of the Boussinesq systems.
The corresponding half-period l and the phase velocity ω for the solutions corresponding

to branches λ1 and λ2 are plotted in figure 2(a). The branch corresponding to λ1 has phase
velocity from 5

2 to ∞, as m2 varies from 1 to 1
2 , with the corresponding half-period from

+∞ to around 1.95. As m2 → 1
2

+
which corresponds to the right ‘endpoint’, λ2

1 →
√

9
11 and

ω2 → ∞. When m2 = 1 which corresponds to the left ‘endpoint’, one recovers the known
solitary wave solution

u(ξ) = ±15

2
sech2

(
3√
10

ξ

)
,

η(ξ) = 15

4

(
2sech2

(
3√
10

ξ

)
− 3sech4

(
3√
10

ξ

))
,

(4.7)
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Figure 3. Examples of solutions.

with ω = 5
2 , found in [3, 8]. This calculation provides an explicit and concrete proof that the

solitary wave (4.7) is a limit of cnoidal wave solutions as l approaches infinity, a fact which
may not be easy to prove otherwise. It is expected that this is also the case for other branches
of cnoidal wave solutions. The branch corresponding to λ2 are cnoidal wave solutions with
the phase velocity between 0 and c0 = (− 49

8 + 33
40

√
57)

1
2 ≈ 0.3219. It is worth noting that

these solutions are not in the parameter range where the index theory in section 3 is applicable.
As m2 → 1

2
+
, the phase velocity and half-period appear to approach zero and the detail around

that point is shown in figure 2(b). At m2 = 1, this is again a solitary wave solution found in [8].
Figure 2(a) also shows the region, which is above the solid curve, where for any point

in the region, namely for a specified half-fundamental-period l and a phase speed ω, there
is a cnoidal wave solution corresponding to that point (the result of section 3). The dashed
lines indicate the parameters where the explicit solutions exist. The solutions corresponding
to the part of branch λ1 located below the solid curve and the ones corresponding to branch
λ2 are not covered by theorem 3.11 in section 3 (which is non-constructive). Therefore it
demonstrates that the condition (3.26) for existence of the cnoidal wave solution is sufficient,
but not necessary. In figure 3, two pairs of explicit solutions, one with ω = 0.32 and another
with ω = 7.2, are plotted. The solid lines are for η(x, t) = η(ξ) and the dashed lines are for
u(x, t) = u(ξ). It is noted that these solutions are not in the regime covered by theorem 3.11
according to figure 2(a).

The above results are summarized in the following theorem.

Theorem 4.1. For any fixed m with 1
2 < m2 � 1, there are two positive roots, denoted by λ2

1
and λ2

2 with |λ1| � |λ2|, of F(m2, λ2) = 0, where F is defined in (4.4). Denoting ξ = x − ωt ,
the corresponding cnoidal wave solutions in the form of

u(x, t) = u(ξ) = a0 + a2cn2(λξ, m) (4.8)

exist for λ = λ1(m) with 1
2 < m2 � 1 and for λ = λ2(m) with 0.501 � m2 � 1. The phase

speed ω is defined by (4.5) and (4.6) and

a0 = 1

9
ω(9 + 10m2λ2 + 10λ2), a2 = −10

3
ωλ2m2.

Moreover, the solution η(x, t) has the form

η(x, t) = ωu − 1

2
u2 − ω

6
λ2u′

ξξ = b0 + b2cn
2(λξ, m) + b4cn

4(λξ, m),
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where

b0 = 1

2
ω2 − 10

81
ω2λ4(11m4 − 11m2 + 5), b2 = 40

27
ω2λ4m2(2m2 − 1),

b4 = −20

9
ω2λ4m4.

In summary, for the coupled BBM-system, we proved the existence of cnoidal waves
in a 2D region on the l–ω plane, where l is the half-period and ω the phase speed, by a
topological method and find explicit cnoidal wave solutions for l = l(ω) which is determined
by (4.3)–(4.6). The region and the function l = l(ω) are shown in figure 2(a). For Boussinesq
systems with b, d > 0 and a, c � 0 which satisfy (1.2), we proved, using a topological method,
the existence of cnoidal waves in two regions, which degenerate to one when a or c is 0, on
the l − ω plane.
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