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Abstract. In this article, we investigate a water wave model with a
nonlocal viscous term

ut + ux + βuxxx +

√
ν√
π

∫ t

0

ut(s)√
t− s

ds+ uux = νuxx.

The wellposedness of the equation and the decay rate of solutions are
investigated theoretically and numerically.

1. Introduction

1.1. Dias-Dutykh models. Modeling the effect of viscosity with asymp-
totic models for water waves is a challenging issue. In the recent work [5], D.
Dutykh and F. Dias have introduced a system which models water waves in
a fluid layer of finite depth under the influence of viscous effects. The model
is a generalization of the ones introduced by P. Liu and A. Orfila [8] and J.
Bona, M. Chen and J-C. Saut [3]: it contains the same nonlocal viscosity
term as in [8] and it has the flexibility of taking the horizontal velocity at
various water levels as in [3]. The derivation holds in the linear 3D case.
One of the corresponding two-dimensional nonlinear systems reads

ηt + ux + (ηu)x +
1
3
uxxx = 2νηxx +

√
ν√
π

∫ t

0

ux(s)√
t− s

ds,

ut + ηx + uux = 2νuxx.
(1.1)

Here η is the deviation of the free surface of the wave from its equilibrium
state, u is the horizontal velocity and ν is the damping parameter.

The linear analysis of the nonlocal term shows that it has both dispersive
and dissipative effects (see the discussion in the next section). This phenom-
enon has been first observed by T. Kakutani and K. Matsuuchi [7], whose
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model involves a nonlocal term in space and is equivalent to the model (1.1)
for long waves (that is, the two models share the same dispersion relation for
long waves). The Kakutani-Matsuuchi model itself is similar to the famous
Ott-Sudan model [10], supplemented by a nonlocal dispersive term. In the
present article, we restrict the analysis of (1.1) to one-way waves. With
the usual one-way wave reduction (see e.g. [3] and [4] for details), namely
setting ut + ηx = 0 as a first order approximation of the system (1.1), one
obtains the following dispersive dissipative equation

(1.2) ηt + ηx +
1
6
ηxxx +

√
ν√
π

∫ t

0

ηt(s)√
t− s

ds+
3
2
ηηx = 2νηxx.

For the sake of convenience, we set u = η in the remaining of the article.
Our aim is to analyze the decay rate of solutions u(t, x) to

(1.3) ut + ux + uxxx +
√
ν√
π

∫ t

0

ut(s)√
t− s

ds+ uux = νuxx.

as t → +∞. Since the result will not depend on the numerical constants
appearing in (1.2), they are normalized in (1.3). Before going any further,
we note that in [4], the author investigates numerically the decay rate in
L∞ norm- of an approximation of a solitary wave for an analog of equation
(1.3) that reads

(1.4) ut + ux + uxxx −
√
ν√
π

∫ t

0

ux(s)√
t− s

ds+ uux = νuxx.

He obtains numerical evidence of linear decay, but the result is only an
“impression”, according to the author, since the solution was computed
only for a very short time. We have not investigated equation (1.4), but we
will prove rigorously the decay rate for (1.3) with β = 0 which is formally
equivalent to (1.4) and investigate numerically the decay rates for other
cases.

In order to understand the terms in (1.3), we will also investigate several
simplified models which include the models with only nonlocal dissipative
term (without νuxx term)

(1.5) ut + ux + uxxx +
√
ν√
π

∫ t

0

ut(s)√
t− s

ds+ uux = 0,

its equivalent BBM form

(1.6) ut + ux − utxx +
√
ν√
π

∫ t

0

ut(s)√
t− s

ds+ uux = 0,

and the viscous dominant equation (without uxxx term)

(1.7) ut + ux +
√
ν√
π

∫ t

0

ut(s)√
t− s

ds+ uux = νuxx.

Each equation is indeed a valid approximation of (1.3) in a certain parameter
regime and can be justified from the point of dispersion analysis as presented
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in the next section. Our investigation will be centered on the nonlocal term,
which was derived earlier and believed to be more realistic, but fewer results
are available due in part to the nonlocal complexity.

1.2. Dispersion analysis. In this section, we discuss the dispersion/dissipation
relation for the linearized asymptotic models. Because we have to deal with
a nonlocal term, the Laplace-Fourier analysis is more convenient to use. This
analysis shows that the nonlocal term in (1.3) is both dispersive and dissi-
pative. Moreover, the dissipation from the nonlocal term is approximately
half-derivative, namely behaving like

√
|k| in Fourier space.

To begin, we start with the KdV-Burgers equation

(1.8) ut + ux + uxxx = νuxx.

By substituting the plane wave ansatz u(t, x) = v(t)eikx with v(0) = 0 into
the equation, we find

vt + (i(k − k3) + νk2)v = 0.

We now perform the Laplace transform in time

ṽ(τ) = L(v)(τ) =
∫ ∞

0
v(t)e−tτdt.

We seek for a plane wave ansatz v(t) that has decay O(e−at) for some a ≥ 0
at t = +∞, then the Laplace transform is defined for a + τ ≥ 0. This
provides us with the relation τ + i(k − k3) + νk2 = 0. The real part of τ
gives the dissipation rate −νk2 while the imaginary part gives the dispersion
relation ω = −=τ = k − k3.

We now turn to the linear version of (1.3), namely

(1.9) ut + ux + uxxx +
√
ν√
π

∫ t

0

ut(s)√
t− s

ds = νuxx.

Plugging the plane-wave ansatz in, we obtain

vt + i(k − k3)v +
√
ν√
π

∫ t

0

vt(s)√
t− s

ds+ νk2v = 0.

Assume v|t=0 = 0 and apply the Laplace transform in time yield

τ ṽ + i(k − k3)ṽ +
√
ντ ṽ + νk2ṽ = 0.

Using the change of unknown τ = z2 the relation between τ and k reads

(1.10) z2 +
√
νz + i(k − k3) + νk2 = 0.

The above equation has two solutions given by

2z = −
√
ν ±

√
ν − 4ik + 4ik3 − 4νk2.

Therefore,

−z2 = −τ = −ν
2
± 1

2
√
ν
√
ν − 4ik + 4ik3 − 4νk2 + i(k − k3) + νk2.
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The leading order approximation is the linear wave equation, namely τ+ik =
0. So, by restricting to the regime ν << k << 1, we see that√

ν − 4ik + 4ik3 − 4νk2 =
√
−4ik

√
1 + o(1) = 2e−isgnk π

4

√
|k|+ o(|k|

1
2 ).

Therefore

−z2 = −τ = −ν
2
± e−isgnk π

4

√
ν|k|+ i(k − k3) + o(

√
ν|k|).

We have

(1.11) −τ± = i(k − k3 ∓ sgnk

√
ν|k|√
2

)±
√
ν|k|√
2

+ o(
√
ν|k|).

We first note only one of the above two modes is stable, namely the τ+.
The −=τ has two nonlinear parts: −k3, the geometric dispersion coming

from the term uxxx and −sgnk
√
ν|k|√
2

, the dispersion due the nonlocal viscous
effect. The integral term also provides diffusion which is half derivative with
symbol

√
|k| in Fourier space !

Therefore, in the case of ν << k << 1, the local dissipation term is of
smaller order than the non-local dissipative term. By neglecting the lower
order term, one obtains the equation (1.5) or (1.6), with dispersion relation
(1.11) in the leading orders. Furthermore, when the geometric dispersion is
stronger than the viscous dispersion, and when we neglect the dissipation,
then we are back to some KdV-type equation. When there is a balance
between these two terms, namely ν ∼ 2k5, we have (1.5) or (1.6). Finally,
when the viscous dispersion is stronger, we can neglect uxxx in the equation.

Remark 1.1. The above result is qualitatively exactly equivalent to those of
Kakutani and Maatsuchi [7] and Liu and Orfila [8].

It is worth to note that the first order approximation to equation (1.9)
is ut + ux = 0. This amounts to assuming that to leading order, there is
a balance between the space and the time frequency of the wave: k ∼ ω.
Second order terms that come from geometric dispersion and nonlinearity
are given by uxxx + uux. In the classical analysis, it is assumed that there
exists a balance between the height h of the wave and the space frequency k
of the wave, of the form h ∼ k2. As we have seen, the quantity −νuxx should
be thought of as a viscous dissipative term, while the term

√
ν√
π

∫ t
0
ut(s)√
t−sds,

acts as a viscous dispersive dissipative term.

1.3. Statement of the results. In this subsection and section 2, our the-
oretical analysis is restricted to the viscous dominant equation (1.7). For
the sake of convenience, we also set the parameter ν to be 1. We now begin
with the linear theory.

Theorem 1.2. Consider the equation

(1.12) ut + ux +
1√
π

∫ t

0

ut(s)√
t− s

ds = uxx,
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supplemented with initial condition u0 ∈ L2(R). There exists a unique global
solution u ∈ C(R+;L2

x(R)) ∩ C1(R+;H−2
x (R)) of (1.12). In addition, we

have the following partial smoothing effect, with R∗+ = R+\{0},

u ∈ C(R∗+;H2
x(R))

and the representation formula

(1.13) u(t, x) = [K (t, ·) ? u0] (x) ,

where ? denotes the usual convolution product and

(1.14) K(t, x) =
1

2
√
πt
e−

x2

4t e−x
−
(

1 +
1
2

∫ +∞

0
e−

µ2

4t
−µ|x|

2t
−µ

2 dµ

)
with x− = max(−x, 0).

Remark 1.3. Unlike the standard heat equation, the solution of (1.7) can
not be smoother than H2

x(R) for t > 0, unless additional assumptions are
made on the initial datum. This can be seen by differentiating K twice:
∂2K/∂x2 is the sum of a continuous function and a constant times the Dirac
mass at the origin. In particular, if u0 6∈ H1(R), then u(t, ·) 6∈ H3

x(R) for
any t > 0.

Turning to the nonlinear problem (1.7), we obtain the following global
existence and decay result, for small initial datum.

Theorem 1.4. Consider (1.7) supplemented with initial data u0 ∈ L1(R)∩
L2(R). There exists ε > 0, C(u0) > 0 such that for all ‖u0‖L1(R) < ε, there
exists a unique global solution u ∈ C(R+;L2

x(R)) ∩ C1(R+;H−2
x (R)). In

addition, u satisfies

(1.15) t
1
2 ||u(t)||L∞x (R) + t

1
4 ||u(t)||L2

x(R) ≤ C(u0)

and u solves the fixed point equation

(1.16) u(t, x) = K(t, ·) ? u0 +N ~ u2,

where K is given by (1.14) and N by

(1.17) N(t, x) =
1

2
√
πt
∂x

[
e−

x2

4t
−x−

(
1− 1

2

∫ +∞

0
e−

µ2

4t
−µ

2
−µ|x|

2t dµ

)]
,

with ? denotes the usual convolution product in space and ~ the time-space
convolution product defined by

v ~ w (t, x) =
∫ t

0

∫
R
v(s, y)w(t− s, x− y) dy ds

whenever the integrals make sense.

It is worth to point out that the decay rate (1.15) coincides with that of
the classical KdV-Burgers equation

(1.18) ut + uxxx + uux = uxx.
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The proof of (1.15) for solutions of (1.18) is given in the seminal work [2].
We also refer readers who are interested in the KdV equation with nonlocal
diffusion of the form (−∆)αu, 0 < α < 1 to [9], [12], [13] and to the references
therein. The references [9] and [12] deal with the initial value problem, while
[13] studies the asymptotic decay of solutions.

The remaining of the article is organized as follows. In Section 2 we prove
the Theorem 1.2 and the main Theorem 1.4. For this purpose we provide
a rigorous definition of solution for (1.7). In Section 3, we provide some
numerical evidence for these decay estimates.

2. Proof of Theorem 1.2 and Theorem 1.4

2.1. What is a solution to the integral-differential equation (1.7)?
We first consider a simple ordinary differential equation

vt = f(t), f ∈ C(R+),

supplemented with initial datum v0 at t = 0. By the Fundamental Theorem
of Calculus, there exists a unique function v ∈ C1(R+), characterized by the
integral equation

(2.1) v(t) = v0 +
∫ t

0
f(s)ds, for t > 0.

Now, for f ∈ C(R+), we consider the ordinary integro-differential equa-
tion

vt +
1√
π

∫ t

0

vt(s)√
t− s

ds = f(t),

v(0) = v0.

(2.2)

Define the operator I : C(R+; R)→ C(R+) for u ∈ C(R+), t > 0 by

(2.3) I(u)(t) =
1√
π

∫ t

0

u(s)√
t− s

ds,

direct computation implies that I(Iv) =
∫ t

0 v(s)ds. So the second term in

the left hand side of (2.2) acts as a half-derivative ∂
1
2
t v, as it was show

in Section 1. In order to derive the integral form of the solution to (2.2),
we apply the Laplace transform to it. Since ṽt = −v(0) + τ ṽ and using



VISCOUS ASYMPTOTICAL MODELS 7

integration by parts, we obtain

L
(

1√
π

∫ t

0

vt(s)√
t− s

ds

)
=

1√
π

∫ +∞

0
e−tτ

(∫ t

0

vt(s)√
t− s

ds

)
dt

=
1√
π

∫ +∞

0
vt

(∫ +∞

s

e−tτ√
t− s

dt

)
ds

=
1√
π

∫ +∞

0
vte
−sτ

(∫ +∞

0

e−uτ√
u
du

)
ds

=
1√
τ

∫ +∞

0
vte
−sτ ds =

1√
τ

(−v(0) + τ ṽ).

Plugging this information in (2.2), we obtain

(2.4) ṽ(τ) =
v0

τ
+

1
τ +
√
τ
f̃(τ).

We now state a result which proof is left as an exercise for the reader.

Lemma 2.1. For t ≥ 0 and let

(2.5) N0(t) =
1√
π
et
∫ +∞

t

e−s√
s
ds.

Then Ñ0(τ) = 1
τ+
√
τ

.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time t

N
0(t

)

Figure 1. Curve of N0(t) with respect to t.

Taking inverse Laplace transform on (2.4), we obtain the solution of (2.2)
has the integral form

(2.6) v(t) = v0 +
∫ t

0
N0(t− s)f(s)ds.
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The above calculations are somewhat formal, but one can easily check that
given f ∈ C(R+), the function v given by (2.6) belongs to C1(R+) (since
N0 belongs to W 1,1

loc ) and solves the equation. In addition, such a solution is
unique, as we demonstrate now.

Proposition 2.2. Let λ ∈ C. Given f ∈ C(R+), v0 ∈ R, the equation

vt +
1√
π

∫ t

0

vt(s)√
t− s

ds+ λv = f

admits at most one solution v ∈ C1(R+) such that v(0) = v0.

Proof. Indeed, if v, ṽ are two solutions, then w = v − ṽ solves

(2.7) wt +
1√
π

∫ t

0

wt(s)√
t− s

ds+ λw = 0.

Letting m(t) = sups∈[0,t] |wt(s)|, it follows that

m(t) ≤ 2√
π

√
t m(t) + |λ| sup

s∈[0,t]
|w(s)| ≤

(
2√
π

√
t+ |λ|t

)
m(t).

Therefore, m(T ) = 0 for any given T > 0 such that 2√
π

√
T + |λ|T < 1. By a

direct inductive argument, one easily deduces that m(kT ) = 0 for all k ∈ N,
so that w must be constant. Since w(0) = 0, uniqueness follows. �

Remark 2.3. We warn the reader that unlike the case of a standard ODE,
the solution v of (2.2) is never of class C2 at the origin when f ∈ C1(R+),
unless f(0) = 0. If this were the case, then we would have vt = f(0) +O(t)
as t→ 0. Whence by (2.2),

√
ν√
π

∫ t
0
f(0)+O(s)√

t−s ds = O(t), a contradiction.

Remark 2.4. The integral form (2.6) is useful to construct numerical schemes
for equation (2.2), just as (2.1) is useful for solving numerically a standard
ODE.

For integro-differential equations involving derivatives in x, as in the case
of (1.7), the situation is more complicated. We refer to [1] where the author
studies partial diffusion processes of the form

(2.8)
1√
π

∫ t

0

ut(s)√
t− s

ds = uxx,

and to [11] for the evolution equation with delay

(2.9) ut =
1√
π

∫ t

0

uxx(s)√
t− s

ds.

Consider now a m-accretive unbounded linear operator A : L2(R) →
L2(R) where A generates a semi-group of contraction on L2(R) (denoted
e−tA). To solve the equation

ut +Au = f,

u(0) = 0,
(2.10)
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it is convenient to seek for a fixed point of the Duhamel’s form of the equation
that reads

(2.11) u(t) = e−tAu0 +
∫ t

0
e−(t−s)Af(s)ds.

We aim at providing the analog of the Duhamel’s form for (1.7), using
the Laplace-Fourier transform.

2.2. Proof of Theorem 1.2; the linear homogeneous problem. We
begin by proving that the solution of (1.12), the linearization of (1.7), is
unique. If v, ṽ are two solutions, let w = v − ṽ and apply the Fourier
transform in space to w. Then, for almost every ξ ∈ R, t→ ŵ(t, ξ) ∈ C1(R+)
solves (2.7) with parameter λ = ξ2 + iξ. An application of Proposition 2.2
yields the uniqueness result of the solution.

We proceed to the existence of a solution of (1.12). Given u ∈ L∞(R+;L2(R)),
consider its Laplace-Fourier transform û defined for τ > 0 and ξ ∈ R by

û(τ, ξ) = LtFxu =
∫ +∞

0
e−tτ

∫
R
e−ixξu(t, x)dx dt.

With an abuse of notation, we also write the usual Fourier transform of u0

as û0 = Fxu0. Apply the Laplace-Fourier transform to (1.12):

−û0 + τ û+ iξû+
1√
τ

(−û0 + τ û) = ξ2û.

Solving for û, we obtain

(2.12) û(τ, ξ) = K̂(τ, ξ)û0,

with

(2.13) K̂(τ, ξ) =
(

1 +
1√
τ

)
1

(
√
τ + 1/2)2 + (ξ + i/2)2

.

Lemma 2.5. K̂ is the Laplace-Fourier transform of

(2.14) K(t, x) =
1

2
√
πt
e−

x2

4t e−x
−
(

1 +
1
2

∫ +∞

0
e−

µ2

4t
−µ|x|

2t
−µ

2 dµ

)
where x− = |x|−x

2 , the negative part of x ∈ R.

Proof. We claim that K̂(τ, ξ) is the Fourier transform (in the x variable)
of

(2.15) K̃(τ, x) =
1 + 1/

√
τ

1 + 2
√
τ
e−|x|

√
τe−x

−
.
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Indeed,∫
R
e−ixξe−|x|

√
τe−x

−
dx =

∫ 0

−∞
e−ixξe−|x|(

√
τ+1) dx+

∫ +∞

0
e−ixξe−x

√
τ dx

=
∫ +∞

0
eixξe−x(

√
τ+1) dx+

∫ +∞

0
e−ixξe−x

√
τ dx

=
1√

τ + 1− iξ
+

1√
τ + iξ

=
√
τ + iξ +

√
τ + 1− iξ

τ + iξ
√
τ +
√
τ + iξ − iξ

√
τ + ξ2

=
2
√
τ + 1

τ +
√
τ + iξ + ξ2

=
2
√
τ + 1

(
√
τ + 1/2)2 + (ξ + i/2)2

.

Next, we claim that K̃ is the Laplace transform ofK(t, x) given by (2.14). To
see this, we first recall that if f̃(τ) is the Laplace transform of f ∈ L∞(R+; R),
then f̃(

√
τ) is the Laplace transform of

(2.16)
∫ +∞

0

1√
πt

µ

2t
e−

µ2

4t f(µ) dµ.

See e.g. Formula 23, Tables of Laplace transforms, General Formulas in [6].
Setting σ =

√
τ , our task reduces to finding f(t, x) such that

f̃(σ, x) =
(

1 +
1
σ

)(
1

1 + 2σ

)
e−|x|σe−x

−
.

Now, (
1 +

1
σ

)(
1

1 + 2σ

)
=

1
σ
− 1

1 + 2σ
.

Denote by χA the characteristic function of a set A ⊂ R. Then,

L
(
χ[t≥|x|]

)
(σ) =

e−σ|x|

σ

and

L
(

1
2
e−t/2χ[t≥|x|]

)
(σ) =

e−|x|/2e−σ|x|

2(σ + 1/2)
.

By identification, it follows that

f(t, x) = e−x
−
[
1− 1

2
e
|x|−t

2

]
χ[t≥|x|]

and (2.14) follows by using (2.16). �
Define u by

(2.17) u(t, x) = K(t, ·) ? u0,

where K is given by (2.14) and ? denotes the usual convolution product. We
claim that u ∈ C(R+;L2

x(R)) ∩ C1(R+;H−2
x (R)). This follows easily from

the Dominated Convergence Theorem and the following estimates
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Lemma 2.6. There exists a constant C > 0 such that for all t > 0,

‖K(t, ·)‖L∞x (R) ≤
C√
t
, ‖K(t, ·)‖L1

x(R) ≤ C and ‖K(t, ·)‖L2
x(R) ≤

C

t1/4
,

where K is given by (2.14).

Proof. We simply observe that

0 ≤ K(t, x) ≤ 1
2
√
πt
e−

x2

4t

(
1 +

1
2

∫ +∞

0
e−

µ
2 dµ

)
=

1√
πt
e−

x2

4t .

The L1 and L∞ estimates directly follow. We then use the Cauchy-Schwarz
inequality ‖K(t, ·)‖L2

x(R) ≤ ‖K(t, ·)‖1/2
L1
x(R)
‖K(t, ·)‖1/2L∞x (R) to finish the proof.

�

2.3. The linear inhomogeneous problem. In this subsection we address
the following problem: to solve

(2.18) ut + ux − uxx +
1√
π

∫ t

0

ut(s)√
t− s

ds = −1
2
fx.

for a suitable right hand side f and with an initial data u(x, 0) = 0. In the
next section, we will solve the nonlinear problem by a fixed point argument,
pretending that f = u2. We now state and prove

Proposition 2.7. For any f which belongs to C(R+;L1
x(R)), there exists a

unique function u ∈ C0(R+;L2
x(R)) ∩ C1(R+;H−2

x (R)) that solves (2.18).

Proof. To begin with, the uniqueness result has already been established
in the proof of Proposition 1.2. We now seek for a function u that solves
(2.18) in its Duhamel’s form. Working as in the homogeneous case, we
discover that u must solve

(2.19) û(τ, ξ) = N̂(τ, ξ)f̂(τ, ξ),

where N̂ is given by

(2.20) N̂(τ, ξ) =
1
2

iξ

(
√
τ + 1/2)2 + (ξ + i/2)2

.

We start out by computing the inverse Laplace-Fourier transform of N̂ :

Lemma 2.8. N̂ is the Laplace-Fourier transform of

(2.21) N(t, x) =
1

2
√
πt
∂x

[
e−

x2

4t
−x−

(
1− 1

2

∫ +∞

0
e−

µ2

4t
−µ

2
−µ|x|

2t dµ

)]
.

Proof. Due to the computations in the proof of Lemma 2.5 above, we
know that the inverse Fourier transform (in space) of N̂ is given by

(2.22) Ñ(τ, x) = ∂x

(
1

1 + 2
√
τ
e−|x|

√
τe−x

−
)
.
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Using once again (2.16), we then have

√
πN(t, x) =

1
2
∂x

[
e
x
2

∫ +∞

|x|

λ

2t3/2
e−

λ2

4t e−
λ
2 dλ

]
,

whence

2
√
πtN(t, x) = ∂x

[
e
x
2

∫ +∞

|x|
−∂λ

(
e−

λ2

4t

)
e−

λ
2 dλ

]

= ∂x

[
e
x
2

(
−1

2

∫ +∞

|x|
e−

λ2

4t e−
λ
2 dλ−

[
e−

λ2

4t e−
λ
2

]+∞

|x|

)]

= ∂x

[
e
x
2

(
1
2
e−

x2

4t e−
|x|
2

∫ +∞

0
e−

µ2

4t e−
µ
2 e−

µ|x|
2t dµ + e−

x2

4t e−
|x|
2

)]
= ∂x

[
e−

x2

4t e−x
−
(

1− 1
2

∫ +∞

0
e−

µ2

4t e−
µ
2 e−

µ|x|
2t dµ

)]
.

�
We now proceed to some estimates on this kernel that will be used sub-

sequently.

Lemma 2.9. There exists a constant C > 0 such that for all t > 0,

‖N(t, ·)‖L∞x (R) ≤
C

t
, ‖N(t, ·)‖L1

x(R) ≤
C√
t

and ‖N(t, ·)‖L2
x(R) ≤

C

t3/4
,

where N is given by (2.21).

By (2.21), it follows that for x > 0,

(2.23)
N(t, x) =

1
2
√
πt
∂x

[
e−

x2

4t (1− a(t, x))
]

=
1

2
√
πt
e−

x2

4t

[
− x

2t
(1− a(t, x))− ∂a

∂x
(t, x)

]
,

where

a(t, x) =
1
2

∫ +∞

0
e−

µ2

4t
−µ

2
−µx

2t dµ.

Clearly,

(2.24) 0 ≤ a(t, x) ≤ 1
2

∫ +∞

0
e−µ/2 dµ = 1,

while

2
∣∣∣∣∂a∂x

∣∣∣∣ (t, x) =
∫ +∞

0
e−

µ2

4t e−
µ
2 e−

µx
2t
µ

2t
dµ

≤ 1√
t

∫ +∞

0

µ

2
√
t
e−

µ2

4t e−
µ
2 dµ(2.25)

≤ C√
t

∫ +∞

0
e−

µ
2 dµ ≤ C√

t
.
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Collecting these estimates and plugging them in (2.23), we obtain for x > 0

(2.26) |N(t, x)| ≤ C

t
e−

x2

4t

(
x√
t

+ 1
)
≤ C

t
.

Next, we estimate N(t, x) for x < 0. In this case,

(2.27)
N(t, x) =

1
2
√
πt
∂x

[
e−

x2

4t
+x (1− a(t,−x))

]
=

1
2
√
πt
e−

x2

4t
+x

[(
1− x

2t

)
(1− a(t,−x)) +

∂a

∂x
(t,−x)

]
.

Using (2.24) and (2.25), we deduce that if t ≤ 1 and x < 0, then

|N(t, x)| ≤ C√
t
ex−

x2

4t

[
1 +
|x|
t

+
1√
t

]
≤ C

t
e−

x2

4t

[
|x|√
t

+ 1
]
≤ C

t
.

(2.28)

For t > 1, we observe that

2 (1− a(t, |x|)) =
∫ +∞

0
e−

µ
2

(
1− e−

µ2

4t
− |x|µ

2t

)
dµ

≤
∫ +∞

0
e−

µ
2

(
µ2

4t
+
|x|µ
2t

)
dµ ≤ C

(
1
t

+
|x|
t

)
.

Using the above inequality and (2.25) in (2.27), we obtain for t > 1, x < 0,

|N(t, x)| ≤ C√
t
ex−

x2

4t

[(
1 + |x|
t

)2

+
1√
t

]

≤ C

t
e−

x2

4t

[
1 +
|x|√
t

+
|x|2

t3/2

]
≤ C

t
.

(2.29)

(2.26), (2.28) and (2.29) provide the desired L∞x estimate. For the L1
x bound,

we write ‖N(t, ·)‖L1
x(R) =

∫ +∞
0 |N(t, x)| dx+

∫ 0
−∞ |N(t, x)| dx and estimate

each term separately. By (2.26), we obtain on the one hand∫ +∞

0
|N(t, x)| dx ≤ C

t

∫ +∞

0
e−

x2

4t

(
x√
t

+ 1
)
dx

≤ C√
t

∫ +∞

0
e−y

2
(y + 1) dy ≤ C√

t
.

(2.30)

On the other hand, using (2.28), it follows that for t ≤ 1,∫ 0

−∞
|N(t, x)| dx ≤ C

t

∫ 0

−∞
e−

x2

4t

(
|x|√
t

+ 1
)
dx

≤ C√
t

∫ +∞

0
e−y

2
(y + 1) dy ≤ C√

t
,

(2.31)
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while for t > 1, by (2.29)∫ 0

−∞
|N(t, x)| dx ≤ C

t

∫ 0

−∞
e−

x2

4t

[
1 +
|x|√
t

+
|x|2

t3/2

]
dx

≤ C√
t

∫ +∞

0
e−y

2

(
1 + y +

y√
t

)
dy ≤ C√

t
.

(2.32)

The L1 estimate follows and the L2 estimate is obtained using the Cauchy-
Schwarz inequality. �

We now complete the proof of Proposition 2.7. We pretend that u defined
as

(2.33) u = N ~ f (t, x) =
∫ t

0

∫
R
N(s, y)f(t− s, x− y) dy ds,

is the solution for (2.18). Let us prove that u(t, .) is a continuous mapping
from R+ to L2

x(R). Due to the estimate in Lemma 2.9, we have, for t→ t0,

||u(t, .)− u(t0, .)||L2
x

≤
∫ t0

0
||N(s, .)||L2

x
(||f(t− s, .)− f(t0 − s, .)||L1

x
)ds

+|
∫ t

t0

||N(s, .)||L2
x
(||f(t− s, .)||L1

x
ds|

≤
∫ t0

0

c

s
3
4

(||f(t− s, .)− f(t0 − s, .)||L1
x
)ds+ o(1).

(2.34)

Since the kernel s−
3
4 is integrable, then it is an exercise to pass to the limit.

We now check that ut is a continuous function which takes values in H−2
x (R).

Introducing, for any given ξ, v(t) = û(t, ξ) the Fourier transform of u in x,
we observe that v is solution for

(2.35) vt +
1√
π

∫ t

0

vt(s)√
t− s

ds = f̂(t, ξ) + (ξ2 − iξ)û(t, ξ).

We now apply the formula (2.6) which provides us with a C1 function v.
Moreover ut is a continuous function which takes values in H−2

x (R), since∫
R

(1 + |ξ|2)−2|f̂(t, ξ) + (ξ2 − iξ)û(t, ξ)|2dξ < +∞.

The proof of Proposition 2.7 is then complete. �

2.4. Solving the nonlinear equation. We finally address the nonlinear
model (1.7) when ν = 1. We seek u as the superposition of a solution of an
homogeneous linear problem and a fixed point for the solution of the linear
inhomogeneous problem; eventually, we solve together these two problems.
Working as in the linear case, we discover that u must solve

(2.36) u = K ? u0 +N ~ u2,
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where K and N are as above. Loosely speaking, the kernel K and N satisfy
the same Lp estimates that the operators involved in the Burgers equation

(2.37) ut − uxx + uux = 0,

that reads in its Duhamel’s form

(2.38) u = et∆u0 −
1
2

∫ t

0
∂x(e(t−s)∆)(u2(s))ds.

It is the standard to prove by the fixed point theorem that for a given u0

in L2
x(R) there exists a unique (local in time) solution u(t) ∈ C(0, T ;L2

x(R)).
We use Lemma 2.6 and Lemma 2.9 to obtain that

(2.39) ||K ? u0||L2
x
≤ c||u0||L2

x
,

and

(2.40) ||N ? u2||L2
x
≤ C

t
3
4

||u2||L1
x
,

and then, integrating in time,

(2.41) ||N ~ u2||L∞(0,T ;L2
x) ≤ CT

1
4 ||u||2L∞(0,T ;L1

x).

Choosing R0 = 2c||u0||L2
x
, we then perform a fixed point in the ball of radius

R0 in C([0, T ];L2
x) for TR4

0 ∼ 1
2 .

2.5. Proof of the main Theorem. We now prove that this local in time
solution extends to a global one if we assume that u0 is small enough in
L1
x(R), exactly as for the Burgers equation.
Let X denote the Banach space of functions v ∈ C(R+;L2

x(R)) such that

‖v‖X := sup
t>0

t1/4‖v(t, ·)‖L2
x(R) < +∞

and let N : X → X defined by

Nu(t, x) = K(t, ·) ? u0 +N ~ u2.

Then, any fixed point of N is a solution of (1.7) (in which ν = 1) and it
suffices to apply the Fixed Point Theorem in a suitable ball BR(v0) ⊂ X.
To this end, we note that by Lemma 2.6, we have

(2.42) ‖K(t, ·) ? u0‖L2
x(R) ≤ ‖K(t, ·)‖L2

x(R)‖u0‖L1
x(R) ≤

C

t1/4
‖u0‖L1

x(R).
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Hence, v0 := K(t, ·) ? u0 ∈ X. By Lemma 2.9, we have for u ∈ X,

(2.43)

‖N ~ u2(t)‖L2
x(R) =

∥∥∥∥∫ t

0
N(t− s, ·) ? u2(s, ·) ds

∥∥∥∥
L2
x(R)

≤
∫ t

0
‖N(t− s)‖L2

x(R)‖u2‖L1
x(R) ds

≤ C
∫ t

0

1
(t− s)3/4

‖u‖2L2
x(R) ds

≤ C
∫ t

0

1
s1/2(t− s)3/4

(
s1/4‖u(s, ·)‖L2

x(R)

)2
ds

≤ C

t1/4
‖u‖2X .

Gathering (2.42) and (2.43), we obtain

‖Nu‖X ≤ C
(
‖u‖2X + ‖u0‖L1

x(R)

)
.

Choosing now R > 0, ‖u0‖L1
x(R) so small that R ≥ C(R2 + ‖u0‖L1

x(R)), we
deduce that N maps the ball BR ⊂ X into itself. It remains to prove that
N is contractive in BR. Let u, v ∈ BR. Then,

‖(N ~ u2 −N ~ v2)(t)‖L2
x(R) =

∥∥∥∥∫ t

0
N(t− s, ·) ?

(
u2(s, ·)− v2(s, ·)

)
ds

∥∥∥∥
L2
x(R)

≤
∫ t

0
‖N(t− s)‖L2

x(R)‖u2 − v2‖L1
x(R) ds

≤ C
∫ t

0

1
(t− s)3/4

‖u+ v‖L2
x(R)‖u− v‖L2

x(R) ds

≤ C
∫ t

0

1
(t− s)3/4

s−1/2‖u+ v‖X‖u− v‖X ds

≤ C

t1/4
‖u+ v‖X‖u− v‖X .

Hence,
‖Nu−N v‖X ≤ CR‖u− v‖X

i.e. N is a contraction in BR for small R > 0.
We now prove the L∞x (R) estimate given in Theorem 1.4. On the one

hand, due to the L∞ estimate in Lemma 2.6

(2.44) ||K ? u0||L∞x (R) ≤
c

t
1
2

||u0||L1
x(R).

On the other hand, due to Lemma 2.9

||N(t− s) ? u2(s)||L∞x (R) ≤ ||N(t− s)||L2
x(R)||u2(s)||L2

x(R)

≤ c

(t− s)
3
4

||u(s)||L2
x(R)||u(s)||L∞x (R).

(2.45)
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IntroducingM2(t) = sups≤t(s
1
4 ||u(s)||L2

x(R)) andM∞(t) = sups≤t(s
1
2 ||u(s)||L∞x (R)),

we then have

t
1
2 ||u(t)||L2

x(R) ≤ c||u0||L1
x(R) + (

∫ t

0

ct
1
2ds

(t− s)
3
4 s

3
4

)M2(t)M∞(t).(2.46)

Since M2(t) ≤ 2||u0||L1
x(R) and since u0 is small in L1

x(R), then the last term
in the right hand side of (2.46) is bounded by above by 1

2M∞(t) and moves
to the left hand side. This completes the proof of the Theorem. �

Remark 2.10. An open issue is to remove the smallness assumption on u0.

3. Numerical computation

3.1. The scheme. Numerical simulations are performed on the equation

(3.1) ut +
√
ν√
π

∫ t

0

ut(s)√
t− s

ds = f = αuxx − ux − βuxxx − γuux.

Here we have introduced parameters α, β and γ that will vary with the
computations which allow us to observe the effect of each term, namely the
viscous diffusion, the geometric dispersion and the nonlinearity.

We consider a large interval of R and we work with periodic boundary
conditions in space. The space approximation of the solutions was performed
by standard Fourier methods. Since we perform the numerics with an initial
data that provides us with a wave that moves to the right boundary, we
expect our computations to be physically relevant until this wave reaches
the right boundary.

We now explain how to advance in time for the equation (3.1) (or its space
approximation with Fourier series). The procedure is based on the integral
form (2.6) of the solution. We then have

(3.2) u(t) = u0 +
∫ t

0
N0(ν(t− s))f(s)ds,

with N0 defined in (2.5), ν appears in the kernel and f = αuxx − ux −
βuxxx − γuux. Introduce now a time step δ and set tn = nδ,

u(tn+1)− u(tn) =
∫ tn

0
(N0(ν(tn+1 − s))−N0(ν(tn − s)))f(s)ds

+
∫ tn+1

tn

N0(ν(tn+1 − s))f(s)ds.
(3.3)

The first term in the r.h.s of (3.3) is approximated by the following quad-
rature formula, with tk+ 1

2
= (k + 1

2)δ,∫ tn

0
(N0(ν(tn+1 − s))−N0(ν(tn − s)))f(s)ds ≈

δ

2

n−1∑
k=0

(
N0(ν(tn+1 − tk+ 1

2
))−N0(ν(tn − tk+ 1

2
))
)

(f(tk+1) + f(tk)) .
(3.4)
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Straightforwardly, this method is order 2 in time. The linear part flin =
αuxx − ux − βuxxx of the last term is handled in a similar manner, namely∫ tn+1

tn

N0(ν(tn+1 − s))flin(s)ds ≈ δ

2
N0(

νδ

2
) (flin(tn+1) + flin(tn)) .

and the nonlinear part fnl = −γuux is treated explicitly, i.e.∫ tn+1

tn

N0(ν(tn+1 − s))fnl(s)ds ≈ δN0(
νδ

2
)fnl(tn).(3.5)

This is only order 1 in time, but since it matters only on an interval of width
δ, this does not affect the order of the scheme. Let un be the approximate
value of u(nδ), the scheme reads,

un+1 − un

δ
=

1
2

n−1∑
k=0

(
N0(νtn−k+ 1

2
)−N0(νtn−k− 1

2
)
)

(f(tk+1) + f(tk))

+N0(
νδ

2
)
(

1
2
flin(tn+1) +

1
2
flin(tn) + fnl(tn)

)
.

(3.6)

The scheme is semi-implicit, since the nonlinearity is computed explicitly.

3.2. The numerical results. In all the computations presented below, the
initial data is u0(x) = 0.32∗sech2(0.4∗(x−x0)), where x0 is the middle of the
interval. This initial datum provides a small amplitude and long wave KdV
soliton for α = ν = 0, β = 1 and γ = 6. For the numerics, the stepsizes are:
h = 0.2 (space step discretization) and δ = 0.2 (time step discretization).

200 250 300 350 400 450
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

u(
T

=
10

0,
x)

 

 

Initial data

α=0, ν=1

α=5, ν=0

α=5, ν=1

Figure 2. Solutions at time T = 100 for different viscosity
(ν equal to 0 and 1, α equal to 0 and 5 and γ = β = 0).
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In Figure 2, we observe the effects of the local and non-local viscous
terms in the linear case (γ = 0) for (α, ν) = (0, 1), (α, ν) = (5, 0) and
(α, ν) = (5, 1), which correspond to cases with only local viscous term, only
non-local viscous term and with both terms. The solutions are plotted at
time T = 100 and the effects of these two terms are quite different!

We first note that when (α, ν) = (0, 0), the solution of the linear wave
equation is a travelling wave with speed 1. So the solution at T = 100 would
be the same shape of wave, but centered at 350. Comparing that with the
case that (α, ν) = (0, 1), we see the local viscous term slows the wave down
significantly and also at the same time, enlarge the wave length. On the
other hand, by comparing the cases (α, ν) = (0, 0) and (α, ν) = (5, 0), we
see the non-local viscous term also enlarge the wave length, but keeps the
speed of the wave the same. When both viscous terms are involved in the
simulation, the wave profile is more close to the case with only local viscous
term.

We now plan to observe numerically the results of the main theorem and
obtain some quantitative insight on the decay of the solutions. Furthermore,
we will investigate the cases where theoretical results are not available. For
this purpose, we study the decay of the solutions for the L∞ and the L2 norm
of (3.1), on the interval (0, 1000), when the viscosity coefficients (α, ν) =
(0, 0.1), (0.1, 0) and (0.1, 0.1), β = 0 and γ equal to 0 (linear) and 1 (non
linear).

Since the expected decay is of the form O(ta), Figure 3 (resp. Figure 4)

shows the
log
‖u(t+δ,·)‖L∞x
‖u(t,·)‖L∞x
log t+δ

t

( resp.
log
‖u(t+δ,·)‖

L2
x

‖u(t,·)‖
L2
x

log t+δ
t

) versus the time t for the linear

problem (γ equal to 0).
From Fig. 3, one observe the local dissipative term produce a bigger

decay rate when compared with the nonlocal dissipative term. The decay
rates in all three cases appear to approach 0.5, but the convergence rate is
quite small. It is worth to note that our theoretical result does not cover
the second case, namely the case with (α, ν) = (0.1, 0). The Fig. 4 is for L2-
norm, instead of L∞-norm and the results are similar. Similar computations
are performed with γ = 1 (the nonlinear case).

Norm α = 0, ν = 0.1 α = 0.1, ν = 0 α = 0.1, ν = 0.1
γ = 0 γ = 1 γ = 0 γ = 1 γ = 0 γ = 1

L∞ -0.51 -0.51 -0.49 -0.49 -0.51 -0.50
L2 -0.27 -0.28 -0.24 -0.25 -0.27 -0.28

Table 1. Decay rate of the solution u(t, ·) versus the time
(ν and α equal to 0 and 0.1, β = 0, γ = 0 and 1).

We also computed the decay rate a by a least square method, for each of
the two norms using the data from [T − 200, T ]. The results are given in
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Figure 3. Decay of the solution
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versus the

time (α, ν) = (0, 0.1), (0.1, 0), (0.1, 0.1), β = 0, γ = 0). The
first and the third curves overlap each other.
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Figure 4. Decay of the solution
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versus the

time t (ν and α equal to 0 and 0.1, β = 0, γ = 0). The
first and the third curves overlap each other.
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table 1. These results match the theoretical results given in Theorem 1.4 for
the cases where theoretical results are available. We can also observe that
there is no significant difference between the linear and the non linear case.
Moreover, the decay of the solution is the same when α = 0.1 or ν = 0.1.

In the final sequence of computations, we plan to study the different
effects of dispersion and diffusion. We consider now the full equation (1.3),
where the geometric dispersive term uxxx plays a role. When there is no
viscosity (α = ν = 0), the exact solution of the problem is the soliton
u(t, x) = u0(x− 1.64 ∗ t). In Figure 5, we compare solutions from (3.1) with
different set of coefficients. The solutions with (α, ν, β, γ) = (0, 0, 6, 1)-the
KdV equation, (α, ν, β, γ) = (0.1, 0, 6, 1), (0, 0.1, 6, 1), (0.1, 0.1, 6, 1) and the
exact KdV are plotted. Again, the local dissipative term slows the wave
down. The local dispersive term might contribute to the appearance of the
double hump.
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Figure 5. Solution at time T = 10 (ν and α equal to 0 and
0.1, β = 6, γ = 1).

We now investigate numerically the decay rate of the solutions when the
local dispersion uxxx term is present, cases where the theoretical result in

Section 2 do not cover. Figure 6 (resp. Figure 7) shows the
log
‖u(t+δ,·)‖L∞x
‖u(t,·)‖L∞x
log t+δ

t

(

resp.
log
‖u(t+δ,·)‖

L2
x

‖u(t,·)‖
L2
x

log t+δ
t

) versus the time t.

Eventually, we are led with the use of least square method to the results
given in Table 2.
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Figure 6. Decay of the solution
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versus the

time t (ν and α equal to 0 and 1, β = 6, γ = 1).
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Figure 7. Decay of the solution
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versus the

time t (ν and α equal to 0 and 1, β = 6, γ = 1).

Norm α = 0, ν = 1 α = 1, ν = 0 α = 1, ν = 1
L∞ -0.46 -0.51 -0.45
L2 -0.23 -0.25 -0.23

Table 2. Decay rate of the solution u(t, ·) versus the time
(ν and α equal to 0 and 1, β = 6, γ = 1).
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