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A system of two coupled PDEs originally proposed and studied by Kreiss and Yström
(2002), which is dynamically similar to a one-dimensional two-fluid model of two-phase
flow, is investigated here. It is demonstrated that in the limit of vanishing viscosity
(i.e., neglecting second-order and higher derivatives), the system possesses complex
eigenvalues and is therefore ill-posed. The regularized problem (i.e., including viscous
second-order derivatives) retains the long-wavelength linear instability but with a cut-off
wavelength, below which the system is linearly stable and dissipative. A second-order
accurate numerical scheme, which is verified using the method of manufactured solutions,
is used to simulate the system. For short to intermediate periods of time, numerical solu-
tions compare favorably to those published previously by the original authors. However,
the solutions at a later time are considerably different and have the properties of chaos.
To quantify the chaos, the largest Lyapunov exponent is calculated and found to be approx-
imately 0.38. Additionally, the correlation dimension of the attractor is assessed, resulting
in a fractal dimension of 2.8 with an embedded dimension of approximately 6. Subse-
quently, the route to chaos is qualitatively explored with investigations of asymptotic sta-
bility, traveling-wave limit cycles and intermittency. Finally, the numerical solution, which
is grid-dependent in space–time for long times, is demonstrated to be convergent using the
time-averaged amplitude spectra.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The present work focuses on the Kreiss and Yström [1] system of partial differential equations (PDEs) given by
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and hereafter referred to as the KY equations. There are a few slight differences between Eqs. (1) and (2) and the originally
published equations, which should be noted. First, the parameter C was simply unity in the original equations. The adjustable
coefficient C is used here as a means to vary the ‘‘degree of instability.’’ Second, the viscosities have been given different sym-
bols, although the same value will be used for both in the present work. To highlight the similarities between the KY equa-
tions and the one-dimensional (1-D) two-fluid model, the symbols of the original variables are renamed a and u.

The KY system is purely mathematical; it was not derived to model a physical problem. However, this work has evolved
out of a separate, but related, study of the 1-D two-fluid model, which is a physically based engineering model for two-phase
pipe and channel flow. For incompressible and isothermal flow, the full 1-D two-fluid model of Ishii and Hibiki [2] can be
reduced to a two-equation model as shown by Lopez de Bertodano, Fullmer and Vaidheeswaran [3]. For the horizontal strat-
ified flow of two fluids with a small density ratio (e.g., ambient air–water), the simplified two equation form is given by
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where a and u are the liquid void fraction and liquid velocity, respectively. The constants e, m and ~r are the artificial viscosity
(if modeled); the kinematic, turbulent or (if modeled) artificial viscosity and the scaled surface tension coefficient, respec-
tively. The function F contains the algebraic closure relations for the wall and interfacial shear models. The coefficient C is
related to the Kelvin–Helmholtz instability and is given by C ¼ rð1� aÞ�1u2

R � gyH where r, uR, gy and H are the density ratio,
velocity difference between the fluids, normal component of gravity and the channel height, respectively. See Lopez de Ber-
todano et al. [3] for details of the model and its derivation.

The 1-D two-fluid model and the present KY system are related in several significant ways. Both models are conditionally
ill-posed as an initial and boundary value problem (IBVP) without higher order regularization, i.e., the first-order systems
(may) possess complex characteristics. Both models are predicted to be unstable in a linear stability sense. The magnitude
of the growth rates are linearly proportional to the wavenumber without regularization and quadratically damped at high-
wavenumbers with higher-order regularization. Both models have similar dynamics, i.e., they produce similar waveforms
(compare Fig. 5 of the present work with Fig. 11 of Fullmer, Ransom and Lopez de Bertodano [4]). However, the mathematical
system of Kreiss and Yström [1] is simpler in several desirable ways. It does not have a complicated flow-regime map of clo-
sure laws for different flow conditions – some of which affect the differential form of the governing equations. The dynamics
of the problem are not bounded by physical limitations, e.g., channel height. It does not require special numerical techniques.
Finally, and possible most importantly, the ‘‘degree of instability’’ can be directly controlled by specifying the constant value
of C in Eqs. (1) and (2). In the 1-D two-fluid model of Eqs. (3) and (4), the coefficient equivalent to C is not a constant, but
instead, it is determined by the local flow conditions so that the linear stability of the model changes throughout the solution
– and may even change from non-hyperbolic to hyperbolic depending on the flow conditions. Therefore, the simplified form
and added control of the KY equations make it ideal for the type of studies undertaken here.

The linear stability of the system will be reviewed in Section 2. The numerical method used to solve the equations is out-
lined in Section 3 followed by a verification study of the code in Section 4. Some nonlinear solutions are given in Section 5
along with a hint that the system may by chaotic, which is proven in Section 6 together with a brief exploration of the route
to chaos. Finally, in Section 7, the subject of solution verification is revisited and reinterpreted with the knowledge that the
system is chaotic.

2. Linear stability analysis

2.1. Characteristic analysis

The KY Eqs. (1) and (2) can be written in vector form as
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where the dependent variable vector is / ¼ a uð ÞT , the source vector is F ¼ 2a 0ð ÞT and the coefficient matrices are
defined by
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The eigenvalues of A are given by
n ¼ u� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð1þ a=2Þ

p
ð7Þ
In the absence of diffusion, i.e., e = m = 0, these eigenvalues define the characteristics of the system. Eq. (7) shows that for
C > 0 (and a > �2) the characteristics are complex conjugates. Therefore, the system is elliptic and ill-posed as an IBVP. Even
when the diffusion matrix is included, the complex characteristics are the root cause of the linear growth discussed below. In



30 W.D. Fullmer et al. / Applied Mathematics and Computation 248 (2014) 28–46
contrast, for C < 0 (and a > �2), the characteristics are both real, and the system is hyperbolic. In this case, the problem sim-
plifies dramatically, and the KY equations are similar to a modified shallow-water model. There is a large body of work con-
cerning the nature of shallow-water equations; therefore, the hyperbolic case is not of primary interest in this paper.
Equivalent but opposite classifications occur for the case a < �2, which is also not studied here.

2.2. Fourier analysis

To better highlight the effect of the diffusion terms, the equations are linearized about an initial reference state with an
infinitesimally small perturbation superimposed: / = /0 + /

0
. The solution is inserted into Eq. (5), and three assumptions are

applied to greatly simplify the resulting equation: the initial reference state satisfies Eq. (5) automatically, the products of
the perturbations are negligible and the reference state is either steady or the length scale of the reference state is consid-
erably larger than that of the imposed perturbation, i.e., o/0/ox� o/0/ox. The remaining terms define the linear perturbation
equation
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where A0 and F0 are evaluated at /0. In typical fashion, the perturbation is assumed to be a traveling wave
/0 ¼ /̂0eiðjx�xtÞ; ð9Þ
where /̂0 is the amplitude, j is the wavenumber and x is the angular frequency. The more intuitive variables of wavelength
and frequency are related by k ¼ 2p=j and f = x/2p, respectively. In general, the angular frequency may be complex, and
from Eq. (9), when the imaginary component is positive, the perturbation will grow exponentially in time. The real compo-
nent of the angular frequency and the wavenumber define the wave speed, c = xR/j.

Inserting Eq. (9) into Eq. (8) gives
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For a nontrivial solution to exist, the coefficient matrix of Eq. (10) must be singular, i.e.,
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Solving Eq. (11) for the angular frequency gives
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where nI is the imaginary component of the eigenvalues previously derived in Eq. (7). The larger imaginary root of the angu-
lar frequency is shown in Fig. 1 for a reference state of a0 = u0 = 1 and C = 1.

It is readily observed from Eq. (12) that, if diffusion is neglected, e = m = 0, the growth rate, xI, will have a positive and
negative component indicating exponential growth. In the limit j ?1, the characteristics in Eq. (7) are recovered using
x/j in Eq. (12). The ill-posedness of the system is obvious: an infinitely short wavelength perturbation (j ?1) has an infi-
nitely large growth rate (xI ?1). For large j, the growth rate is approximately linear with respect to j with a small, con-
stant damping due to the source term. The linear growth rate is also observed in the 1-D two-fluid model under certain
conditions and is a characteristic feature of the Kelvin–Helmholtz instability that is imbedded within the model equations.

If one of the diffusion coefficients (viscosities) is set to a positive constant value, the linear dependence is suppressed at
large wavenumbers, and the growth rate approaches an asymptotic value. From a practical point of view, this appears to be
of little value because the largest growth rate still occurs at the smallest scales. In fact, even the ill-posed differential model
avoids the singularity because, in most applications, the equations are solved in some discrete fashion limiting the maximum
growth rate to some finite value related to the resolution of the discretization.

Now, if both viscosities are positive constants, the linear stability changes even more dramatically; rather than approach-
ing an asymptote, the stability curve bends down and approaches negative infinity as j ?1. For the special case e = m, the
imaginary part of Eq. (12) reduces to three components: a negative constant component from the source term, a positive
linear component from the underlying ill-posedness and a quadratic negative term from the diffusion terms. The combined
result is that the growth rate is positive for a wavenumber in the range from j e (0, j0) and negative for j e (j0,1), as shown

in Fig. 1. The value of the cut off wavenumber is given by j0 ¼ m�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
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. While there is still exponential growth, this type of linear instability is physically acceptable. The per-

turbations will grow if the wavelength is long enough and decay at short length scales. Lastly, it should be noted that the KY



Fig. 1. Effect of the higher-order regularization (diffusion) on the linear growth rate.
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equations are not dispersive in any case because the real part of the angular frequency is always linear in j so that the wave
speed is constant, c = u [5].

The linear stability properties of the KY equations and how it is affected by the viscosities parallel that of the 1-D two-
fluid model [4,6]. In particular, to achieve a cut-off wavenumber beyond which perturbations decay, second-order diffusion
terms must be added to all equations even when there is no physical justification. It is worth noting that both the 1-D two-
fluid model and the KY equations can also be regularized using a combination of kinematic or turbulent viscosity and a third-
order term related to surface tension. This approach introduces dispersion, which increases the complexity of the problem
and will not be explored here. Finally, it is noted that, while a very simple approach to linear stability has been taken here, it
is sufficient to guide the nonlinear simulations that follow. See the original work of Kreiss and Yström [1] for a more com-
prehensive analysis.

3. Numerical method

3.1. Structure

The numerical method used to solve the KY equations will be outlined and briefly discussed. The structure of the finite
difference method is similar to that used for a higher-order 1-D two-fluid model pilot code by Fullmer, Lopez de Bertodano
and Zhang [7]. However, the simpler KY equations are free from some of the numerical constraints that otherwise limit the
flexibility of 1-D two-fluid model algorithms, e.g., pressure–velocity coupling, volume fraction-energy coupling, water pack-
ing mitigation, etc.

The basic underlying structure utilizes a staggered grid common in computational fluid flow problems. A domain of
length L is discretized into N cells of uniform length Dx = L/N with N + 1 faces at edge of each cell. The a variable is stored
at the cell centers, and the u variable is stored at cell faces. A sketch of the grid in the vicinity of a cell center, i, and face,
j, is shown in Fig. 2.

Eq. (5) is arranged into the form
@/
@t
¼ f /ðan�k;un�k; tn�kÞ; ð13Þ
where the right hand side functions, f/, are assumed to be known at each time level n ± k through a finite-difference scheme,
and the time is advanced by treating the PDE as 2N ordinary differential equations (ODEs). The finite-difference functions are
given by
u cells 1j +j1j −

1i +i1i − α cells

Fig. 2. A sketch of the staggered grid used for the finite difference equations.
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for the u equation at location j. The overbar indicates a cell averaged (mean) value. Variables with a hat do not exist at the
specified location. The additional subscripts refer to the values to the ‘‘right’’ and ‘‘left’’ of the reference location. For example,
in Eq. (14) the faces j and j + 1 surround reference position i (likewise for Eq. (15) the cell centers i � 1 and i surround ref-
erence position j). When the variables required at the right and left are available, they are used directly, e.g., u exists at j and
j + 1 in Eq. (14). When the variables do not exist in the locations to the right and left, as indicated by the hat, they are donored
or extrapolated using the values at the neighboring locations. A flux-limiter is used for the extrapolation and discussed in the
following section. The diffusion terms are discretized using a standard second-order center difference scheme. An additional
source term appears in each equation, Sa,i and Su,j, which is not part of the original KY equations but has been added here for
future use. For all simulations in the present work, periodic boundary conditions are applied, which is achieved by placing
three ‘‘ghost’’ cells at the beginning and end of the domain that mirror the conditions at the opposite end.

3.2. Flux limiter

For the extrapolated variables, there are many options. Two obvious choices are first-order upwinding (FOU) and center
differencing. Viewing the KY equations as an odd distillation of the 1-D two-fluid model, one would choose upwinding with
edge values simply donored from the adjacent values in the direction of the flow. The FOU method is still utilized in most
industrial 1-D two-fluid model codes due to its stability and robustness. The problem is that applying the FOU method to the
convection variables adds a significant amount of numerical diffusion and lowers the accuracy of the entire scheme. In con-
trast, viewing the KY equations as simply two mathematical PDEs, independent of physics, one might opt for a center dif-
ference scheme. However, this approach would leave the overall finite difference scheme with all linear second-order
difference stencils, which can lead to spurious numerical oscillations. These oscillations are undesirable for the present appli-
cation where the underlying governing equations are already known to be unstable.

To combine increased accuracy and enhanced stability, a nonlinear flux-limiter is used for the extrapolated variables,
which implies some physical interpretation in determining the direction of the ‘‘wind’’ or flow, here given by the sign of
u. The general-piecewise limiter (GPL) of Waterson and Deconinck [8] is used here because it is relatively simple and can
easily be tuned to produce a variety of popular schemes.

The structure of the flux limiter for the right face value of the a variable in Eq. (14) is
âR ¼ ac þ dxcWðrÞ
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; ð16Þ
where r is the gradient ratio defined by
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The subscripts CD and UD indicate the center and upwind differences for the location R. In the present work, a uniform
mesh will always be applied so that Eq. (17) simplifies to
r ¼ acþ1 � ac

ac � ac�1
ð18Þ
for positive flow, i.e., u > 0. The function W(r) is the flux limiter, and the GPL scheme is given by
WðrÞ ¼max 0;min ð2þ aÞr;1
2
ð1þ kÞr þ 1

2
ð1� kÞr;M


 �� �
: ð19Þ
The left values as well as the extrapolated variables of Eq. (15) are found in the same manner with the neighboring cell
locations shifted appropriately.

The GPL limiter of Eq. (19) can be tuned to give several classical flux limiters, e.g., the minmod scheme of Roe [9] by set-
ting a = k = �1 and M = 1 and the MUSCL scheme of van Leer [10] by setting a = k = 0 and M = 2. In this work, the GPL scheme
will be set to a = 0, k = 1/2 and M = 4, which results in the converted normalized variable (NV) SMART scheme of Gaskell and
Lau [11]. The SMART scheme performed better for discontinuous solution data and was also slightly higher than second
order accurate for smooth data [8]. The SMART scheme has been selected because it is known in advance that the KY equa-
tions produce solutions with shock-like structures, i.e., small regions of space where the solution changes rapidly. It should
be noted that unlike minmod and MUSCL, the limiter form of SMART is not exactly total variation diminishing (TVD). How-
ever, it is nonoscillatory in its original NV form, which has a rough equivalence to TVD [12]. The GPL can also be tuned to a
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few other schemes of less practical interest outlined by Waterson and Deconinck [8]. Additionally, by setting the limiter to
the constants W(r) = 0 or W(r) = 1, the FOU and center difference schemes are recovered, respectively.

3.3. Time advancement

For the time advancement, a Runge–Kutta method is selected. Rather than the standard fourth-order method that is often
used, a strong stability preserving (SSP) third-order method is used in keeping with the theme of increased numerical sta-
bility. Essentially, SSP schemes are the temporal equivalent to TDV spatial discretizations. The optimal third order, three
stage (3–3) SSP Runge–Kutta method of Gottlieb and Shu [13] is used to approximate Eq. (13), which is defined by
/ð1Þ ¼ /n þ Dt � f / an;un; tnð Þ
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4
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4

/n þ 1
4

Dt � f / að1Þ; uð1Þ; tnþ1
� 

/nþ1 ¼ 2
3

/ð2Þ þ 1
3

/n þ 2
3

Dt � f / að2Þ;uð2Þ; tnþ1=2�  ð20Þ
where Dt is the time step size between levels n and n + 1, and the difference functions are given in Eqs. (14) and (15).
This method is the most widely used SSP Runge–Kutta scheme because it is relatively inexpensive computationally and

has a Courant–Fredrichs–Lewy (CFL) criterion of unity [14]. Combining the CFL condition with the restriction due to the
explicit treatment of the diffusion terms, the resulting heuristic numerical stability constraint is
Dt 6 min
Dx2

2m
;

2m
u2
1

� �
; ð21Þ
assuming e = m. The infinity subscript indicates the largest absolute value u1 = max |uj| in the domain.
In the end, the global method is a mix of second-order accurate centered differences, fractional-order flux limited differ-

ences and a third-order time marching scheme. The total accuracy of the combined scheme is as yet unknown, although one
might expect it to fall somewhere between second and third-order accuracy, the bounding upper and lower limits of the
individual components. To answer this question and to determine if the resulting code has implemented these algorithms
correctly, Section 4 will look at the problem of code verification.

4. Code verification

4.1. Overview

The numerical method described in Section 3 to solve the KY equations was made into a computer code using the Fortran
programming language. As with any newly developed code, verification exercises should be performed. In general, verifica-
tion is divided into two components: code verification and solution (or calculation) verification [15–18]. Code verification is
the process of determining if the numerical algorithms were implemented correctly [17,18], which is the focus of Section 4.2,
while solution verification addresses quantifying the numerical error of given solution, which is discussed in Section 5 and
then again in Section 7.

4.2. Method of manufactured solutions

The simplest way to test the code’s correctness (errors or bugs) and accuracy (observed convergence rate) is to compare a
numerical solution to a known exact analytical solution. Unfortunately, the KY equations have no known solution that is suf-
ficiently complex to exercise all of the terms. Certainly a(x, t) = 0 and u(x, t) = A, where A is any constant, is a solution to Eqs.
(1) and (2), but this solution will provide no useful information for assessing the accuracy of the code (although such trivial
solutions may be useful for checking the correctness of the code, i.e., debugging). Fortunately, this problem has a clever rem-
edy: simply manufacture a solution without being concerned about whether it exactly satisfies the governing PDEs. Then, if
the manufactured solution does not exactly satisfy the governing PDEs, it is relatively straightforward to determine the
residual source term that would modify the equations to make the manufactured solution an exact solution. This approach
is often referred to as the method of manufactured solutions (MMS).

To begin, it helps to write of the KY equations as a pair of operators:
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Then, in operator form, the KY equations become Laða;uÞ ¼ Luða;uÞ ¼ 0 for some a(x, t) and u(x, t) that are exact solutions
to Eqs. (1), (2). Following Roach [15], traveling waves are selected for the manufactured solutions:
~a ¼ 2þ 0:5 sin½~jðx� ~ctÞ�
~u ¼ 1þ 0:5 sin½~jðx� ~ctÞ�:

ð24Þ
The manufactured solutions are then inserted into the operators of Eqs. (22) and (23) giving
Lað~a; ~uÞ ¼ ~jð3=2� ~c=2Þcos½~jðx� ~ctÞ� þ ð1þ e~j2=2Þsin½~jðx� ~ctÞ� þ ~jð3=16Þsin½2~jðx� ~ctÞ� þ 4 � Saðx; tÞ ð25Þ
and
Luð~a; ~uÞ ¼ ð~j=2Þð1� ~c � C þ ð1=2Þ sin½~jðx� ~ctÞ�Þ cos½~jðx� ~ctÞ� þ ðm~j2=2Þ sin½~jðx� ~ctÞ� � Suðx; tÞ ð26Þ
which define the necessary source terms Sa(x, t) and Su(x, t) for modification of the KY equations so that the manufactured
solutions of Eq. (24) are exact solutions. The procedure could equivalently be called the method of manufactured equations
because it is really the governing equations that are changed from their original form, L/ða;uÞ ¼ 0, to a modified form,
L/ða;uÞ ¼ S/ðx; tÞ, to allow the handpicked solution to be an exact solution.

The source terms defined in Eqs. (25) and (26) are used as the sources in the finite difference functions in Eqs. (14) and
(15) at discrete space locations xi or xj and time levels tn. The initial conditions are given by the manufactured solutions at
t = 0. Periodic boundary conditions are applied so that no special boundary values need to be determined from the manufac-
tured solutions, but the domain or solution should be set so that there are an integer number of periods. The error between
the code-calculated solution and the manufactured exact solution will be assessed with a global L2 norm defined by
e2ð/Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i

/i � ~/ðxiÞ
� �2

vuut , ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i

~/ðxiÞ
� �2

vuut : ð27Þ
The coarsest grid used for the MMS is N = 25 and the nodalization is successively doubled, i.e., Dx is halved up to N = 800.
The convergence rate between a grid N and the doubled grid 2N is given by
O ¼ ln½e2ð/2NÞ=e2ð/NÞ�
lnðDx2N=DxNÞ

; ð28Þ
which gives the order of accuracy of the code for grid sizes in the vicinity of 3N/2. In the present work, the grid refinement is
always achieved by doubling the number of nodes so the denominator in Eq. (28) is simply ln(1/2). Additionally, the time
step should be refined consistently with the grid, which can be problematic because the time step is restricted by Dx2 for
small enough Dx. For each case, the ratio rD = Dt/Dx is set to a constant value so that the numerical stability condition of
Eq. (21) is satisfied for all grids.

4.3. Diverging case

To begin, the simplest waveform is selected, i.e., ~j ¼ ~c ¼ 1 in Eq. (24), so that the solution is 2p-periodic in space and
time. The domain is given by x e [�p, p], and the error will be assessed at t = 2p to give one period in both space and time.
The time step for each grid is set from rD = 0.0125. As may be somewhat expected, the MMS does not work, and the calcu-
lated solution diverges from the manufactured solution. The traditional refinement plot or table is not shown because they
offer little information. The important factor to demonstrate is not simply that the solution diverges but how it diverges.

The error for each variable is shown in Fig. 3 as a function of time for four different grids. The two coarsest grids have been
left off of Fig. 3 because the numerical viscosity is of the same order as the viscosity of the system, i.e., O(Dx2) � O(m). The
straight line in Fig. 3 beyond the finest grid is excðt�t	Þ with xc calculated using the average a of the exact solution and t⁄

is an arbitrary constant. This result shows that, for each case, there is an initial transient period after which the error grows
exponentially and approximately uniformly at the critical growth rate. Beyond this period, the solution either diverges to
infinity (an excursion) or reaches an asymptotic value. A discussion of the different behaviors is reserved until Section 7.

Fig. 3 is able to show that, while the MMS did not work, it failed in a way that was predicted by the linear stability analysis
in Section 2.2. Error is introduced to the calculation through two primary ways: round-off error in the finite precision rep-
resentation of the source terms and truncation error by the finite difference representation of the differential equations.
While these errors are initially very small, the linear stability analysis predicts that even infinitesimally small perturbations
will grow exponentially in time. Therefore, some adjustments are needed to proceed with the code verification.

4.4. Converging case

The most obvious change is to make the system hyperbolic by adjusting either the system or the manufactured solution.
This approach was tested by setting C = �1, which makes the system hyperbolic for the manufactured solution of the pre-
vious section, and convergence was indeed observed. However, this method of code verification raises several concerns,
namely that such an approach may not be applicable to other similar models, e.g., the 1-D two-fluid model.



Fig. 3. Divergence from the exact solution for the case x e [�p, p]. The straight line shows the average critical growth rate predicted from linear theory.
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Without altering the form of the equations or the solution, there is one other option available: shrink the geometry of the
problem so that domain simply cannot contain wavelengths with positive growth rates, i.e., L 6 k0. Using the maximum
value of a in the manufactured solution, the maximum cut-off wavenumber is j0 ¼ 20

ffiffiffiffiffiffiffiffiffiffi
2:15
p

ffi 29:3 or ‘0 ffi 2p/29.3. There-
fore, the domain will be reduced to x e [�p/30, p/30] so that the maximum possible wavelength is less than k0 and linear
growth should not be possible. The wavenumber of the manufactured solution is modified to fit the new domain, ~j ¼ 30,
while the previous wave speed is retained, ~c ¼ 1, so that the error is still assessed in one temporal period, t = 2p. The time
step for each grid is set from rD = 0.004.

Now the error is reduced as the grid is refined. The error for each grid is shown in Table 1, and the convergent behavior is
shown in Fig. 4. The convergence rate between two grids is also given in Table 1, which shows that the order of accuracy of
the method is slightly better than second order. There is a noticeable convergence of the rate of convergence, which was also
reported by others using the MMS [19]. For the coarsest grids, the refinement brings almost third-order accuracy, which is
shown in Fig. 4 as the steeper initial line. However, as the grid is refined further, the order of accuracy is reduced to near
second-order, which is also shown in Fig. 4.

Using such a small domain may not be physically relevant for some models, but this problem is not a concern of code
verification. This approach provides a method to further distinguish ill-posed models from regularized models because,
for an ill-posed model, there will be no domain where the MMS is applicable. Lastly, it should be noted that we are still left
wondering whether the numerical method (and really any time marching scheme) is appropriate for this type of problem,
but this issue is not really a question for the MMS or code verification in general. With code verification, one only wants to be
sure the code is working correctly, which has been shown.

5. Solution verification

5.1. Comparison with the Kreiss–Yström solution

The verified code may now be used to solve the KY Eqs. (1) and (2). The first and most obvious test is to simulate the
original problem of Kreiss and Yström [1] and compare with their results. The initial conditions are Gaussians of different
Table 1
Error for each grid and the convergence rate between two successive grids for the case x e [–p/30, p/30].

N a u

e2 O e2 O

25 5.860E�02 – 5.187E�02 –
50 8.345E�03 2.81 6.568E�03 2.98

100 1.363E�03 2.61 9.103E�04 2.85
200 2.652E�04 2.36 1.501E�04 2.60
400 5.817E�05 2.19 2.925E�05 2.36
800 1.363E�05 2.09 6.410E�06 2.19



Fig. 4. Convergence rates for the second MMS case x e [�p/30, p/30].
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widths defined by a0 ¼ e�2x2 and u0 ¼ e�4x2 , which are periodic about the origin. The domain is x e [�p, p], the grid is divided
into N = 512 uniform nodes and the time step is set to Dt = 0.0002. Comparisons to the published solutions are given Fig. 5.

From the initial condition to t = 1, the two numerical solutions are nearly indistinguishable. Even up to a time of t = 4, only
relatively minor differences are observed. However, at the last time, t = 40, the two solutions are entirely different; even
though the features of the two solutions are similar.

On the surface, this difference does not appear to be troublesome. After all, the numerical solution of Kreiss and Yström
[1] was obtained using a higher resolution pseudo-spectral method, which was shown to be fully converged for up to t = 8.
Showing that the numerical solution is fully converged or grid independent ensures that the numerical solution is an accu-
rate approximation to the system of PDEs. Quantifying the accuracy of a given solution is the process of solution verification
or numerical error estimation [18]. Solution verification can take on several forms, ranging from estimating the exact solu-
tion from a series of numerical solutions using the method of Richardson [20] to a more engineering approach of refining the
grid until two successive solutions become (relatively) indistinguishable.

The exact method for solution verification seems to be irrelevant here because any method is predicated on the simple
fact that the solutions on successive grids are in fact converging. The solutions at t = 40 are shown in Fig. 6 for successively
doubled grids from N = 512 to N = 4096. It can be observed that even with nearly an order of magnitude more grid points, the
solutions are different from that reported by Kreiss and Yström [1] and equally different from each other. While the features
of the solutions are again quite similar, what is so unsettling about Fig. 6 is that none of these features seem to be changing
systematically with the grid refinement: amplitudes are not increasing, slopes are not steepening, frequencies are not
increasing, waves are not translating (i.e., from dispersive errors). Each solution appears to be a different snapshot of a single
grid, or at least similar grids, at different times. Such a fundamental lack of convergence renders any type solution verifica-
tion impossible, at least for this code, in this time domain.

5.2. Sensitivity to initial conditions

While it may be impossible, or at least impractical, to complete the solution verification via error estimation at this point,
it is important to understand why this lack of convergence is happening. The answer is similar to what happened with the
MMS on the first, larger grid: very small errors are growing exponentially. Although each case starts with the same initial
condition (or at least as similar as can be represented on a different grid), the truncation errors are different for each grid.
This can be shown clearly using a single grid (N = 512) and introducing a very small perturbation and tracking the evolution
of this difference in time.

The initial conditions will now be defined by ~a0 ¼ e�ð2þdaÞx2 and ~u0 ¼ e�ð4þduÞx2 so that perturbations are now included in
the widths of the Gaussians. The original, unperturbed case is recovered by da = du = 0. Following Sprott [21,23], the magni-
tude of the perturbations will be taken to be on the order of the square root of the precision of the floating point numbers
being used, double precision in this case, so that |da| = |du| = d0 = 10�8. Perturbations to the initial condition will be solved in
time simultaneously with the unperturbed case. The difference will be treated as an error and quantified with the L2 norm
given in Eq. (27). Four different perturbations will be considered, each with the magnitude given by d0 and the signs of
(da, du) given by (+ +), (+ �), (� +) and (� �).



Fig. 5. Numerical solution to the KY equations (red) compared to the original results [1] (black). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Because the behavior of each is qualitatively similar, the norms of the variables are summed in Fig. 7 to give the total
error. Except for in the very small time domain, the solutions diverge much more slowly than excðt�t	Þ, which was observed
in the first MMS case. Instead, each perturbation solution is diverging from the unperturbed case approximately at a rate of
e0:38ðt�t	Þ shown by the dashed lines in Fig. 7 (the value of 0.38 will become clear in Section 6.1). The slowed divergence rate is
a result of the nonlinearity and was also observed by the original authors [1]. While the logarithm of this growth rate is about
an order of magnitude less than predicted by linear theory, the divergence eventually leads to entirely different solutions
when the total error saturates around t = 50, which shows that the solutions are very sensitive to the initial conditions,
i.e., small changes in the initial state can eventually lead to drastic changes in later states, which is an indication of chaos
and was first termed the butterfly effect by Lorenz. The idea of chaos in the KY equations will be explored in some detail
in the following section.



Fig. 6. Numerical solutions of the KY equations at t = 40 on four different grids.
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6. Chaos and bounded nonlinear waves

6.1. Lyapunov exponent

While there may not be a formal mathematical proof of chaos, a standard test and the best way to quantify the chaos is
with the Lyapunov exponents [21], specifically the largest Lyapunov exponent (LLE). For a finite dimensional system of ODEs,
there are as many exponents as there are dimensions. For a PDE or system of PDEs, the number of exponents is infinite. Luck-
ily, the calculation of the largest Lyapunov exponent is tractable and its sign signifies whether a system is chaotic and its
magnitude determines the degree of chaos. In many respects, the LLE is to nonlinear analysis as the growth rate is to linear
analysis.

More specifically, the LLE calculates the average rate at which two nearby states converge to or diverge from one another.
The LLE is defined by
LLE ¼ lim
t!1

lim
d!0

1
t

ln
dðtÞ
d0

; ð29Þ



Fig. 7. The divergence of four solutions with slightly perturbed initial conditions compared to the unperturbed case.
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where d0 is some initial separation between two trajectories (solutions) and d(t) is the separation at some later time. Note
that d0 is not necessarily introduced at t = 0. A positive LLE indicates that the solutions are diverging and that the system is
chaotic. The magnitude of the LLE approximates the rate at which the predictability of the system is lost [21]. If the solutions
are diverging, the limits in Eq. (29) seem to contradict one another. Therefore, in practice, the two trajectories are never
allowed to diverge too far from one another before being reset. The LLE is calculated and averaged over many periods to
obtain satisfactory statistics.

The system of PDEs is treated as a 2N-dimensional system of ODEs for which the general procedure is relatively straight-
forward. First, the solution is solved for a period of time to allow any transients to settle out, which is particularly important
because the condition that guarantees convergence of finite time Lyapunov exponents to the global Lyapunov exponents is
that the underlying system has an invariant attractor [22]. Then, at a specified time, a minor perturbation is introduced and
this second solution is also followed. For many short intervals of time, the two solutions are solved and the perturbed solu-
tion is compared to the original unperturbed solution to determine the evolution of the separation. Then, the perturbed solu-
tion is renormalized against unperturbed solutions so that the difference between the two solutions does not grow too large
and the procedure is repeated.

The perturbation should be introduced in the direction of the maximum divergence, which may not be easy to evaluate.
Therefore, a simple, general perturbation is introduced and the system is given a period of time, here 1000 time units, for the
perturbation to orient in the direction of maximum expansion [21]. The first imposed perturbation is specified as
~a ¼ a� sgnðxÞd0 and ~u ¼ uþ sgnðxÞd0 with tilde overbars again signifying the perturbed solution. It should be noted that
the perturbation slightly breaks periodicity equally at the edge and center of the domain, which is so that there is no integral
change to the perturbed solution which would slightly alter its equilibrium position. The magnitude of the separation in both
variables at each spatial location, i.e., in each of the 2N-dimensions, is the same as that used previously, d0 = 10�8. The total
separation is given by the 2N-dimensional Euclidean norm
dk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i

ð~ai � aiÞ2 þ ð~ui � uiÞ2
vuut : ð30Þ
The subscript k is used to indicate that the LLE calculation number is in general not the same as the iteration number n

unless the perturbation is introduced at time zero. The initial separation is then d0 ¼
ffiffiffiffiffiffiffi
2N
p

d0.
Following Sprott [21,23], the LLE is calculated after each iteration so that the separation does not become too large and

then the perturbation is readjusted. The perturbation is adjusted so that the perturbed orbit is preserved while renormalizing
the net separation to be d0 again, i.e.,
~/i ¼ /i þ d0ð~/i � /Þ=dk: ð31Þ
Finally, the LLE is given by the logarithm of the ratio of the net separation at time k to k � 1, and because the starting
separation is always renormalized to the initial separation, it is simply
LLE ¼ 1
k

Xk!1
k¼1

ln
dk

d0
: ð32Þ



Fig. 8. Running average of three LLE calculations started at different times.
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Generally, this calculation needs to be performed for very long periods of time to determine the LLE with a high degree of
precision. Here, however, the primary concern is simply determining whether the LLE is positive and obtaining an approx-
imate value.

The LLE calculation was started at three different times: t = 2 � 104, 2.5 � 104 and 3 � 104. Each calculation started with the
initial perturbation described previously, which was introduced 103 time units before the calculation began to allow the per-
turbed solution to orient itself in the direction of maximum expansion. Each calculation is performed for 3 � 104 time units.
The running average of each calculation is shown in Fig. 8. Even at a time of t = 2 � 104, there is still some of the initial tran-
sient in the solution, which is apparent in the running average of the first LLE calculation. However, the average eventually
settles down when the number of samples becomes large and agrees with the other two calculations. Taking an average of
the three final values and using 1=

ffiffiffiffiffiffiffiffi
f � t

p
to estimate the order of accuracy (where f is the characteristic frequency and t is the

calculation time), the LLE is determined to be 0.38 ± 0.05. This measure quantifies the reduced rate of the divergence of the
solutions with the slightly perturbed initial conditions, refer back to Fig. 7.

6.2. Fractal dimension

Beyond showing that the LLE is positive, the second most important sign of chaos is that of a fractal dimension of the
dynamics. The fractal dimension measures the ‘‘strangeness’’ of the attractor [24–26]. There are several techniques to mea-
sure the dimensionality, each of which produces slightly different results. Here, the correlation dimension is used because it
is easier to calculate than other measures and converges rapidly [21,24,27].

In general, the correlation dimension is calculated by shrinking a hypersphere in dE -dimensional space of radius r and
counting the number of points inside the hypersphere, which is given by the correlation sum, C(r). As the total number of
points tends to infinity, the correlation sum converges to the correlation integral and behaves as
CðrÞ / rdC ; ð33Þ
as the radius tends to zero. Therefore, on a logarithmic plot, the slope of C(r) vs. r gives the correlation dimension dC.
Part of the challenge is that there are simultaneously two unknowns: the correlation dimension and the phase-space

dimension in which the fractal dimension should be calculated. For instance, a line has dC = 1 whether it is constructed in
2-D space, 3-D space or any higher dimension. The dimension of the construction is called the embedded dimension, dE.
In this case, the dimensionality of the problem is infinite or 2N when the PDEs are solved with the finite difference scheme
discretizing the spatial domain in N segments. However, it may not be necessary to use all 2N variables to capture the
dynamics of the problem. Therefore, the correlation dimension is first calculated with an embedded dimension of one, which
is almost surely insufficient, and then repeated several times, each time increasing the imbedding dimension. At some point,
the correlation dimension will stop changing, giving both and the minimum embedded dimension.

To create the phase-space, the u variable is recorded at dE equidistant positions in the spatial domain every 250 iterations
in the time domain t = 2.5 � 104 to 6.5 � 104. The left of Fig. 9 shows C(r) in the logarithmic scale for dE from one to nine. The
successive slopes correspond to dC, which are plotted on the right of Fig. 9 as a function of dE. The correlation dimension sat-
urates at dC ffi 2.8 with a minimum embedded dimension of dE = 6, which indicates that in principle the dynamics of the sys-
tem may be modeled without overlapping using only six state variables [27].



Fig. 9. Calculation of the correlation dimension as a function of the embedded dimension.
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6.3. The route to chaos

Each of the two previous sections were devoted to the calculation of a single number, namely the LLE in Section 6.1 and
the fractal dimension in 6.2. Here, the emphasis will be more qualitative than quantitative in exploring how the equations
evolve from stable to chaotic states. For this study, the coefficient C in the KY Eqs. (1) and (2) will be the control parameter,
which seems to be the best choice because it was already shown to be directly related to the critical growth rate from the
linear stability analysis. Accordingly, the dynamics of the system are explored by varying C starting with negative (stable)
values and progressively increasing it to positive (unstable) values. All of the tests were performed with the viscosities,
boundary and initial conditions and numerical grid (N = 512 and Dt = 0.0002) used previously in Section 5.1. The equations
are solved numerically letting the initial transient pass (in some cases up to t = 2.5 � 104 as was observed in Fig. 7) and then
the long-term dynamics, either stable or unstable, are analyzed.

The dynamics are visualized by the trajectory of the state variables at the center of the domain, labeled a0 and u0 in the
following figures. With this phase-space construction it is easy to see how the variables are approaching the attractor, i.e.,
the equilibrium position, which corresponds to the constant uniform values a = 0 and u � 0.141. The former is forced to zero
by the dissipative sink in Eq. (1) and the latter is a consequence of the periodic boundary conditions, which ensure that the
integral conservation of u is given by

R p
�p e�4x2

dx ¼
ffiffiffiffiffiffiffiffiffi
p=4

p
Erf ½2p� � 0:141 in the limit N ?1. In addition, a third dimension is
Fig. 10. Phase-space and grey scale map of u(x, t) for C = 0.102 showing the asymptotic stability of the system.



Fig. 11. Phase-space for C = 0.102, 0.1025, 0.103 and 0.105 and grey-scale map of u(x, t) for C = 0.103 showing 2p-periodic limit cycles, increasing in
amplitude with increasing C.
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added to the phase-space to help unfold some of the dynamics, although an embedded dimension of six precludes unfolding
all of the chaotic dynamics into a visualizable space in the chaotic region. The difference between u at the boundary and cen-
ter of the spatial domain, uL � u0, was found to provide a useful third dimension. This variable can be used to distinguish
between 2p- and p-periodic functions. Its equilibrium value is zero due to the uniform equilibrium condition.

When C < 0, the solution quickly approaches equilibrium, which is the expected behavior for a linearly stable hyperbolic
system. When C becomes positive, the system remains linearly stable due to the diffusion, i.e., the domain is smaller than the
cut-off wavelength. There is a critical value of C when the size of the domain (and therefore the largest possible wavelength)
is equal to the cut-off wavelength, k0ðC	Þ ¼ L. The present case, L = 2p, m = 0.05 and using the equilibrium value a = 0, gives
C⁄ = 0.1025. The decay rate of the approach to the equilibrium position slows dramatically as C approaches C⁄. This behavior
is shown in Fig. 10 for C = 0.102. The left hand side of the figure shows the slow spiral of the state variables into the attractor
and the right hand side shows a brief map of the spatiotemporal evolution.

As C increases slightly beyond C⁄, the steady state of the system becomes unstable and a 2p-periodic traveling wave is
developed. The wave travels at a constant speed, which is shown by the parallel lines in the grey-scale contour map of
Fig. 11, taken after the sustained wave is reached. This behavior corresponds to a limit cycle in phase-space. The amplitude
Fig. 12. Phase-space for C = 0.107, 0.109 and 0.111 and grey-scale map of u(x, t) for C = 0.109, showing asymmetric 2p-periodic limit cycles, increasing in
amplitude with increasing C.



Fig. 13. Phase-space and grey-scale map of u(x, t) for C = 0.115 showing a burst of brief, intermittent chaos surrounded by p-periodic limit cycles.
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of the wave and the limit cycle grow as C increases, observed on the left of Fig. 11. Near C = 0.104, the limit cycle becomes
deformed and begins to appear heart-shaped, as shown on the right of Fig. 11 for C = 0.105. Beyond C = 0.107, the limit cycle
becomes significantly more complex with a curl in the trajectory as observed in Fig. 12. This behavior corresponds to a steep-
ening wave front and the development a secondary wave pattern.

At C = 0.112, the system develops intermittency with relatively long periods of periodic, regular waves interrupted by
short bursts of another wave pattern. Intermittency is one of the three basic types of bifurcations leading to chaos, along with
quasiperiodic and period doubling [21]. In the phase-space it is difficult to distinguish between intermittency and chaos for a
long time series of data. However, on the right of Fig. 13, the brief interruption in the temporal signal is easily recognizable.

This behavior continues up to C = 0.116. Between 0.116 and 0.120 another stable traveling wave appears with a wave-
length of half the spatial domain. This feature can be appreciated in Fig. 14 which shows that the limit cycle is now flat
in the third dimension due to the p-periodic wave which is shown above the map.

Finally, after another brief region of intermittency, the system becomes chaotic at C = 0.125. Fig. 15 shows a slightly more
chaotic state for C = 0.150. For clarity, only a brief part of the trajectory in the phase-space is plotted, for the evolution is so
entangled that it is difficult to visualize in this representation (actually we would need 6 axis to disentangle the chaotic tra-
jectory). On the right of Fig. 15, the map of u(x, t) shows that the regularity of the standing wave is lost, i.e., uniform ampli-
tudes, periods, propagation speeds, etc., and the complexity of the dynamics can be observed. This chaotic state continues
and increases in complexity as C increases up to the original value of one.

7. Solution verification revisited

Now that it has been demonstrated that the KY equations are chaotic, it is understandable why the results in Fig. 5 do not
match the published results, at least beyond some initial time frame. While it may be impossible to reproduce the solution
exactly with a different code, the question of solution verification still remains. That is, how to judge when a grid for the
numerical scheme is sufficient. A new method to assess convergence is needed because, due to the positive LLE, any pertur-
bation no matter how small, e.g., different grid, will eventually diverge. Chaos theory provides several possible options, some
of which have already been discussed, namely the LLE and the fractal dimension. These measures are invariant; that is, unlike
the solution as a function of time, these measures are insensitive to perturbations of the initial conditions [27]. Unfortu-
nately, calculating these quantities for several grids is quite computationally expensive. Additionally, because it is hoped that
the analysis of the KY equations will serve some guidance to the 1-D two-fluid model, calculating these quantities with phys-
ical models for physical problems may be impossible. Therefore, perhaps it is best to borrow concepts from a well-known
physical model that exhibits similar spatio-temporal convergence challenges: the Navier–Stokes equations.

When the Navier–Stokes equations are solved using large eddy simulation, for a sufficiently large Reynolds number, the
flow becomes turbulent and one can no longer compare the solution at a particular time as a function of the grid size.
Instead, it is quite typical to assess the convergence based on the law of the wall (for internal flows), the auto-correlation
function or one of the energy spectra. While these may not be so well defined for the nonphysical KY system, a common



Fig. 14. Phase-space for C = 0.116, 0.118, and 0.120 and grey-scale map of u(x, t) for C = 0.120 showing p-periodic limit cycles, increasing in amplitude with
increasing C.

Fig. 15. Phase-space and grey-scale map of u(x, t) for C = 0.150 showing chaotic and aperiodic behavior.
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feature is that they are all averaged measures. In this case, convergence will be assessed with the average amplitude in wave
space by averaging the Fourier transform of a(x) ? a(j) and u(x) ? u(j). The first sample is taken at t = 4 when the wave
pattern fills the domain and 36 additional samples are taken up to t = 40.

The averaged amplitude spectra are shown in Fig. 16 for successively doubled grids from N = 256 to N = 4096. From here,
it is up to the user to make a determination of what is ‘‘resolved enough.’’ For the present numerical method it seems that the
N = 512 grid is sufficiently resolved because it correctly captures 99.99% of the amplitude spectrum, i.e., from the maximum
amplitude of 0.1 down to approximately 0.00001 where the numerical tail introduces significant error. In contrast, N = 256
only captures approximately 99% of the spectrum correctly and higher grids lose much of their potential value to the growing
numerical tails. This result shows that even though the numerical method may be considered ‘‘high-resolution’’ compared to
linear upwind methods, it is still quite coarse in the spectral domain.



Fig. 16. Averaged power spectra of the amplitude of each variable in the time domain t e [4, 40] sampled at a frequency of 1 Hz.
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At this point, it is hard not to draw a comparison between the present KY equations and the Kuramoto–Sivashinsky (KS)
equation, which was physically derived to model chemical reactions [28]. In both cases, the mechanism generating the chaos
is the same: energy is generated at small wavenumbers, where the model is linearly unstable, which is transferred to larger
wavenumbers through shock-like structures by the nonlinearity until it reaches a sufficiently large wavenumber where the
energy is dissipated by viscosity, which is the reason that truncation errors that grow exponentially will cause the same ini-
tial condition on two different grids to evolve into two different solutions, rather than just growing exponentially forever
causing a numerical excursion.

Lastly, it should be noted that Fig. 16 helps explain the different behavior of the divergent MMS cases in Fig. 3. For grids
with resolution less than approximately N < 256, the code could not calculate a solution to the KY equations. This behavior
appears to be a result of not having a sufficient amount of high wavenumber nodes to dissipate the energy generated at the
large scale, which is not a universal grid resolution requirement to the governing equations, but specific to the numerical
method. A different scheme with better spectral resolution would likely be able to obtain a solution with less refinement.
Therefore, in all of the cases presented in Fig. 3, the underlying KY equations dominated the MMS and are trying to produce
solutions similar to the KY equations, but with a large modified source term. The finer grids are capable of solving this system
and reach an asymptotic value for the error when a quasi-steady state is reached. However, the coarser grids simply do not
resolve enough of the spectrum to dissipate the energy that is generated at the large scale, which leads to the blow up.

8. Conclusions

This work presented a detailed analysis of the two PDE system originally proposed by Kreiss and Yström [1]. The KY equa-
tions are conditionally ill-posed as an IBVP when the characteristics of the system are complex. A linear stability analysis was
used to show the effect of higher-order viscous regularization, which parallels similar regularization methods for the 1-D
two-fluid model. A simple finite-difference numerical method was used to solve the KY equations. When the code was tested
with the MMS, divergence from the manufactured solution was observed and a convergence test could not be performed. It
was shown that the rate of divergence was predicted nearly exactly by the critical growth rate of the linear stability analysis.
Using the linear stability analysis as a guide, a smaller spatial domain was used, which was restricted to less than the min-
imum cut-off wavelength. The MMS did converge on the smaller domain, and a convergence test was performed, verifying
the code.

The code was then used to repeat the simulation of Kreiss and Yström [1]. For up to t = 4, the calculated solution matched
the published solution [1]. However, at a later time, t = 40, the two solutions were quite different. Due to the simple numer-
ical method in this work, it was assumed that the grid was simply too coarse and further refinement was required. Upon four
successive refinements, it was shown that the solutions did not seem to be converging to a single solution. This nonconver-
gent behavior was further demonstrated using a single grid (N = 512) and imposing four small perturbations to the initial
condition. Each slightly perturbed solution diverged from the unperturbed solution similarly to the behavior of the MMS
divergence but at a significantly reduced exponential rate.

This extreme sensitivity to initial conditions indicated that the KY equations may be chaotic. Therefore, the LLE was
calculated in the long-term time domain when the solution reached a quasi-steady state around the equilibrium condition.
It was determined that the LLE was positive, indicating chaotic behavior, with a value of approximately 0.38. This value was



46 W.D. Fullmer et al. / Applied Mathematics and Computation 248 (2014) 28–46
shown to quantify the rate of divergence of the perturbed initial conditions observed previously. The strange attractor was
further quantified by calculating the correlation dimension. The correlation dimension was determined to be fractal with a
value of 2.8. The minimum embedded dimension necessary to unfold the dynamics of the chaos was shown to be six.

The route from steady behavior to chaotic behavior was studied using the C coefficient as the control variable. For small,
positive values of C, the solution approached the equilibrium steady-state solution asymptotically. As C approached a critical
value C⁄, the rate of decay to the equilibrium slowed until a limit cycle behavior appeared with a wavelength equal to the size
of the domain, i.e., L-periodic. Further increases in C increased the amplitude of the limit cycle and the asymmetry of the
waveform. Eventually, intermittency appeared: stable L/2-periodic waves punctuated by short bursts of chaos-like behavior.
The frequency of the intermittency decreased until a stable L/2-periodic limit cycle was reached. A similar pattern repeated
until chaotic behavior is finally reached around C = 0.125.

Finally, the issue of nonconvergence was re-examined. A different means to quantify the effect of the grid was sought that
did not rely on comparing specific solutions at a single time. The wavenumber (Fourier) spectra of the two solution variables
were averaged from times t = 4–40. While the different grids produce different solutions at the later time, the averaged
wavenumber spectra over the time range converge to an invariant spectrum, i.e., independent of the initial conditions. This
approach allows for an assessment of the numerical scheme for a particular solution depending on the desired resolution.

While some of this work may seem straightforward for the simple KY equations, it is hoped that this analysis will serve as
a road map for similar analysis of the dynamic 1-D two-fluid model. It was shown that both models are similar in structure
(of the PDEs), have similar linear stability properties and even have similar dynamics (waveforms). Portions of this analysis
have already been used by the authors in the study of wavy-stratified liquid–liquid flow using the 1-D two-fluid model [29].
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