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Abstract. This project aims to cast light on a Boussinesq system of
equations modelling two-way propagation of surface waves. Included
in the study are existence results, comparisons between the Boussinesq
equations and other wave models, and several numerical simulations.
The existence theory is in fact a local well-posedness result that be-
comes global when the solution satisfies a practically reasonable con-
straint. The comparison result is concerned with initial velocities and
wave profiles that correspond to unidirectional propagation. In this cir-
cumstance, it is shown that the solution of the Boussinesq system is
very well approximated by an associated solution of the KdV or BBM
equation over a long time scale of order 1

ε
, where ε is the ratio of the max-

imum wave amplitude to the undisturbed depth of the liquid. This result
confirms earlier numerical simulations and suggests further numerical
experiments, some of which are reported here. Our results are related
to recent results of Bona, Colin and Lannes [11] comparing Boussinesq
systems of equations to the full two-dimensional Euler equations (see
also the recent work of Schneider and Wayne [26] and Wright [30]).

Accepted for publication: September 2005.
AMS Subject Classifications: 35Q35, 35Q51, 35Q53, 65R20, 76B03, 76B07, 76B15,

76B25.
1College of Sciences, Department of Mathematics, King Saud University, Riyadh, 11451,

Saudi Arabia

121



122 A.A. Alazman, J.P. Albert, J.L. Bona, M. Chen, and J. Wu

1. Introduction

In this report, attention will be directed to a Boussinesq system of partial
differential equations,

ηt + vx + ε(ηv)x − 1
6εηxxt = 0,

vt + ηx + εvvx − 1
6εvxxt = 0,

(1.1)

posed for (x, t) ∈ R × R
+, with prescribed initial data

η(x, 0) = η0(x), v(x, 0) = v0(x), x ∈ R. (1.2)

The system (1.1) is a model equation for surface waves in a uniform hori-
zontal channel filled with an irrotational, incompressible and inviscid liquid
under the influence of gravity. These equations are considerably simpler
than the full Euler equations,

εφxx + Sφyy = 0 in {0 < y < 1 + εη(x, t)},
φt + 1

2

(
εφ2

x + Sφ2
y

)
+ η = 0 on {y = 1 + εη(x, t)},

ηt + εφxηx − S

ε
φy = 0 on {y = 1 + εη(x, t)},
φy = 0 on {y = 0},

(1.3)

for two-dimensional water waves in a channel with a flat bottom. Here
the independent variable x determines position along the channel, y is the
vertical coordinate, and t is proportional to elapsed time. The dependent
variable φ = φ(x, y, t) is the velocity potential (so ∇φ is the velocity field),
and the dependent variable η = η(x, t) represents the vertical deviation of
the free surface from its rest position at the point x at time t. The equations
have been non-dimensionalized by scaling the variables: x is scaled by λ, a
representative wave length; y is scaled by h0, the undisturbed water depth; t
is scaled by λ/c0, where c0 =

√
gh0 with g being the acceleration of gravity;

η is scaled by a, a representative wave amplitude; and φ is scaled by gaλ/c0.
The non-dimensional parameters ε and S (the Stokes number) are defined
by ε = a/h0 and S = aλ2/h3

0.
The system (1.1) can be derived from (1.3) via a formal asymptotic ex-

pansion under the assumptions that ε is small and that S is of order one.
(In fact, for purposes of notational convenience, in writing (1.1) the value
of S has been set exactly equal to one; had S been allowed to take more
general values, both occurrences of the constant 1

6 in (1.1) would have been
replaced by 1

6S. In the remainder of this paper the assumption that S = 1
will remain in force whenever reference is made to the system (1.3).) These
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assumptions on ε and S correspond to the physical assumptions that the
waves being modelled have small amplitude and long wavelength relative to
the water depth, with the condition S ∼ 1 corresponding to a certain balance
obtaining between the nonlinear effects owing to small but not infinitesimal
amplitudes and frequency dispersion coming from large, but finite wave-
lengths. The variables x, y, t, and η in (1.1) retain the same interpretations
as in (1.3); and the new independent variable v(x, t) is the horizontal veloc-
ity of the fluid at the point (x, y) = (x,

√
2/3), scaled by the factor ag/c0.

That is, v represents the horizontal velocity at points whose distance from
the channel bottom is

√
2/3 times the depth of the undisturbed fluid. This

choice of variable v is, as explained in Bona, Chen and Saut [9, 10], related
to the particular form which (1.1) takes, in opposition to other Boussinesq
systems which are formally equivalent to (1.3) but which may have different
mathematical properties.

One way in which (1.1) differs from other Boussinesq systems is that it is
easier to integrate numerically. This fact was exploited in an earlier study
[8], where numerical approximations of solutions of (1.1) were used to explore
such phenomena as collisions between solitary waves which move in opposite
directions. It was also observed in [8] that (1.1) has solitary-wave solutions
that closely resemble solitary-wave solutions of the BBM equation

qt + qx + 3
2εqqx − 1

6εqxxt = 0. (1.4)

For discussions of solitary-wave solutions of (1.1) and other Boussinesq sys-
tems, see [6, 19, 27, 28].

Equation (1.4), like the system (1.1), is a model equation for long, small-
amplitude water waves; but has been simplified further through the assump-
tion that the waves being modelled propagate only in one direction. It
is therefore to be expected that the solitary-wave solutions of (1.1), being
purely unidirectional, should resemble those of (1.4). It is the purpose of this
paper to establish a similar correspondence between more general solutions
of (1.1) and (1.4).

Below, a result is obtained showing that if the motion in the channel is
properly initiated, then the solution of the Boussinesq system (1.1)-(1.2)
exists and is tracked by a directly associated solution of the BBM equation
(1.4) over the long time scale 1

ε . More precisely, it is shown that if g(x) is a
given initial wave profile, then if we consider the BBM equation (1.4) with
initial value g and the Boussinesq system (1.1) with initial values

η(x, 0) = g(x), v(x, 0) = g(x) − 1
4εg(x)2,
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then
|η − q| = O(ε2t) and

∣∣v −
(
q − 1

4εq2
)∣∣ = O(ε2t)

at least for t of order 1
ε . As explained in [2], [11] and [14] for example, all

the dependent variables η, q and v are of order one, so this result shows
that at time t = O(1

ε ), the difference between η and q (and between v and
q − 1

4εq2) lies at the order that can be attributed to the neglected terms in
the approximation. Thus, at the theoretical level, one should not distinguish
between (1.1) and (1.4) provided waves that are moving sensibly in one
direction are in question. This theoretical result has its roots in the Ph.D.
thesis of Alazman [1], directed by Albert at the University of Oklahoma.

In light of the work of Bona, Pritchard, and Scott [14] comparing solutions
of the BBM equation (1.4) to solutions of the KdV equation

rt + rx + 3
2εrrx + 1

6εrxxx = 0, (1.5)

our result is equivalent to a comparison between solutions of (1.1) and (1.5)
(see Theorems 3.1 and 3.4 below). It is also closely related to recent results
of Bona, Colin and Lannes [11] comparing solutions of the KdV equation and
Boussinesq-type systems to solutions of the two-dimensional Euler equations
(1.3) (see also Craig [21], Schneider and Wayne [26], and Wright [29, 30]).

Our analysis begins with a study of the well-posedness of the initial-
value problem (1.1)-(1.2). An informal interpretation of the principal well-
posedness result is that as long as the channel bed does not run dry, the
solution continues to exist. A technical description of this result will appear
in Section 2.

The statement of the main comparison result is given at the beginning
of Section 3, along with a discussion of the related comparison results men-
tioned above. The remainder of Section 3 contains a detailed proof of the
main result.

The theory developed in Section 3 motivates several accurate numerical
experiments whose outcomes are reported in Section 4. They further illumi-
nate the relation between the Boussinesq system and the BBM equation. In
particular, some of the comparisons exhibited are quite startling.

The paper closes with a brief conclusion which provides an appreciation
of the present development and indications of interesting related lines of
investigation.

2. Well-posedness results

We begin with a précis of the notation to be used in the technical sections
of the paper. For 1 ≤ p < ∞, Lp denotes the space of equivalence classes of
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Lebesgue measurable, pth-power integrable, real-valued functions defined on
the real line R. The usual modification is in effect for p = ∞. The norm on
Lp is written as ‖ · ‖Lp . For f ∈ L2, the Fourier transform f̂ of f is defined
as

f̂(k) =
∫ ∞

−∞
e−ikxf(x) dx.

For s ≥ 0, the L2-based Sobolev class Hs is the subspace of those L2 func-
tions whose derivatives up to order s all lie in L2, and the norm on Hs is
taken to be

‖f‖2
s =

∫ ∞

−∞
(1 + k2)s|f̂(k)|2 dk.

For non-negative integers m, Cm
b is the space of m-times continuously dif-

ferentiable, real-valued functions defined on R whose derivatives up to order
m are bounded on R. The norm is

‖f‖Cm
b

= sup
x∈R

∑
0≤j≤m

|f (j)(x)|.

For any Banach space X and real number T > 0, C(0, T ;X) is the class
of continuous functions from [0, T ] to X. If X = L2, we write LT for
C(0, T ;L2). Similarly, we write Bk

T for C(0, T ;Ck
b ) and Hk

T for C(0, T ;Hk),
k = 1, 2, . . .. Of course, H0

T = LT . If X and Y are Banach spaces, then their
Cartesian product X ×Y is a Banach space with a product norm defined by
‖(f, g)‖X×Y = ‖f‖X + ‖g‖Y .

Attention is now turned to the well-posedness theory. The principal result
is the following.

Theorem 2.1. (i) Let (η0, v0) ∈ Hk × Hk, where k ≥ 0. Then there ex-
ists T > 0, depending only on ‖(η0, v0)‖Hk×Hk , and a unique solution pair
(η, v) ∈ Hk

T ×Hk
T for the system of integral equations (2.2) below. For any

k ≥ 0, (η, v) comprises a distributional solution of the initial-value problem
(1.1)–(1.2). If k ≥ 2, then (η, v) is a classical solution of (1.1)–(1.2). The
mapping that associates to initial data the corresponding solution of (2.2) is
uniformly Lipschitz continuous on any bounded subset of Hk × Hk.

(ii) The conclusions of (i) still hold if Hk is replaced by Cm
b , where m ≥ 0,

and Hk
T is replaced by Bm

T . In this case, (η, v) is a classical solution of (1.1)–
(1.2) if m ≥ 1.

(iii) Let T0 ∈ (0,∞] be the maximal existence time for the solution de-
scribed in (i); i.e., T0 is the supremum of the set of values of T such that
the solution exists on the interval [0, T ]. If there exist numbers α > 0 and
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a < T0 such that 1 + εη(x, t) > α for all x ∈ R and all t ∈ (a, T0), then
T0 = ∞. Also, if there exist numbers M ∈ R and a ∈ R such that

‖(η(·, t), v(·, t))‖L2×L2 ≤ M

for all t ∈ (a, T0), then T0 = ∞.

Remark 2.2. It is worth emphasis that Theorem 2.1 is a local well-posedness
result, not a global theorem. The criteria in (iii) provide sufficient conditions
for solutions to be global. It seems likely that for ε small, initial data that is
of order one will develop into globally defined solutions. However, numerical
simulations not reported here suggest that large data may lead to solutions
that form singularities in finite time. Both the criteria in (iii) are more than
plausible; indeed, any physically relevant solution will certainly satisfy both
these conditions. In particular, the condition 1 + εη > 0, when interpreted
in the original physical variables, means simply that the total water height
does not reach zero, which is to say the channel does not become dry.

The proof of Theorem 2.1 is similar to the proofs given for analogous
results in [3], [8] and [10]. The details are therefore only sketched. Certain
aspects of the proof offered below reappear in Section 3 in the proof of the
main comparison result.

To begin, write the system (1.1) in the form(
1 − 1

6ε∂2
x

)
ηt = − (v(1 + εη))x ,(

1 − 1
6ε∂2

x

)
vt = −

(
η + ε

2v2
)
x
.

Inverting the operator
(
1 − 1

6ε∂2
x

)
subject to zero boundary conditions at

infinity leads to the relations

ηt = Mε ∗ (v(1 + εη))x,

vt = Mε ∗
(
η + ε

2v2
)
x
,

(2.1)

where the kernel Mε is defined via its Fourier transform, viz.,

M̂ε(k) = −
( 1

1 + εk2/6

)
.

Direct calculation using the Residue Theorem shows that for x ∈ R,

Mε(x) = −1
2

√
6
ε
e−

√
6/ε|x|.
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Integrating by parts in (2.1) and then integrating with respect to t over the
interval (0, t) yields

η(x, t) = η0(x) +
∫ t

0
Kε ∗ (v(1 + εη)) dτ,

v(x, t) = v0(x) +
∫ t

0
Kε ∗

(
η +

ε

2
v2

)
dτ

(2.2)

where

Kε =
3
ε
(sgn x)e−

√
6/ε|x| and K̂ε(k) =

−ik

1 + εk2/6
.

The following technical lemma about the action of convolution with Kε

and Mε will be used immediately and later on as well. Their proof involves
elementary considerations which are here omitted.

Lemma 2.3. There are constants C independent of f, g and ε > 0 such that
the following inequalities hold. For any s ≥ 0,

‖Kε ∗ f‖s ≤ Cε−
1
2 ‖f‖s, (2.3)

‖Kε ∗ f‖s ≤ C‖f‖s+1,

‖Kε ∗ f‖s+1 ≤ Cε−1‖f‖s,

‖Kε ∗ (fg)‖L2 ≤ Cε−3/4‖f‖L2‖g‖L2 , (2.4)

‖Mε ∗ f‖s ≤ C‖f‖s. (2.5)
For any integer m ≥ 0,

‖Kε ∗ f‖Cm
b

≤ Cε−
1
2 ‖f‖Cm

b
, (2.6)

‖Kε ∗ (fg)‖Cm
b

≤ Cε−
1
2 ‖f‖Cm

b
‖g‖Cm

b
. (2.7)

The proof of part (i) of Theorem 2.1 will now be considered. Let T > 0
be arbitrary for the moment, and write the pair of integral equations (2.2)
symbolically as (η, v) = A(η, v). Here A is the obvious mapping of functions
with domain R × [0, T ] defined by the right-hand side of (2.2). It will be
shown that the mapping A is contractive on a suitable subset of LT × LT .
Indeed, take any two elements (η1, v1) and (η2, v2) from LT ×LT , and notice
that

‖A(η1, v1) − A(η2, v2)‖LT×LT
=

∥∥∥∫ t

0
Kε ∗ (v1 − v2 + ε(η1v1 − η2v2))dτ

∥∥∥
LT

+
∥∥∥∫ t

0
Kε ∗ (η1 − η2 +

1
2
ε(v2

1 − v2
2))dτ

∥∥∥
LT

.
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Apply the basic estimates in Lemma 2.3 to derive the inequality

‖A(η1, v1) − A(η2, v2)‖LT×LT

≤ CT
[
ε−

1
2 ‖v1 − v2‖LT

+ ε
1
4 (‖η1 − η2‖LT

‖v1‖LT
+ ‖η2‖LT

‖v1 − v2‖LT
)
]

+ CT
[
ε−

1
2 ‖η1 − η2‖LT

+ ε
1
4 (‖v1‖LT

+ ‖v2‖LT
)‖v1 − v2‖LT

]
≤ CTε−

1
2

[
1 + ‖(η1, v1)‖LT×LT

+ ‖(η2, v2)‖LT×LT

]
× ‖(η1, v1) − (η2, v2)‖LT×LT

.

Suppose that both (η1, v1) and (η2, v2) are in the closed ball BR of radius
R about the zero function in LT ×LT . Then, the last estimate leads to the
inequality

‖A(η1, v1) − A(η2, v2)‖LT×LT
≤ Θ‖(η1, v1) − (η2, v2)‖LT×LT

, (2.8)

where Θ = CTε−
1
2 (1 + 2R). If Θ < 1 and A maps BR to itself, then

the hypothesis of the contraction mapping theorem will be satisfied. By
application of (2.8),

‖A(η, v)‖LT×LT
≤ Θ‖(η, v)‖LT×LT

+ ‖η0‖L2 + ‖v0‖L2 ≤ ΘR + b.

Thus, if b ≤ (1 − Θ)R, then A maps BR to itself. Choosing R = 2b and
T = C

2 ε
1
2 (1 + 2R)−1 gives a closed set BR in LT × LT on which A is a

contractive self map. This proves existence in LT × LT for some T > 0.
Next, observe that from Lemma 2.3 if f ∈ Hs, then Kε ∗ f ∈ Hs+1.

Therefore a standard bootstrap type argument allows one to conclude that
if (2.2) has a solution in LT ×LT whose initial data happens to lie in Hs×Hs,
then this solution is in fact in Hs

T × Hs
T . Moreover, the continuity of the

solution map follows easily from the simple dependence of the operator A
on the initial data. Indeed, further analysis shows that the solution map is
analytic.

The question of uniqueness is now considered. Let (η1, v1) and (η2, v2) be
two solutions of (2.2) in LT × LT , and let (η, v) = (η1, v1) − (η2, v2). The
pair (η, v) satisfies the integral equations

η =
∫ t

0
Kε ∗ (v1 − v2 + ε(η1v1 − η2v2)) dτ,

v =
∫ t

0
Kε ∗ (η1 − η2 +

1
2
ε(v2

1 − v2
2)) dτ.
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As in the proof of the existence result, the following estimate obtains:

‖(η, v)‖L2×L2 ≤ Cε−
1
2

∫ t

0

[
1 + ‖(η1, v1)‖L2×L2 + ‖(η2, v2)‖L2×L2

]
·

× ‖(η1, v1) − (η2, v2)‖L2×L2 dτ

≤ D

∫ t

0
‖(η, v)‖L2×L2 dτ,

where D is independent of t ∈ [0, T ]. Gronwall’s Lemma then implies that
η = 0 and v = 0 on [0, T ], so proving uniqueness. The proof of part (i) of
the Theorem is now complete.

For part (ii), we merely note that in view of (2.6) and (2.7), the same
contraction-mapping argument yields local existence for initial data in Cm

b ,
and the same uniqueness and bootstrapping argument applies as well.

The global existence result stated in part (iii) of Theorem 2.1 depends on
the invariance of the functional

E(t) = E(η, v, t) =
∫ ∞

−∞

[
η2 + (1 + εη)v2

]
dx.

Lemma 2.4. Let (η, v) be a solution pair of the initial-value problem (1.1),
(1.2) in Hs

T ×Hs
T , for some s ≥ 1

6 . Then E(t) = E(0) for all t ∈ [0, T ].

Proof. Assume first that (η, v) is sufficiently regular for the following formal
calculations to be valid; say, (η, v) ∈ (H1

T ×H1
T ) ∩ (B3

T × B3
T ). Multiply the

first equation in (1.1) by (η+ 1
2εv2− 1

6εvxt) and the second by (v+εvη− 1
6εηxt),

add them, and integrate with respect to x to reach the relation∫ ∞

−∞

(
ηt

[
η +

ε

2
v2 − 1

6
εvxt

]
+ vt

[
v + εvη − 1

6
εηxt

])
dx

= −
∫ ∞

−∞

([
η +

ε

2
v2 − 1

6
εvxt

][
v + εvη − 1

6
ε = ηxt

])
x
dx = 0.

Regroup the terms on the left-hand side to obtain∫ ∞

−∞

(1
2

[
η2 + (1 + εη)v2

]
t
− 1

6
ε [ηtvxt + vtηxt]

)
dx = 0. (2.9)

Since ∫ ∞

−∞
[ηtvxt + vtηxt] dx =

∫ ∞

−∞
(ηtvt)x dx = 0,

it follows from (2.9) that
d

dt

∫ ∞

−∞

[
η2 + (1 + εη)v2

]
dx = 0,
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and hence E(t) = E(0) for all t ∈ [0, T ].
Now suppose that (η, v) is, say, a solution in Hs

T × Hs
T with s ≥ 1

6 . We
can approximate (η0, v0) by regular initial data (η0j , v0j) and thus obtain
solutions (ηj , vj) on [0, T ] to which the above calculation applies, and which,
by Theorem 2.1(i), approximate (η, v) in Hs

T × Hs
T . Moreover, since Hs

is continuously embedded in L3 by the Sobolev embedding theorem, then
(ηj , vj) also approximates (η, v) in C(0, T ;L3) × C(0, T ;L3). The desired
result then follows by passing to the limit as j → ∞.

Remark 2.5. The functional E, together with the functional

F (t) = F (η, v, t) =
∫ ∞

−∞

[
ηv +

ε

6
ηxvx

]
dx,

and the obvious conserved quantities∫ ∞

−∞
η dx and

∫ ∞

−∞
v dx

comprise the only known invariants for the system (1.1). Note that one
obtains the invariance of F by multiplying the first equation in (1.1) by v
and the second equation in (1.1) by η, adding the results, and integrating
with respect to x.

The simple idea exposed in the proof of Lemma 2.4 can also be used to
obtain an invariant for a more general type of Boussinesq system.

Corollary 2.6. Consider the following four parameter class of model equa-
tions

ηt + ux + (uη)x + auxxx − bηxxt = 0

and
ut + ηx + uux + cηxxx − duxxt = 0.

If b = d, then for sufficiently regular solutions (η, u), the quantity

G(t) =
∫ ∞

−∞

[
η2 + (1 + η)u2 − cη2

x − au2
x

]
dx

is invariant, i.e., G(t) = G(0) for all t ≥ 0.

Remark 2.7. This class of model equations was put forward by Bona, Chen
and Saut [9], [10] as approximations of the two-dimensional free surface Euler
equations for the motion of an ideal, incompressible liquid. In this context,
a, b, c and d are not independently specifiable parameters. This class of
equations reappears briefly in the next section (see Theorem 3.7).
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The proof of part (iii) of Theorem 2.1 now proceeds by means of the usual
continuation-type argument, as follows. Suppose s > 1

2 so that η(·, t) ∈
Cb(R) for all t during which the solution exists, and that 1 + εη > α > 0 for
all x ∈ R and all t ∈ (a, T0). According to Lemma 2.4, for β = max{1, α−1},
we have

‖η(·, t)‖2
L2

+ ‖v(·, t)‖2
L2

=
∫ ∞

−∞
(η(·, t)2 + v(·, t)2) dx ≤ βE(t) = βE(0)

for all t ∈ (a, T0). Now the local existence result stated in part (i) of the
Theorem implies that if (1.1) is posed with initial data (η(t0), v(t0)) satisfy-
ing

‖η(t0)‖2
L2

+ ‖v(t0)‖2
L2

≤ βE(0),

then a solution persists in L2 ×L2 on the time interval (t0, t0 + 2δ), where δ
depends only on βE(0). If T0 < ∞, one can choose t0 such that T0 > t0 >
min(a, T0 − δ), and thereby obtain an extension of the solution to [0, t0 + δ).
A bootstrap argument then immediately yields that this solution is in fact
in Hs

t0+δ ×Hs
t0+δ. But this contradicts the maximality of T0. Hence we must

have T0 = ∞. Obviously, the same argument also shows that T0 = ∞ under
the assumption that ‖(η, v)‖L2×L2 remains bounded near T0.

3. The Comparison Results

It was shown in [3] that the BBM equation (1.4) with initial condition
q(x, 0) = g(x) has a unique global solution q ∈ C([0,∞), Hs) if g ∈ Hs with
s ≥ 1. Moreover, for each T > 0, the correspondence g → q is an analytic
mapping of Hs to C([0, T ];Hs) while, if l > 0, the correspondence g → ∂l

tq
is an analytic mapping of Hs to C([0, T ];Hs+1). This result was recently
improved to include the range s ≥ 0 in [17].

In this section we consider the circumstances under which solutions of the
Boussinesq system (1.1) can be approximated using appropriate solutions
of the BBM equation (1.4). More precisely, conditions on the initial data
(η0, v0) are determined which guarantee that (1.1) will generate a solution
(η, v) in which η is well tracked by the solution q of the (1.4) with initial
data q(x, 0) = η0.

At the lowest order, we expect that if η0 = v0, then the wave described
by (η, v) moves mainly in one direction (see the discussion in [5]). However,
the analysis in the last-quoted reference suggests that this simple imposition
of initial data for (1.1) would not yield a solution which agrees closely with
that of the BBM equation on the time scale over which nonlinearity and
dispersion can have an order-one relative effect on the wave profile. Rather,
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one expects to have to correct the lowest-order approximation of the relation
between amplitude and velocity at higher order to see the Boussinesq system
evincing unidirectional propagation over such a long time interval. As shown
below in Theorem 3.1, this is indeed the case, and the appropriate relation
between the initial amplitude and velocity is

η(x, 0) = g(x) and v(x, 0) = g(x) − 1
4
εg(x)2. (3.1)

3.1. Discussion of the main results. The principal new outcome of our
analysis is summarized in the first theorem.

Theorem 3.1. Let j ≥ 0 be an integer. Then for every K > 0, there exist
constants C and D depending on K such that the following is true. Suppose
g ∈ Hj+5 with ‖g‖j+5 ≤ K. Let (η, v) be the solution of the Boussinesq
system (1.1), with initial data defined by (3.1), and let q be the solution of
the BBM equation (1.4) with initial data q(x, 0) = g(x). Define w by

w = q − 1
4εq2. (3.2)

Then for all ε ∈ (0, 1], if

0 ≤ t ≤ T = Dε−1, (3.3)

then
‖η(·, t) − q(·, t)‖j + ‖v(·, t) − w(·, t)‖j ≤ Cε2t. (3.4)

Notice that included as part of Theorem 3.1 is the assertion that the
Boussinesq system has a solution in Hj

T ×Hj
T for T at least as large as D/ε.

When combined with the basic inequality

‖f‖Cb(R) ≤ ‖f‖
1
2

L2(R) ‖f
′‖

1
2

L2(R),

valid for any f ∈ H1(R), Theorem 3.1 yields the following.

Corollary 3.2. Let s ≥ 6 and j ∈ [0, s − 6] both be integers. Then for
every K > 0, there exist constants C and D such that the following is true.
Suppose g ∈ Hs with ‖g‖s ≤ K. Let (η, v) be a solution of the Boussinesq
system (1.1), with initial data (1.2) defined by (3.1); let q be the solution of
the BBM equation (1.4) with q(x, 0) = g(x); and let w be defined by (3.2).
Then for all ε ∈ (0, 1], if 0 ≤ t ≤ T = Dε−1, then

‖∂j
x(η − q)(·, t)‖Cb(R) + ‖∂j

x(v − w)(·, t)‖Cb(R) ≤ Cε2t.
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Remark 3.3. This result shows that, under the stated restrictions on the
initial data for (1.1), solutions of (1.1) and (1.4) agree with each other to an
accuracy equaling the size of the terms which were ignored in deriving (1.1)
as model equations from the Euler equations. The comparison is shown to
hold on a time scale of order 1/ε, which is long enough for nonlinear and
dispersive effects to have an order-one influence on the wave form.

The proof of Theorem 3.1 is conveniently made by a slightly indirect
argument. Indeed, thus far we have focused on the BBM equation as a
model for unidirectional surface waves because it lends itself easily to the
numerical investigations described below in Section 4. However, one could
equally well initiate this discussion using the KdV equation (1.5) as the
model for unidirectional surface waves. The two equations KdV and BBM
are in fact formally equivalent models in the Boussinesq regime, and, indeed,
there is a similar type of comparison result already available between their
solutions. Here is the KdV version of Theorem 3.1.

Theorem 3.4. Let j ≥ 0 be an integer. Then for every K > 0, there exist
constants C and D such that the following is true. Suppose g ∈ Hj+5 with
‖g‖j+5 ≤ K. Let (η, v) be the solution of the Boussinesq system (1.1), with
initial data defined by (3.1), and let r be the solution of the KdV equation
(1.5) with initial data r(x, 0) = g(x). Define z by

z = r − 1
4εr2. (3.5)

For all ε ∈ (0, 1], if 0 ≤ t ≤ T = Dε−1, then

‖η(·, t) − r(·, t)‖j + ‖v(·, t) − z(·, t)‖j ≤ Cε2t. (3.6)

Implicit in the statement of the preceding theorem is the presumption
that KdV is well-posed in Hs. Although the KdV well-posedness theory is
somewhat more involved than that of BBM, global well-posedness of KdV
in Hs has been proved for values of s down to s = 0 and below. See for
example [16, 20, 24].

Once Theorem 3.4 has been proved, the final ingredient in the proof of
Theorem 3.1 is the following result comparing solutions of (1.4) to those of
(1.5).

Theorem 3.5. Let j ≥ 0 be an integer. Then for every K > 0 and every
D > 0, there exists a constant C > 0 such that the following is true. Suppose
g ∈ Hj+5 with ‖g‖j+5 ≤ K. Let q be the solution of the BBM equation (1.4)
with initial data q(x, 0) = g(x) and let r be the solution of the KdV equation
(1.5) with the same initial data r(x, 0) = g(x). Then for all ε ∈ (0, 1], if
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0 ≤ t ≤ T = Dε−1, then

‖q(·, t) − r(·, t)‖j ≤ Cε2t. (3.7)

Theorem 3.5 is taken from [14], where it is proved in a different form. For
the reader’s convenience we briefly sketch the proof of the present formula-
tion in the Appendix.

Assuming that (3.6) and (3.7) hold on the requisite time scales, one imme-
diately deduces the estimate on ‖η−q‖j in (3.4) from the triangle inequality.
The estimate on ‖v − w‖j in (3.4) also follows easily from (3.6), (3.7), and
the triangle inequality, once one takes into account the definitions of w and
z and the fact that uniform bounds are available on ‖r‖j (cf. Theorem A2
below). Hence, to complete the proof of Theorem 3.1, it remains only to
prove Theorem 3.4. This is done below in Subsections 3.2 and 3.3.

We remark that it is also possible to prove a comparison result for (1.4)
directly, without first proving Theorem 3.4. (See [1] for details. The result
proved there is slightly less satisfactory and consequently we have preferred
the present development.)

Theorems 3.1 and 3.4 are closely related to several other results [11, 21, 26,
29, 30] on long-wave approximations to solutions of the water-wave problem
(1.3). In (1.3), let u(x, t) denote the horizontal velocity of the fluid at the free
surface, so that u(x, t) = φx(x, 1+εη(x, t), t). If η(x, t) and u(x, t) are known
as functions of x for a given time t, then the velocity potential φ(x, y, t)
within the fluid domain can be found by solving a standard elliptic boundary-
value problem on the domain. Therefore the initial-value problem for the
system (1.3) is equivalent to an initial-value problem for the functions η(x, t)
and u(x, t).

The problem of relating the behavior of solutions (η, u) of the initial-value
problem for (1.3) to general solutions of (1.5) on long time scales was first
considered by Craig in [21]. Schneider and Wayne [26] improved Craig’s
existence theory and established that a large class of long-wave solutions of
(1.3) are well approximated by combinations of solutions of an uncoupled
system of two KdV equations, one for disturbances moving to the left and
one for disturbances moving to the right. Bona, Colin and Lannes [11] and
Wright [30] sharpened and extended the results of [26]. For example, we
have the following result from [11].

Theorem 3.6. Let j ≥ 0 be an integer. Then for every K > 0 and D > 0,
there exist constants C > 0 and ε0 > 0 such that the following is true.
Suppose g(x) and h(x) are functions satisfying ‖(1 + x2)g(x)‖J ≤ K and
‖(1 + x2)h(x)‖J ≤ K, where J is a sufficiently large number depending only
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on j. Let α be the solution of

αt + αx + 3
4εααx + 1

6αxxx = 0

with initial data α(x, 0) = h(x) + g(x), and let β be the solution of

βt − βx + 3
4εββx + 1

6βxxx = 0

with initial data β(x, 0) = h(x) − g(x). Let ε ∈ (0, ε0] be given, and let
T = Dε−1. Then there exists a unique solution (η̃, ũ) to (1.3) in the space
C(0, T ;Hj × Hj−1/2) with initial data η̃(x, 0) = g(x) and ũ(x, 0) = h(x).
Moreover, for all t ∈ [0, T ],

‖η̃(·, t)− 1
2 (α(·, t) + β(·, t)) ‖j +‖ũ(·, t)− 1

2 (α(·, t) − β(·, t)) ‖j ≤ Cε2t. (3.8)

In particular, if g(x) = h(x), then we have

‖η̃(·, t) − r(·, t)‖j + ‖ũ(·, t) − r(·, t)‖j ≤ Cε2t (3.9)

for all t ∈ [0, T ], where r is the solution of (1.5) with initial data r(x, 0) =
g(x).

Proof. The general case of the theorem is a restatement of Theorem 5.1(i′)
of [11]. The particular case when g(x) = h(x) follows as an immediate
consequence, since then β = 0 and r = 1

2α. �

Remark 3.7. A comparison result similar to the above also follows from
Theorem 1.3 and Corollary 1.5 of Schneider and Wayne [26] (but note that
(1.11) in [26] contains a misprint: both the coefficients with value 3/4 should
be emended to 3/2). Indeed, a perusal of p. 1492 of their argument shows
that they prove an estimate which is somewhat stronger than the one they
state, and which in our variables reads

‖η̃(·, t)− 1
2(α(·, t)+β(·, t))‖

C
j−3/2
b

+‖ũ(·, t)− 1
2(α(·, t)−β(·, t))‖

C
j−3/2
b

≤ Cε3/4.

(3.10)
More recently, Wright [29, 30] has improved Schneider and Wayne’s result
by establishing a system of model equations for long-wave solutions of (1.3)
which is accurate to order ε2. (System (1.1) and equations (1.4) and (1.5)
are, by contrast, only accurate to order ε.) It follows from Corollary 2 of [29]
that the power ε3/4 in (3.10) can be increased to ε1. This estimate coincides
with (3.8) at t = Dε−1 but is weaker for smaller values of t. Both Wright’s
estimate and (3.8) are sharp in the sense that the powers of ε involved cannot
be increased in general.
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The theory of [11] goes beyond the approximation of (1.3) by KdV-type
equations to include approximations by a variety of Boussinesq-type systems
as well. As a particular consequence we obtain the following theorem.

Theorem 3.8. Let j ≥ 0 be an integer. Then for every K > 0 and D > 0,
there exist constants C > 0 and ε0 > 0 such that the following is true.
Suppose g(x) and h(x) are functions satisfying ‖(1 + x2)g(x)‖J ≤ K and
‖(1 + x2)h(x)‖J ≤ K, where J is a sufficiently large number depending only
on j. Let ε ∈ (0, ε0] be given, and let T = Dε−1. Then there exists a unique
solution (η, v) of the Boussinesq system (1.1) in HJ

T ×HJ
T with initial data

given by η(x, 0) = g(x) and v(x, 0) = (1 − ε
6∂2

x)−1h(x). Moreover, if (η̃, ũ),
α, β, and r are as defined in Theorem 3.6, then for all t ∈ [0, T ] we have

‖η̃(·, t) − η(·, t)‖j + ‖ũ(·, t) − (1 − ε
6∂2

x)v(·, t)‖j ≤ Cε2t, (3.11)

‖η(·, t)− 1
2(α(·, t)+β(·, t))‖j+‖v(·, t)− 1

2(1− ε
6∂2

x)−1(α(·, t)−β(·, t))‖j ≤ Cε2t,
(3.12)

and (in case g(x) = h(x))

‖η(·, t) − r(·, t)‖j + ‖v(·, t) − (1 − ε
6∂2

x)−1r(·, t)‖j ≤ Cε2t. (3.13)

Proof. By Theorem 2.1, a solution (η, v) of (1.1) with the given initial data
exists in HJ

T1
×HJ

T1
for some T1 > 0. Now if J is sufficiently large, then by

Corollary 3.2 of [11],

‖η − ηapp‖j+2 + ‖v − (1 − ε
6∂2

x)−1vapp‖j+2 ≤ Cε2t (3.14)

for all t ∈ [0, T1], where (ηapp, vapp) is as defined in (3.9) of [11]. (To correct
a minor error in Corollary 3.2 of [11], one should replace the factor (1+ ε

2η0)
by (1− ε

2η0)−1. Note that this change does not affect the validity of the proof
given there, since this same modification can be made in the statement and
proof of Proposition 2.2 of [11].) Also, by Theorem 3.2 of [11]

‖η̃ − ηapp‖j + ‖ũ − vapp‖j ≤ Cε2t (3.15)

for all t ∈ [0, T1]. Since (1 − ε
6∂2

x) is a bounded operator from Hj+2 to Hj ,
it follows from (3.14) and (3.15) that

‖η̃ − η‖j + ‖ũ − (1 − ε

6
∂2

x)v‖j ≤ Cε2t

for all t ∈ [0, T1]. Since this estimate establishes an L2 bound on (v, η), it
follows from Theorem 2.1 that T1 can be taken equal to T . This completes
the proof of (3.11). Estimates (3.12) and (3.13) then follow immediately
from (3.8), (3.9), and the triangle inequality. �
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Remark 3.9. It is straightforward to ascertain that an argument similar
to that made in proving Theorem 3.5 shows that in the estimate (3.13), the
function (1− ε

6∂2
x)−1r(·, t) can be replaced by r1(·, t), where r1 is defined as

the solution of (1.5) with initial data r1(x, 0) = (1 − ε
6∂2

x)−1g(x). Similarly,
in (3.6) the function z(·, t) can be replaced by r2(·, t), where r2 is defined as
the solution of (1.5) with initial data r2(x, 0) = g(x) − 1

4εg(x)2. Thus (3.6)
and (3.13) both provide comparison results between solutions (η, v) of (1.1)
and pairs of solutions of the KdV equation (1.5). (The discrepancy between
r1 and r2 is due, of course, to the fact that h(x) = g(x) in (3.13) while
h(x) = g(x)− 1

4εg(x)2 in (3.6).) An advantage of (3.13) is that the estimate
is valid on a time scale of length D/ε, where D can be taken arbitrarily large
(provided, of course, that ε is sufficiently small). On the other hand, (3.6)
has the advantage of requiring a weaker assumption on the spatial decay of
the initial data.

We now turn to the proof of Theorem 3.4, which will be accomplished in
two stages. In Subsection 3.2, the proof of Theorem 3.4 is considered in the
case j = 0. The detailed analysis of this case points the way to the general
case. Moreover, the general case, established in Subsection 3.3, is made by
an induction argument wherein the result for j = 0 is the starting point.

3.2. Proof of Theorem 3.4 in the case j = 0. One easily verifies that r
and z satisfy the equations

rt + zx + ε(rz)x − 1
6 εrxxt = −ε2G1,

zt + rx + εzzx − 1
6 εzxxt = −ε2G2 − ε3G3,

where G1 = 3
4 r2rx − 1

4(rrx)xx − 1
36rxxxxx, G2 = − 1

12 rrxxx − 1
24 (r2)xxt,

G3 = −1
8 r3rx.

Interest naturally focuses upon the differences m = η − r and n = v − z
which satisfy the equations

mt + nx + ε(mn)x + ε(rn)x + ε(zm)x − 1
6 εmxxt = ε2G1,

nt + mx + ε(nnx) + ε(zn)x − 1
6 εnxxt = ε2G2 + ε3G3.

(3.16)

and have initial values m(x, 0) ≡ n(x, 0) ≡ 0.
Multiply the first equation in (3.16) by m and the second by n, add the

results, and then integrate over R × [0, t]. After suitable integrations by
parts, there appears the formula

1
2

∫ ∞

−∞

[
m2 + n2 +

1
6
εm2

x +
1
6
εn2

x

]
dx (3.17)
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= −ε

∫ t

0

∫ ∞

−∞

(
m(mn)x + m(rn)x + m(zm)x + n2nx + n(zn)x

)
dx dτ

+ ε2
∫ t

0

∫ ∞

−∞
(mG1 + nG2) dx dτ + ε3

∫ t

0

∫ ∞

−∞
nG3 dx dτ.

The idea is to derive from (3.17) a differential inequality that will imply
the desired result via a Gronwall-type lemma. The argument put forward
below for accomplishing this requires ε-independent bounds on r and its
derivatives, as furnished by the following Lemma.

Lemma 3.10. Let s ≥ 1 be an integer. Then for every K > 0, there exists
C > 0 such that the following is true. Suppose g ∈ Hs with ‖g‖s ≤ K, and
let r be the solution of the KdV equation (1.5) with initial data r(x, 0) = g(x).
Then for all ε ∈ (0, 1] and all t ≥ 0,

‖r‖s ≤ C.

Also, for every integer k such that 1 ≤ 3k ≤ s, one may further assert that

‖∂k
t r‖s−3k ≤ C.

This familiar result is a consequence of the existence of infinitely many
conservation laws for KdV, together with the arguments put forward in [16].
Details are provided in the Appendix so this side issue does not distract from
the main line of argument.

We remark that it follows immediately from Lemma 3.10 and (3.5) that
r, z and their derivatives with respect to x up to order 5 are bounded in
L2 norm by constants which depend only on K, and which in particular are
independent of t and ε. In what follows, we will use this fact without further
comment, denoting all occurrences of such constants by C.

Define the quantity A(t) to be the positive square root of the integral on
the left-hand side of (3.17); viz.,

A2(t) =
∫ ∞

−∞

[
m2 + n2 + 1

6εm2
x + 1

6εn2
x

]
dx.

From this definition it is obvious that for all t, we have

‖m‖L2 ≤ A(t) and ‖mx‖L2 ≤ Cε−
1
2 A(t).

Because of the elementary estimate

‖m‖2
L∞ ≤ ‖m‖L2‖mx‖L2 ,

it then follows also that

‖m‖L∞ ≤ Cε−
1
4 A(t).
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Of course, the same estimates hold for n.
Now rewrite (3.17) as

1
2A2(t) = I1 + I2 + I3 + I4, (3.18)

where

I1 = −ε

∫ t

0

∫ ∞

−∞
m(mn)x dx dτ = ε

∫ t

0

∫ ∞

−∞
nmmx dx dτ,

I2 = −ε

∫ t

0

∫ ∞

−∞
m(rn)x dx dτ = ε

∫ t

0

∫ ∞

−∞
rnmx dx dτ,

I3 = −ε

∫ t

0

∫ ∞

−∞
[m(zm)x + n(zn)x] dx dτ

= − ε

2

∫ t

0

∫ ∞

−∞
zx(m2 + n2) dx dτ,

I4 = ε2
∫ t

0

∫ ∞

−∞
(mG1 + nG2) dx dτ + ε3

∫ t

0

∫ ∞

−∞
nG3 dx dτ.

Three of these quantities may be easily estimated as follows:

I1 ≤ ε

∫ t

0
‖n‖L∞‖m‖L2‖mx‖L2 dτ ≤ Cε

1
4

∫ t

0
A3(τ) dτ, (3.19)

I3 ≤ Cε

∫ t

0
A2(τ)dτ,

and

I4 ≤ Cε2
∫ t

0
A(τ) dτ + Cε3

∫ t

0
A(τ) dτ.

It remains to estimate I2. This apparently simple task is complicated by
the requirement of not losing a factor of ε

1
2 , as this would lead to an inferior

result to that stated in the theorem. Indeed, if one were to make the obvious
estimate

I2 ≤ Cε
1
2

∫ t

0
A2(τ) dτ, (3.20)

the best one could then do using Gronwall’s inequality would be to establish
a close comparison on a time interval of order ε−

1
2 , rather than on the desired

interval of order ε−1. Here instead of (3.20) we will use the considerably less
straightforward estimate

I2 ≤ CεA2(t) + C

∫ t

0

[
ε3A(τ) + εA2(τ) + ε

5
4 A3(τ)

]
dτ. (3.21)
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To prove (3.21), we begin by multiplying the second equation in (3.16) by
rn and integrating over R × [0, t] to obtain∫ t

0

∫ ∞

−∞
rnmx dx dτ = K1 + K2 + K3 + K4 + K5,

where

K1 = −
∫ t

0

∫ ∞

−∞
rnnt dx dτ, K2 = −ε

∫ t

0

∫ ∞

−∞
rn2nx dx dτ,

K3 = −ε

∫ t

0

∫ ∞

−∞
rn(zn)x dx dτ, K4 =

1
6

ε

∫ t

0

∫ ∞

−∞
rnnxxt dx dτ,

K5 = ε2
∫ t

0

∫ ∞

−∞
(G2rn + εG3rn) dx dτ.

To estimate K1, integrate by parts with respect to t and use the fact that
n(x, 0) ≡ 0 to derive

K1 =
1
2

∫ t

0

∫ ∞

−∞
rtn

2 dx dτ − 1
2

∫ ∞

−∞
r(x, t)n2(x, t) dx.

In consequence, one has that

|K1| ≤ C

∫ t

0
A2(τ) dτ + CA2(t). (3.22)

For K2, it transpires that

|K2| ≤ Cε

∫ t

0
‖n‖L∞‖n‖L2‖nx‖L2 dτ ≤ Cε

1
4

∫ t

0
A3(τ) dτ. (3.23)

The third integral, K3, may be rewritten as

K3 =
ε

2

∫ t

0

∫ ∞

−∞
(rxz − rzx)n2 dx dτ,

whence one obtains

|K3| ≤ Cε

∫ t

0
A2(τ) dτ. (3.24)

The estimate for K5 is also straightforward, viz.,

|K5| ≤ Cε2
∫ t

0
‖n‖L2 dτ ≤ Cε2

∫ t

0
A(τ) dτ. (3.25)
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The fourth integral K4 is bounded by a more complicated argument. Start
by writing

K4 = −1
6
ε

∫ t

0

∫ ∞

−∞
(rn)xnxt dx dτ

= −1
6
ε

∫ t

0

∫ ∞

−∞
rnxnxt dx dτ − 1

6
ε

∫ t

0

∫ ∞

−∞
rxnnxt dx dτ = K41 + K42,

say. Using again the fact that n vanishes at t = 0, we have

K41 = −1
6
ε

∫ t

0

∫ ∞

−∞

1
2
r(n2

x)t dx dτ

= − 1
12

ε

∫ ∞

−∞
r(x, t)n2

x(x, t) dx +
1
12

ε

∫ t

0

∫ ∞

−∞
rtn

2
x dx dτ,

and it follows directly that

|K41| ≤ CA2(t) + C

∫ t

0
A2(τ) dτ. (3.26)

For K42, integrate by parts in x to get

K42 =
1
6

ε

∫ t

0

∫ ∞

−∞
rxxnnt dx dτ +

1
6

ε

∫ t

0

∫ ∞

−∞
rxnxnt dx dτ = K421 + K422.

Now for K421, integrate by parts with respect to t as for K1 to reach the
inequality

|K421| ≤ Cε
3
4 A2(t) + Cε

∫ t

0
A2(τ) dτ. (3.27)

(In obtaining (3.27), one uses Lemma 3.10 to obtain a bound for ‖rxxt‖
which depends only on K.)

To obtain an effective bound on K422, write the second equation in (3.16)
in the form

nt = Kε ∗ (m +
ε

2
n2 + εzn) −Mε ∗ (ε2G2 + ε3G3). (3.28)

This formulation is obtained just as for the differential-integral equations
(2.1) by first inverting (1 − ε

6∂2
x) and then integrating the terms involving

mx, εnnx and ε(zn)x by parts. Using the form (3.28) for nt in K422 and
applying the elementary inequalities in Lemma 2.3 connected to convolution
with Kε and Mε, we derive that

|K422| ≤ Cε

∫ t

0
‖nx‖L2‖nt‖L2 dτ (3.29)
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≤ Cε

∫ t

0
‖nx‖L2

[
ε−

1
2 ‖m +

ε

2
n2 + εzn‖L2 + ε2‖G2‖L2 + ε3‖G3‖L2

]
dτ

≤ C

∫ t

0

[
ε

5
2 A(τ) + A2(τ) + εA3(τ)

]
dτ.

Adding the inequalities (3.26), (3.27), and (3.29) leads to the bound

|K4| ≤ CA2(t) + C

∫ t

0

[
ε

5
2 A(τ) + A2(τ) + εA3(τ)

]
dτ. (3.30)

Finally, putting together the estimates (3.22) for K1, (3.23) for K2, (3.24)
for K3, (3.25) for K5, and (3.30) for K4, there obtains the desired inequality
(3.21).

Now combining (3.21) with the estimates for I1, I3 and I4 obtained above,
we deduce from (3.18) that for all positive ε small enough, say ε ∈ (0, ε1),

A2(t) ≤ C

∫ t

0

[
ε2A(τ) + εA2(τ) + ε

1
4 A3(τ)

]
dτ. (3.31)

Of course, once ε1 is fixed, then it is easy to prove that (3.31) holds as well
(with a possibly larger value of C) for all ε ≥ ε1, since (3.20) implies that

I2 ≤ C√
ε1

ε

∫ t

0
A2(τ) dτ

whenever ε ≥ ε1.
From (3.31) and Young’s inequality, it follows that

A2(t) ≤ C

∫ t

0
[ε2A(τ) + A3(τ)] dτ. (3.32)

The following Gronwall-type lemma now comes to our aid. The proof is
standard (see, e.g., [2], Lemma 2).

Lemma 3.11. Let α > 0, β > 0 and ρ > 1 be given. Define

T = β
− 1

ρ α
1−ρ

ρ

∫ ∞

0
(1 + xρ)−1 dx.

Then there exists a constant M = M(ρ) > 0, which is independent of α
and β, such that for any T1 ∈ [0, T ], if A(t) is a non-negative, continuous
function defined on [0, T1] satisfying A(0) = 0 and

A2(t) ≤
∫ t

0
[αA(τ) + βAρ+1(τ)] dτ

for all t ∈ [0, T1], then A(t) ≤ Mαt for all t ∈ [0, T1].
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Applying Lemma 3.11 to (3.32) with α = Cε2, β = C, and ρ = 2, we
obtain that A(t) ≤ Cε2t for all t ∈ [0, Dε−1], where D, like C, is a constant
depending only on K. This in turn implies that

‖η(·, t) − r(·, t)‖L2 + ‖v(·, t) − z(·, t)‖L2 ≤ Cε2t, (3.33)

at least for 0 ≤ t ≤ Dε−1, which is the advertised result when j = 0.
The preceding inequalities were all predicated on the existence of the

solution pair (η, v) of the Boussinesq system with initial data as in (3.1)
based on g. The local existence theory in Section 2 guarantees that there is
such a solution at least over some positive time interval. Moreover, as long
as the L2 norms ‖η(·, t)‖L2 and ‖v(·, t)‖L2 remain bounded, the solution
continues to persist at whatever level of regularity is afforded by the initial
data, according to Theorem 2.1.

Suppose now that g ∈ H5. According to the above calculations, it is
known that (3.33) holds at least for 0 ≤ t < T = min(T0, D/ε), where T0

is the maximum existence time for the solution (η, v) of (1.1) with initial
data as in (3.1). On the other hand, as long as (3.33) holds, the triangle
inequality implies that

‖η‖L2 ≤ ‖η − r‖L2 + ‖r‖L2 , ‖v‖L2 ≤ ‖v − z‖L2 + ‖z‖L2 .

Thus Lemma 3.3 and (3.33) combine to yield L2 bounds on η and v. This
in turn implies that T0 ≥ D/ε. The proof of Theorem 3.4 in the case j = 0
is now complete.

3.3. Proof of Theorem 3.1 in the case j ≥ 1. In this subsection, con-
sideration is given to comparison of (r, z) and (η, v) in the Sobolev spaces
Hj , j ≥ 1. The argument is made by induction on j, the case j = 0 being
in hand.

Define the quantity Aj(t) to be the natural generalization of the function
A that appeared in Subsection 3.1, namely, the positive square root of

A2
j (t) =

∫ ∞

−∞

j∑
k=0

[
m2

(k) + n2
(k) +

1
6
εm2

(k+1) +
1
6
εn2

(k+1)

]
dx,

where for any integer l ≥ 0, m(l) denotes ∂lm
∂xl and similarly for n(l). The aim

is to prove that there exist Cj and Dj such that if t ∈ [0, Djε
−1], then

Aj(t) ≤ Cjε
2t.

In the previous subsection, this was proved to be true for j = 0. Fix j ≥ 1
and assume the result has been proved for j − 1. We attempt to show that
it holds for j.
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Taking the jth derivative of equations (3.16) with respect to x yields

∂tm(j) + n(j+1) + ε(mn)(j+1)

+ ε(rn)(j+1) + ε(zm)(j+1) −
1
6
ε∂tm(j+2) = ε2(G1)(j)

(3.34)

and
∂tn(j) + m(j+1) + ε(nnx)(j)

+ ε(zn)(j+1) −
1
6
ε∂tn(j+2) = ε2(G2)(j) + ε3(G3)(j).

(3.35)

(Note that according to Theorem 2.1, η and v, and hence also m and n, exist
and remain in Hj+5 at least for t ∈ [0, Dj−1ε

−1], so the manipulations here
are justified.) Multiply (3.34) by m(j) and (3.35) by n(j), add the results,
and integrate over R × [0, t] to reach the relation

1
2

∫ ∞

−∞

[
m2

(j) + n2
(j) +

1
6
ε m2

(j+1) +
1
6
ε n2

(j+1)

]
dx = I1 + I2 + I3 + I4,

where

I1 = −ε

∫ t

0

∫ ∞

−∞

[
(mn)(j+1)m(j) + (nnx)(j)n(j)

]
dx dτ,

I2 = −ε

∫ t

0

∫ ∞

−∞
(rn)(j+1)m(j) dx dτ,

I3 = −ε

∫ t

0

∫ ∞

−∞

[
(zm)(j+1)m(j) + (zn)(j+1)n(j)

]
dx dτ,

I4 = ε2
∫ t

0

∫ ∞

−∞

[
(G1)(j)m(j) + (G2)(j)n(j)

]
dx dτ

+ ε3
∫ t

0

∫ ∞

−∞
(G3)(j)n(j) dx dτ.

Our aim is to obtain estimates for I1 through I4 in terms of constants
which depend only on ‖g‖j+5, and hence only on K. (In what follows,
we continue to denote all such constants by C.) Because of the induction
hypothesis, it is known that there exist constants Cj−1 > 0 and Dj−1 > 0,
depending only on ‖g‖j+4, such that

‖m‖j−1 + ‖n‖j−1 = ‖η − r‖j−1 + ‖v − z‖j−1 ≤ Cj−1ε
2t

holds for all t ∈ [0, Dj−1ε
−1]. In particular,

‖m‖j−1 + ‖n‖j−1 ≤ Cj−1Dj−1ε
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for all t ∈ [0, Dj−1ε
−1]. It follows immediately that ‖m‖j−1 ≤ C and

‖n‖j−1 ≤ C. These estimates will be used repeatedly in the induction step.
The integrand in I1 can be expanded into a sum of terms of the form

m(k)m(i)n(l) and n(k)n(i)n(l), in which each of k, i, and l is less than or equal
to j + 1, but no two can both equal j + 1 in any term. Therefore, arguing
as in establishing (3.19), it is concluded that

|I1| ≤ Cε
1
4

∫ t

0
A3

j (τ) dτ. (3.36)

To estimate I4, use Hölder’s inequality to obtain

|I4| ≤ Cε2
∫ t

0
Aj(τ) dτ.

The term I3 can be analyzed by writing

I3 = − ε

∫ t

0

∫ ∞

−∞

[
z(m(j+1)m(j) + n(j+1)n(j))

+
j+1∑
k=1

(
j + 1

k

)
z(k)(m(j+1−k)m(j) + n(j+1−k)n(j))

]
dx dτ

=
1
2

ε

∫ t

0

∫ ∞

−∞
(m2

(j) + n2
(j))zx dx dτ

− ε

∫ t

0

∫ ∞

−∞

j+1∑
k=1

(
j + 1

k

)
z(k)(m(j+1−k)m(j) + n(j+1−k)n(j)) dx dτ,

from which it is obvious that

|I3| ≤ Cε

∫ t

0
A2

j (τ) dτ.

It remains to estimate I2. Multiplying equation (3.35) by rn(j) and inte-
grating over R × [0, t], it transpires that

∫ t

0

∫ ∞

−∞
rn(j)m(j+1) dx dτ = K1 + K2 + K3 + K4 + K5, (3.37)
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where

K1 = −
∫ t

0

∫ ∞

−∞
rn(j)∂tn(j) dx dτ,

K2 = −ε

∫ t

0

∫ ∞

−∞
rn(j)(nnx)(j) dx dτ,

K3 = −ε

∫ t

0

∫ ∞

−∞
rn(j)(zn)(j+1) dx dτ,

K4 =
1
6

ε

∫ t

0

∫ ∞

−∞
rn(j)∂tn(j+2) dx dτ,

K5 = ε2
∫ t

0

∫ ∞

−∞
rn(j)

(
(G2)(j) + ε(G3)(j)

)
dx dτ.

The integral I2 may be written as

I2 = ε

∫ t

0

∫ ∞

−∞
(rn)(j)m(j+1) dx dτ = ε

∫ t

0

∫ ∞

−∞
rn(j)m(j+1) dx dτ

+ ε

∫ t

0

∫ ∞

−∞

j∑
k=1

(
j
k

)
r(k)n(j−k)m(j+1) dx dτ,

and the last term on the right-hand side is easily seen to be bounded by

Cε

∫ t

0
A2

j (τ) dτ,

so the key to understanding I2 is to obtain a bound for the integral in (3.37).
We begin estimating the summands K1 through K5 in (3.37). First, note

that the same argument used to obtain (3.22) gives here

|K1| ≤ CA2
j (t) + C

∫ t

0
A2

j (τ) dτ,

and the same argument used to obtain (3.36) gives

|K2| ≤ Cε
1
2

∫ t

0
A3

j (τ) dτ.

Similarly, obvious estimates yield

|K3| ≤ Cε
1
2

∫ t

0
A2

j (τ) dτ and |K5| ≤ Cε2
∫ t

0
Aj(τ) dτ.
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Attention is now turned to K4. Integrating by parts leads to

K4 = −1
6

ε

∫ t

0

∫ ∞

−∞

[
rn(j+1)∂tn(j+1) + rxn(j)∂tn(j+1)

]
dx dτ = K41 + K42.

The integral K41 can be handled in the same way as K1, to reach the estimate

|K41| ≤ CA2
j (t) + C

∫ t

0
A2

j (τ) dτ.

The quantity K42 may also be handled in a way that is by now familiar:
write

K42 =
1
6
ε

∫ t

0

∫ ∞

−∞

[
rxxn(j)∂tn(j) + rxn(j+1)∂tn(j)

]
dx dτ = K421 + K422,

and follow the same procedure presented earlier for obtaining the estimates
(3.27) and (3.29), using (3.35) to replace the term ∂tn(j) in K422. As a result,
there obtains the estimate

|K4| ≤ CA2
j (t) + C

∫ t

0

[
ε

5
2 Aj(τ) + A2

j (τ) + εA3
jτ

]
dτ,

as in (3.30).
Combining the inequalities for K1 through K5 implies

|K| ≤ CA2
j (t) + C

∫ t

0

[
ε2Aj(τ) + A2

j (τ) + ε
1
4 A3

j (τ)
]

dτ,

from which it follows that

|I2| ≤ CεA2
j (t) + C

∫ t

0

[
ε3Aj(τ) + εA2

j (τ) + ε
5
4 A3

j (τ)
]

dτ.

Finally, putting together the estimates for I1 through I4, the analogue of
(3.31) appears, namely

A2
j (t) ≤ C

∫ t

0

[
ε2Aj(τ) + εA2

j (τ) + ε
1
4 A3

j (τ)
]

dτ.

This inequality, valid for 0 ≤ t ≤ Dj−1ε
−1, taken together with Lemma 3.11,

allows the conclusion that there are constants Cj and Dj depending only on
‖g‖j+5 such that

Aj(t) ≤ Cjε
2t for 0 ≤ t ≤ Djε

−1.

Thus, the proof of Theorem 3.4 is complete.
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4. Numerical Results

The theoretical results established in Section 3 are augmented by a nu-
merical study reported in the present section. There are several issues of
both theoretical and practical importance that are especially illuminated by
numerical simulations. First, one would like an idea of how large are the
various constants that depend upon norms of the initial data ‖g‖. They are
independent of ε for ε ∈ (0, 1], but if, for example, the constant C in The-
orem 3.1 is some enormous multiple of the norm of the initial data or the
constant D is a very small number, then the result has correspondingly less
value. Next, it is to be expected that if only small values of ε are considered,
then the values of the constants can be improved, and presumably take on
an asymptotic best value as ε approaches zero. An important question then
is to understand just how small must ε be in order for the constants to ap-
proximate well their asymptotic values. A related question is whether the
comparison estimate (3.4) is sharp in the sense that ε2 is the highest power
of ε that can appear there. Finally, one might ask whether the time interval
of comparison in (3.3) can be extended to a longer interval, such as [0, ε−2].
Since our analytical approach casts little light on these detailed points, we
have resorted to a series of numerical experiments designed to elucidate the
issues.

The numerical algorithm used is based on the integral equation formula-
tion (2.2) of (1.1) and a similar formulation of (1.4) (see [3]). The details
of the numerical procedure are presented in [8] for (1.1) and [15] for (1.4).
While there is no reason to report the details again here, it is worth remark-
ing that these numerical schemes are proved to be fourth-order accurate in
space and in time, to be unconditionally stable, and to have the optimal
order of efficiency, namely the number of operations required for each time
step is O(N), where N is the number of spatial mesh points.

In the present implementation of the algorithms, the solutions are approx-
imated numerically on the spatial domain 0 ≤ x ≤ L with uniform mesh size,
taken to be Δx = 1

64

√
ε. The spatial mesh points are thus given by xi = iΔx

for i = 0, 1, 2, . . . , N , where N = L
Δx . The time step Δt is taken equal to Δx.

(Making Δx and Δt proportional to
√

ε renders them independent of ε in
the original physical variables.) The length L of the spatial domain is chosen
to be large enough that, for initial data representing a disturbance located
far enough from the endpoints x = 0 and x = L, the boundary data at the
endpoints (or, in the case of Experiment 4 below, at the right endpoint)
can be safely taken equal to zero on the time interval under consideration.
Typically, L = 360

√
ε.
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We now present and discuss the results of the numerical experiments. The
first experiment, concerned with solitary waves, serves as a test of our coding
in addition to continuing the conversation about the relation between (1.1)
and (1.4).
Experiment 1: Solitary waves. In this experiment, an exact travelling-
wave solution to (1.4) is compared with the corresponding solution of the
initial-value problem for (1.1) as in Theorem 3.1. The initial data for (1.4)
is taken to be

qε(x, 0) ≡ gε(x) = sech2
(

1
2

√
3

1+ε/2(x − x0)
)
.

The solution of the BBM equation corresponding to this initial data is the
exact travelling wave solution qε(x, t) = gε(x− kt), where k = 1 + ε/2 is the
phase speed. Following (3.1), we seek a solution (ηε, vε) of (1.1) with initial
data ηε(x, 0) = gε(x) and vε(x, 0) = gε(x) − 1

4εgε(x)2.
An example of the results is shown in Figure 1(a), where the surface profile

ηε(x, t) is plotted with ε = 0.4 and x0 = 19. The solution is very nearly a
travelling wave, like the solution qε(x, t) of (1.4), as was to be expected from
the comparison result. It does have, however, a small dispersive tail.

According to Theorem 3.1, the solution (ηε, vε) should closely resemble
(qε, wε), where wε(x, t) = qε(x, t) − 1

4εqε(x, t)2. For purposes of comparison,
the quantities

Ep(ε, t) =
|ηε(·, t) − qε(·, t)|p

|qε(·, t)|p
and Ẽp(ε, t) =

|vε(·, t) − wε(·, t)|p
|wε(·, t)|p

were computed, where | · |p denotes a discrete approximation to the Lp norm
on [0, L]. More precisely, for 1 ≤ p < ∞, |f |p denotes the approximation
to

( ∫ L
0 |f |p dx

)1/p obtained by using Simpson’s rule with grid points {xi},
and for p = ∞, |f |p is defined by |f |∞ = supi |f(xi)|. In Figure 1(b), Ep

and Ẽp are plotted against time t for p = 2 and p = ∞, over the interval
0 ≤ t ≤ 50, again with ε = 0.4. The top two curves, drawn with dashed
lines, are the plots of E2 and Ẽ2; the plots of E∞ and Ẽ∞ are drawn with
solid lines, and appear to be one curve because they are almost identical.
Figure 1(b) not only verifies that the relative differences increase linearly
with time t for t < Cε−1, as asserted in Theorem 3.1 and Corollary 3.2,
but also demonstrates that this linear estimate is valid for larger values of
t. Similar results are found in Experiments 2–4 below, indicating that the
time interval appearing in (3.3) is probably not the longest possible.

The solution profiles of (1.1) and (1.4) at t = 50 corresponding to the
initial data described above (with ε = 0.4 and x0 = 19) are plotted in Figure
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Figure 1. (a) Surface profile ηε(x, t). (b) Relative differ-
ences between solutions of (1.1) and (1.4).

2(a), which shows that ηε(x, 50) and qε(x, 50) have a very similar shape.
However, as one sees upon consulting Figure 1(b), the relative difference
between them, as measured by E∞, is almost 0.5. This is clearly due to phase
difference: the two equations propagate their respective travelling waves at
noticeably different speeds. It is worth noting that this difference in the speed
of propagation owes to nonlinear effects. Indeed, an eassy calculation shows
that the linear forms of (1.1) and (1.4) (i.e., drop the quadratic terms) have
exactly the same dispersion relation between frequency ω and wave number
k, namely, ω(k) = k/(1 + 1

6εk2) for waves moving to the right.
This leads one to imagine a comparison between solutions modulo a phase

shift, or what is often called the shape difference [15]. For a fixed t, the
phase shift is determined by first finding the mesh point xk where ηε(xk, t)
takes its maximum value, and then using a quadratic polynomial interpo-
lating (xk, ηε(xk, t)) and the two neighboring points (xk−1, ηε(xk−1, t)) and
(xk+1, ηε(xk+1, t)) to determine the location of the maximum point of ηε(x, t);
viz.,

x∗ =
(2xk − Δx)ηε(xk+1, t) − 4xkηε(xk, t) + (2xk + Δx)ηε(xk−1, t)

2ηε(xk+1, t) − 4ηε(xk, t) − 2ηε(xk−1, t)
.

We then define ηs
ε (x, t) = ηε(x+x∗−x0, t), and compute the “relative shape

difference”

Es
p(ε, t) =

|ηs
ε (·, t) − gε(x)|p

|gε(x)|p
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Figure 2. (a) A solution of (1.4) (solid line) and a corre-
sponding solution of (1.1) (dashed line) at t = 50. (b) Rela-
tive shape differences between solutions of (1.4) and (1.1).

for p = 2 and p = ∞. Similarly, one can compute the relative difference

Ẽs
p(ε, t) =

|vs
ε (·, t) − vε(·, 0)|p

|vε(·, 0)|p
between a shifted profile vs(x, t) and the initial data vε(x, 0). The results
for ε = 0.4 are shown in Figure 2(b), where the dotted curves represent Es

2

and Ẽs
2, and the solid curves represent Es

∞ and Ẽs
∞. The relative shape

differences remain less than 0.025 for t up to 50.
Results of this experiment for other values of ε are summarized in Tables

1 and 2. To maintain the accuracy, different values of x0 were used so that
the solution at the boundary would be consistently small over the entire
temporal interval. The values of E∞, Ẽ∞, E2, and Ẽ2 at t = 50 are listed
in Table 1 for ε ranging from 0.025 to 0.6. The corresponding data on shape
differences are listed in Table 2.

From rows 4–7 in Tables 1 and 2, one notices that the comparisons made
via the discrete L∞ or L2 norms behave similarly. For either choice of norm,
the relative error decreases as ε decreases, and the rates of decrease are
comparable. For the rest of the discussion, therefore, we use as benchmarks
the quantities E2(ε, t) and Es

2(ε, t).
Note that E2 is decreasing as ε decreases (see row 6 in Table 1). The rate

of decrease, computed by using the formula

rate(εn) =
log

(
E2(εn, t)/E2(εn+1, t)

)
log(εn/εn+1)

,
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n 1 2 3 4 5 6 7 8
εn 0.6 0.5 0.4 0.3 0.2 0.1 0.05 0.025
x0 20 20 19 17 14 12 9 9
E∞ 0.79 0.64 0.47 0.29 0.14 0.041 0.012 0.0032
Ẽ∞ 0.79 0.64 0.47 0.29 0.14 0.041 0.012 0.0032
E2 0.98 0.78 0.56 0.34 0.17 0.046 0.0013 0.0034
Ẽ2 0.97 0.76 0.55 0.34 0.16 0.046 0.0013 0.0033

rate of E2 1.3 1.5 1.7 1.8 1.8 1.9 1.9 → 2
Table 1. The relative difference between solutions (ηε, vε) of
(1.1) and (qε, wε) of (1.4) at t = 50, and the rate of decrease
of E2 with respect to ε.

n 1 2 3 4 5 6 7 8
εn 0.6 0.5 0.4 0.3 0.2 0.1 0.05 0.025
x0 20 20 19 17 14 12 9 9
Es

∞ 0.031 0.025 0.020 0.014 0.0092 0.0040 0.0017 0.00067
Ẽs

∞ 0.0015 0.0014 0.0012 0.0097 0.0071 0.0037 0.0017 0.00066
Es

2 0.0033 0.0028 0.0024 0.0019 0.0013 0.0061 0.0024 0.00085
Ẽ2

s 0.027 0.024 0.020 0.017 0.012 0.0058 0.0023 0.00084
rate of Es

2 0.83 0.82 0.83 0.90 1.1 1.3 1.5
Table 2. The relative difference between solutions (qε, wε) of
(1.4) and (ηs

ε (x, t), vs
ε (x, t)), which are the shifts of solutions

(ηε, vε) of (1.1), at t = 50, and the rate of decrease of Es
2 with

respect to ε.

is shown in row 8 of Table 1. The rate of decrease is also calculated for the
shape difference (see row 8 of Table 2). For relatively small ε, the overall
difference is decreasing quadratically. The shape difference is decreasing
linearly with respect to ε for moderate ε. Using Richardson extrapolation
on data at ε = 0.4, 0.2, 0.1, 0.05 and 0.025, one finds that

E2(ε, 50) ≈ 5.8 ε2

as ε → 0. Therefore, the constant D2 in Theorem 3.1 for j = 0 seems to be
small (about 0.12 in this example).

Comparing the data in Table 1 and Table 2, one finds that the shape
difference Es

2(ε, t) is much smaller than the difference E2(ε, t), especially for
waves of moderate size. Using a least squares approximation on data listed



Boussinesq and BBM comparisons 153

in row 6 of Table 2 at ε = 0.6, 0.5, . . . , 0.025, one obtains

Es
2(ε, 50) ≈ 0.0494 ε.

From earlier studies (for example [13, 22]), it is known that the solitary-
wave solutions of the BBM equation play the same sort of distinguished role
in the long-time asymptotics of general disturbances that they do for the
Korteweg-de Vries equation. The numerical simulations in [8] show that a
similar conclusion is warranted for (1.1) (and see also [25]). Consequently,
it is potentially telling that an individual solitary-wave solution of (1.4) is
seen to be very close (with Es

2 ≤ 0.04 for all amplitudes we have tried) to
the solution of (1.1) when the one-way velocity assumption (3.1) is imposed.
Moreover, the structure of the solution of (1.1), when initiated with the
BBM solitary wave using (3.1), appears to be a solitary-wave solution of
(1.1) followed by a very small dispersive tail. Thus, the impact of the present
experiment could be much broader than appears at first sight.

Experiment 2: Waves with dispersive trains. In the first experiment,
the initial profile g was chosen so that it generated an exact solution of the
BBM equation. However, this initial data had to depend on ε, albeit weakly.
In the next experiment, the initial data g is fixed, independently of ε. We
choose for this case a g that results in a lot of dispersion: namely, a profile
of the form

g(x) =
(
− 2 + cosh

(
3
√

2
5(x − x0)

))
sech4

(
3(x−x0)√

10

)
, (4.1)

with two small crests separated by a deep trough. This profile, with x0 = 60,
is displayed as the top curve in Figure 3. The initial data for (1.1) is, as
before, given by ηε(x, 0) = g(x) and vε(x, 0) = g(x) − 1

4εg2(x). Figure 3
shows the solution profile ηε(x, t) at t = 0, 10, 20, 30 and 40 with ε = 0.5. It
is clear that the wave propagates to the right and also expands slowly to the
left, and decays in L∞ norm, leaving a considerable dispersive tail behind.
The solution profile qε(x, t) of (1.4) disperses similarly (see Figure 4).

Graphs of ηε(x, t) and qε(x, t) at t = 4.95, 25.5, 49.5 are shown in Figure
4. It is clear that the two solutions are very close to each other. The relative
differences E2 and Ẽ2 are plotted in Figure 5 for ε = 0.5 and t between 0
and 50. The values of E2 and Ẽ2 increase relatively rapidly, but linearly,
to about 0.1 by t = 3, and then more slowly thereafter. These numerical
results are not only consistent with the theoretical result |ηε − qε|L∞ ≤ Cε2t
for t ≤ Dε−1, but also indicate that the result may well continue to larger
values of t.
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Figure 3. Solution of Boussinesq system with ε = 0.5.
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Figure 4. Comparison between solutions of BBM equation
(solid line) and Boussinesq system (dashed line) with ε = 0.5.
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Figure 5. Comparison between solutions of BBM equation
and Boussinesq system with ε = 0.5, where (a) plots E2(ε, t)
and (b) plots Ẽ2(ε, t).
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ε 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05

E2 0.728 0.547 0.392 0.262 0.162 0.09.4 0.0525 0.0210 0.0090

rate on E2 2.1 2.2 2.2 2.1 1.8 1.5 1.3 1.2

Ds
2 0.476 0.307 0.180 0.0943 0.0561 0.00400 0.00263 0.00126 0.0061

rate on Ds
2 3.3 3.5 3.5 2.3 1.2 1.0 1.1 1.1

Table 3. The relative difference and shape difference be-
tween solutions (ηε, vε) of (1.1) and (qε, wε) of (1.4) at t = 50,
with initial data (4.1) for BBM.

One sees clearly from Figure 4 that ηε and qε have a very similar shape
for all values of t shown, but that there are small but persistent phase shifts
between ηε and qε that could lead to a large value of E2(ε, t) (in fact E2(ε, t)
is about 0.26 when t = 50). Data on the relative difference E2(ε, t) and
relative shape difference Ds

2(ε, t) between ηε and qε are listed in Tables 3 and
4. Here, because no exact solution is available for qε, the shape difference is
calculated using a different approach than in Experiment 1. For α ∈ R and
t fixed, define J(α) by

J(α) =
{∫ L

0
|η̄ε(x, t) − q̄ε(x − α, t)|2 dx

} 1
2

where η̄ε(x, t) and q̄ε(x, t) are the cubic spline interpolation functions through
the points η(xi, t) and q(xi, t). The shape difference Ds

2(ε, t) is obtained by
finding the minimum value of J(α). The Matlab program fminbnd is used
in our computation.

Table 3 shows the dependence of E2(ε, t) and Ds
2(ε, t) on ε for t = 50. The

rate of convergence to 0 degrades as ε becomes smaller. Since this behavior
does not match the expected asymptotic behavior as ε → 0, we investigated
further using values of ε below 0.05. The results are shown in Table 4,
where one eventually sees what looks like quadratic convergence in ε. These
calculations were done at t = 1 since the t-dependence of E2 for larger values
of t is shown in Figure 5 already.

In general, for moderate sized waves, corresponding to say ε ≤ 0.4, the
shape difference is small until t gets large. But for large ε and t, the shape
difference can be large. (This is in contrast to the situation in Experiment
1, where the shape difference remained small even for large ε and t.) For
example, for ε = 0.8 and at t = 50, the shape difference is about 0.476.
A study of the wave profiles reveals the reason for this. As ε gets larger,
the wave profile for positive time becomes more complex. There are several
peaks with different amplitudes in evidence, and each of these propagates at
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ε 0.5 0.4 0.3 0.2 0.1 0.05 0.025 0.0125

E2 0.043 0.033 0.024 0.014 0.0051 0.0018 0.00053 0.00015

rate on E2 1.2 1.1 1.3 1.5 1.5 1.7 1.9 → 2

Ds
2 0.0371 0.0303 0.0230 0.0139 0.00501 0.00173 0.00052 0.00014

rate on Ds
2 0.9 1.0 1.2 1.5 1.5 1.7 1.9

Table 4. The relative L2 difference and shape difference be-
tween solutions ηε(x, t) of (1.1) and qε(x, t) of (1.4) at t = 1,
with initial data (4.1) for BBM.

its own speed. As the speeds in the BBM approximation (1.1) are not quite
the same as for the Boussinesq approximation (1.4), there is a divergence
because of phase differences, just as in Experiment 1. However, because there
is substantial energy in more than one wave amplitude, there are several
phase differences contributing substantially to the phase mismatch, and no
single translation can compensate for them all. To put the issue in simple
terms, for given functions f1 and f2 one cannot in general obtain a close fit
to

f1(x + α1) + f2(x + α2),

where α1 and α2 are distinct, by using an approximation of the form

f1(x + α) + f2(x + α).

The solutions studied in Experiment 2 also differ from those of Experiment
1 in that their structure changes when ε is changed. (In Experiment 1,
solutions for all values of ε tried had the same structure: namely, that of
a solitary wave with a small dispersive tail.) The effects of changing ε on
the solutions in Experiment 2 may be seen, for example, by comparing the
solution for ε = 0.5, shown in Figure 3, to that shown in Figure 6, where ε
has been reduced to 0.05. In Figure 6, where ηε(x, t) is graphed against x
for t = 0, 10, 20, 30, and 40, it is clear that ηε(x, t) is mainly a right-moving
wave. This is in agreement with the result one gets by considering (1.1) to
be a perturbation of the linear wave equations

ηt + vx = 0
vt + ηx = 0,

with initial conditions η(x, 0) = g and v(x, 0) = g. For this reduced system,
the exact solution is simply the right-moving wave

η(x, t) = g(x − t)

v(x, t) = g(x − t).
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Figure 6. Solution of Boussinesq system with ε = 0.05.
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Figure 7. Comparison between solutions of BBM equation
(solid line) and Boussinesq system (dashed line) with ε =
0.05. The difference between the two solutions is not visible.

Comparisons between ηε(x, t) and qε(x, t) for ε = 0.05 at t = 16.8, 33.5,
and 50.1 are plotted in Figure 7. The difference between the two solutions
is hardly visible. At t = 50, the relative difference E2(0.05, 50) is only 0.009
(see Table 3).

As another check on our code, we monitored the variation of quantities
that, for the continuous problem, are independent of time. The integrals

I1(t) =
∫ L

0
ηε(x, t) dx, I2(t) =

∫ L

0
vε(x, t) dx,

F (t) =
∫ L

0
[ηεvε + (ε/6)(ηε)x(vε)x] dx, E(t) =

∫ L

0

[
η2

ε + v2
ε (1 + εηε)

]
dx

were approximated using the trapezoidal rule. It was found that over the
time interval [0, 50], I1(t) was zero to within 5.9 × 10−6, I2(t) stayed within
0.008% of −0.071, F (t) stayed within 0.02% of 0.43, and E(t) stayed within
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Figure 8. Solution of Boussinesq system.

0.000004% of 0.51. Further, all the computations reported here and through-
out Section 4 were checked for convergence by halving the spatial and tem-
poral grid lengths and comparing the resulting approximations.

Experiment 3: Solitary-wave interactions. In this experiment, atten-
tion is given to the situation wherein a large solitary wave overtakes a smaller
solitary wave. The initial data for the BBM equation is the superposition of
two exact solitary-wave profiles, namely,

qε(x, 0) = sech2
(

1
2

√
3

1+0.3 (x − 20)
)

+ 1
6 sech2

(
1
2

√
0.5

1+0.05 (x − 54)
)
.

Numerical solution of the BBM equation with this type of initial data was
carried out earlier in [13]. It was found there that two solitary-wave solutions
of the BBM equation do not interact exactly (elastically), as they do in the
case of the Korteweg-de Vries equation. From the results of these earlier
simulations, we know that it takes a fair amount of time for the two solitary
waves to fully interact. Therefore our numerical computation is carried out
to t = 234.

The surface profiles ηε(x, t) of the solutions of the Boussinesq system (1.1)
with ε = 0.6 at t = 55, 117, 148, 192, and 234 are shown in Figure 8. Notice
how closely these profiles resemble those of a double-soliton solution of the
Korteweg-de Vries equation. Just as in a Korteweg-de Vries soliton inter-
action, first the large solitary wave overtakes the smaller one on account of
its larger phase speed, then the two waves interact nonlinearly, and finally
both emerge from the interaction having regained more or less their original
shape and speed. This close resemblance between solutions of (1.1) and the
Kortweg-de Vries (or BBM) equation is to be expected, for otherwise the
validity of at least one of these models would be in jeopardy. It should be
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Figure 9. Comparison between solutions of BBM equation
(solid line) and Boussinesq system (dashed line)

noted, however, that theory still falls short of being able to prove that so-
lutions of (1.1) exhibit the behavior shown in Figure 8 (see [23] for recent
work in this direction).

In Figure 9 are shown comparisons between the solutions of the BBM
equation (1.4) and the Boussinesq system (1.1), starting from the above
initial data, at t = 79 and 199. The phase speeds for Boussinesq solitary
waves of a given amplitude are smaller than those of the BBM equation.
This is especially evident for waves of larger amplitude. At t = 199, the
phase difference for the large solitary wave has accumulated to the point
where the two renditions of it differ by more than one full wavelength.

Experiment 4: Initial-boundary-value problems. In the last exper-
iment, we attempt a simulation that corresponds to waves generated by a
wavemaker in a wave tank or to regular, deep-water waves impinging upon
a coast. An idealized version of this situation is to pose (1.1) or (1.4) for
(x, t) ∈ R

+ ×R
+ with zero initial data and a sinusoidal boundary condition

qε(0, t) = sin(πt) tanh(5t),

which is plotted in Figure 10. The function tanh(5t) is used to ensure the
compatibility of initial data and the boundary data at the corner (x, t) =
(0, 0). The left boundary condition for the system (1.1) is taken to be
ηε(0, t) = qε(0, t) and vε(0, t) = qε(0, t) − 1

4εqε(0, t)2, as in (3.1).
The solutions of the Boussinesq system (dashed line) and the BBM equa-

tion (solid line) are plotted in Figure 11 for ε = 0.2 and in Figure 12 for
ε = 0.5. The two solutions have a similar shape, but the waves predicted by
the Boussinesq system are smaller and slower than those predicted by the
BBM equation. The difference between solutions decreases as ε decreases.
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Figure 10. Water surface level at the wave maker.
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Figure 11. Comparison with ε = 0.2.
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Figure 12. Comparison with ε = 0.5.

We emphasize that no theory for comparison was developed here for such
initial-boundary-value problems, but theory for the individual boundary-
value problems can be found in [4], [5], [7], and [12]. Preliminary consid-
erations show that such a theory is not necessarily out of reach, but it is
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more complicated than our developments in Section 3 for comparing the
pure initial-value problems.

5. Conclusions

When one attempts to model long-crested waves entering the near-shore
zone of a large body of water, one naturally aims for the simplest de-
scription that is consistent with the accuracy of the input data. On the
other hand, most of our knowledge of just how well various modelling ap-
proaches work derives from laboratory experiments. In both of these situ-
ations, there are available standard unidirectional models such as (1.4) or
its variable-coefficient analogues which take account of variable undisturbed
depth. These have been shown to predict pretty accurately within their
formal range applicability in laboratory environments. There are also avail-
able more complicated systems, like (1.1) or its variable-coefficient versions,
that can potentially take account of reflection. Our goal here, which had its
origins in sediment transport models arising in analyzing beach protection
strategies, has been to understand a precise sense in which the bidirectional
model specializes to the unidirectional model. This is a fundamental ques-
tion, but the answer also helps with the formulation of input to the bidirec-
tional model in situations where we would normally have insufficient infor-
mation with which to initiate the equation. In particular, records of wave-
amplitude incoming from deep water are straightforward to use in initiating
a unidirectional model like the BBM equation (1.4). As becomes apparent
from the analysis in Section 3, the same data can be used to initiate the
Boussinesq system (1.1), and with the same implied level of accuracy. The
advantage is that the Boussinesq system can countenance reflection whereas
(1.1) cannot. Thus, (1.1) can in principle be coupled to models for run-up
and reflection in the very-near-shore zone.

In addition to presenting a qualitative theory connected with the com-
parison of the BBM equation and the Boussinesq system, we have reported
numerical experiments showing quantitative aspects of the relation between
these two models. After performing convergence tests and the like to gen-
erate confidence in our numerical scheme, we ran simulations with initial
data corresponding to solitary-wave interactions and to large-scale disper-
sion. The results show clearly how well the Boussinesq system, with initial
velocity as determined from the initial amplitude by (3.2), is tracked by the
simple initial-value problem for the BBM equation. Even more convincing
are the boundary-value comparisons shown in Experiment 4. As this is an
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important context where our ideas could come to the fore, the agreement
here is heartening.

Appendix

This appendix contains the proofs of Theorem 3.5 and Lemma 3.10. For
the reader’s convenience, the results are restated here as Theorems A1 and
A2.
Theorem A1. Let j ≥ 0 be an integer. Then for every K > 0 and every
D > 0, there exists a constant C > 0 depending only on K and D such that
the following is true. Suppose g ∈ Hj+5 with ‖g‖j+5 ≤ K. Let q be the
solution of the BBM equation (1.4) with initial data q(x, 0) = g(x) and let
r be the solution of the KdV equation (1.5) with initial data r(x, 0) = g(x).
Then for all ε ∈ (0, 1], if

0 ≤ t ≤ T = Dε−1,

then
‖q(·, t) − r(·, t)‖j + ε‖q2(·, t) − r2(·, t)‖j ≤ Cε2t.

Proof. This theorem is essentially proved in [14], to which we refer the
reader for details that are omitted here. First consider the case j = 0, and
let θ = q − r. Then θ satisfies the equation

θt + θx + 3
2ε(rθ)x + 3

2εθθx − 1
6εθxxt = ε2G, (A.1)

where G = −
(

1
4(rrx)xx + 1

36rxxxxx

)
. Multiplying (A.1) by θ, integrating

over R × [0, t], and integrating by parts leads to∫ ∞

−∞
(θ2 + 1

6εθ2
x) dx = 3

2ε

∫ t

0
rxθ2 dx dτ + ε2

∫ t

0

∫ ∞

−∞
Gθ dx dτ. (A.2)

Now let A(t) ≥ 0 be defined by setting A2(t) equal to the integral on the
left side of (A.2). It follows easily from (A.2) that

A2(t) ≤ C

∫ t

0

[
ε2A(τ) + εA2(τ)

]
dτ

where C depends only on the norm of r in H5, and hence, by Lemma 3.10,
only on K. By Gronwall’s inequality, it then follows that

A(t) ≤ C1ε(eC2εt − 1)

for all t ≥ 0. In particular, it follows that for any D > 0 one can find C > 0
such that

A(t) ≤ Cε2t
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for all t ∈ [0, D/ε]. Thus, for t ∈ [0, D/ε], we have ‖q − r‖L2 ≤ Cε2t,
‖qx − rx‖L2 ≤ Cε3/2t, and

‖q2 − r2‖L2 = ‖(q − r)(q + r)‖L2 ≤ ‖q − r‖L∞‖q + r‖L2

≤ C‖q − r‖1/2
L2

‖qx − rx‖1/2
L2

≤ C(ε2t)1/2(ε3/2t)1/2 = Cε7/4t.

Therefore,

ε‖q2 − r2‖L2 ≤ Cε11/4t ≤ Cε2t,

as desired.
In case j ≥ 1, the argument is easier. Starting from (A.1) and following

the procedure in Subsection 3.3 above, one obtains that the quantity non-
negative Aj(t) defined by

A2
j (t) =

∫ ∞

−∞

j∑
k=0

[
θ2
(k) +

1
6
εθ2

(k+1)

]
dx

satisfies the estimate
Aj(t) ≤ Cε2t,

where C depends only on K. Hence ‖q−r‖j ≤ CAj(t) ≤ Cε2t. In particular,
using Lemma 3.10 we have

‖q + r‖j ≤ ‖q − r‖j + 2‖r‖j ≤ Cε2t + C ≤ C

for all t ∈ [0, D/ε], where C depends only on K and D. Since Hj is an
algebra for j ≥ 1, it transpires that

ε‖q2 − r2‖j ≤ Cε‖q − r‖j‖q + r‖j ≤ Cε‖q − r‖j ≤ Cε3t ≤ Cε2t,

as desired. �

Theorem A2. Let s ≥ 1 be an integer. Then for every K > 0, there exists
C > 0 such that the following is true. Suppose g ∈ Hs with ‖g‖s ≤ K, and
let r be the solution of the KdV equation (1.5) with initial data r(x, 0) = g(x).
Then for all ε ∈ (0, 1] and all t ≥ 0,

‖r(·, t)‖Hs ≤ C. (A.3)

Further, for every integer k such that 1 ≤ 3k ≤ s, it is the case that

‖∂k
t r(·, t)‖Hs−3k ≤ C.
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Proof. Define

ρ(x, t) =
(

3ε
2

)
r(

√
ε/6(x + t),

√
ε/6 t),

so that ρ is a solution of the equation

ρt + ρρx + ρxxx = 0. (A.4)

As explained in the discussion on [16, pp. 576–578], there exist a countable
number of explicitly-defined functionals I0, I1, I2, . . . which are, at least
formally, conserved under the flow defined by (A.4). As a consequence of
the well-posedness theory of KdV presented in [16], one has that in fact Ik(ρ)
is independent of time for 0 ≤ k ≤ s, provided ρ ∈ Hs and s ≥ 2. This result
was later extended to s ≥ 0 in [18].

Now the functionals Ik are defined on functions f(x) of one real variable
by integrals of the form

Ik(f) =
∫ ∞

−∞
Pk(f)(x) dx,

where Pk(f) denotes a polynomial function of f and its derivatives. In fact,
Pk(f) consists of a linear combination of monomials

(f)a0

(
df

dx

)a1
(

d2f

dx2

)a2

. . .

(
dpf

dxp

)ap

,

in which the “rank” of each monomial, defined as
∑p

i=0(1+ 1
2 i)ai, is equal to

k +2. Hence if ρ(x, t) and r(x, t) are viewed as functions of x parameterized
by the variable t, we have

Pk(ρ)(x, t) = εk+2P̃k(r)(
√

ε/6(x + t),
√

ε/6 t)

for all x and t, where P̃k(f) denotes another polynomial function of f and
its derivatives, which like Pk(f) has coefficients which are independent of ε.
Now define a functional Ĩk by the formula

Ĩk(f) =
∫ ∞

−∞
P̃k(f)(x) dx.

Since Ik(ρ) is independent of time, it follows that Ĩk(r) is independent of
time. Then the same argument as used to prove Proposition 6 of [16] allows
us to conclude that the norm of r in Hs remains bounded for all time, with
a bound which depends only on the Hs norm of r(x, 0) = g(x). Notice in
particular that since the quantity ε does not appear in the definition of the
functionals Ĩk, the bound thus obtained is independent of ε.
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This proves the existence of the desired constant C in (A.3). The desired
bounds on the time derivatives of r then follow immediately by using (1.5)
to express time derivatives in terms of spatial derivatives. �
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