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We formulate a general model of three-wave optical interactionshe spatial domain which combines
quadratic(y'?) and cubic(x®) nonlinearities, the latter including four-wave mixing. The model can be
realized in x? materials where an effectivg®® nonlinearity is engineered by means of the quasi-phase-
matching technique. Both self-focusing and self-defocusifiy nonlinearities are considered. The birefrin-
gence of the two fundamental-frequen@F) waves is taken into regard. Several types of solitons in this
system are found, by means of the variational approximation and numerical methods. These are exact single-
component solitons and generic three-wé&%¥/) ones, which are classified by relative signs of their compo-
nents. Stability of the solitons is investigated by means of the Vakhitov-Kolok@d/#d) criterion, and then
tested by direct simulations. One type of the single-component FF solitb@sfast” one, in terms of the
known two-component birefringer)t(3> mode) is, chiefly, unstable, as in that model, but nevertheless a
stability intervalis found for it, which provides for the first example of stable fast solitons. The other FF soliton
(the “slow” one, in terms of the samg® model, where it is always stabldas its stability and instability
regions. A single-component soliton in the second harm@®id) is found too; it also has itstability region
contrary to the common belief that such a soliton must always be unstable due to the parametric interaction.
The 3W solitons are stable indeed if this is predicted by the VK condition, in the case when all the three
components are positive. Following variation of t{8 mismatch parameter, the 3W soliton bifurcates from
the SH one, and at another point it bifurcates back into the slow-FF single-component soliton; conjectured
normal forms of the respective bifurcations are given. 3W solitons with different signs of their components
may be unstableontrary to the VK criterion, which is explained by consideration of %@ term in the
system’s Hamiltonian. In direct simulations, unstable solitons evolve into stable breathers. A different insta-
bility takes place in the case of the self-defocusjfél nonlinearity, when all the solitons blow up into a
turbulent state. Parallel to the solitons, continuous-wave solutions are studied too. In terms of the existence and
stability, they resemble solitons of similar types.
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[. INTRODUCTION sults can also be found in the revieys,2]). In uniform
media admitting the phase-matchgd interaction, the natu-

Solitons in optical media with the quadrafig'®] nonlin-  ral Kerr nonlinearity is usually much weaker than its qua-
earity, alias second-harmonic-generatiStiG) systems, is a dratic counterpart; nevertheless, in RE8] it was demon-
subject that has been studied in detail theoretically and exstrated, in a direct experiment, thay® and y©
perimentally, see reviewgl] and[2]. An important case is nonlinearities can be made comparable in an optical crystal
the so-called type-Iy'? interaction, when the material bire- (actually, it was KTR by properly adjusting the beam’s
fringence is employed to phase-match two orthogonal linPoynting vector relative to the crystallographic axes. Another
early polarized components of the fundamental-frequencyossibility is to create a strong artificigl® nonlinearity of
(FF) wave to a single second-harmoriisH) component. In  either sign(self-focusing or self-defocusingwhich can be
fact, this mechanism, which gives rise to stable three-wavénduced, in a basically® medium, by means of the well-
(3W) solitary waves, was used in the first experimental obknown QPM (quasi-phase-matchiipgechnique, i.e., a peri-
servation of spatiak'® solitons[3]. Basic properties of the odic structure(grating composed of alternating domains
3W solitons were investigated in detail some time &gee  with opposite signs of the!? coefficient. This technique
the above-mentioned revieyvOther effects that essentially was first predicted as a means to create solitons supported by
affect dynamics of solitons, such as combination of linearcompetingy'?: ¥'® nonlinearities in Ref]6]; later, an imple-
mixing between the two FF polarizations and group-velocitymentation in an optical crystal, employing sinusoidal modu-
birefringence, were considered more recefdy lation of the medium, was proposed in RET] (see also a

On the other hand, thg® interaction may compete with review[8]). A still strongery'® interaction can be induced in
the less specific cubify®, alias Keri nonlinearity. In two-  two-period QPM grating$9].
wave (type-l) settings, the competition between th& and It should be stressed that the artificigl nonlinearity
x® nonlinearities was another subject of detailed stuties  induced via the QPM technique manifests a wider variety of

1539-3755/2004/68)/05660%17)/$22.50 69 056605-1 ©2004 The American Physical Society



CHEN, KAUP, AND MALOMED PHYSICAL REVIEW E 69, 056605(2004)

properties than its classical Kerr counterpart; in particularCW solutions suggests how many their soliton counterparts,
the artificial nonlinearity may feature an arbitrary asymmetryand of which types, are to be expected in the same parameter
between the FF and SH wavé®r instance, with noy® region. Then, we construct approximate soliton solutions in a
self-phase modulation at the §8,7]; see also belojv Ex-  (semj analytical form by means of the variational approxi-
perimentally, an effectivg'® nonlinearity engineered on the mation (VA; see a general review of this technique in Ref.
basis of the fundamental SHG process in a QPM structurgl4]; a description of specific applications of VA §¢? mod-

was first demonstrated in RfL0]. els can be found in the revieyl]). Predictions concerning
On the other hand, interplay of the Kerr nonlinearity andthe stability of the 3W solitons will be first drawn by means
birefringence(in the absence of SHG interactigns a well-  of the known Vakhitov-KolokoloVK) criterion, which was

investigated topi¢11]. In particular, a known result is that, if proposed 30 years add5], and has been successfully ap-
the four-wave mixing FWM) involving two linear polariza- plied to many models since thesee reviewg1,2,14 and
tions is taken into regard, the soliton with the so-caliémiv = [16]).
polarization is stable, while the one with the orthogofaesit Analytical results produced by VA for both the shape of
polarization is unstabl¢l2] (exact definitions of the slow the stationary solitons an@ combination with the VK cri-
and fast, which refer to the birefringence, are given bglow terion) for their stability will then be tested against numerical

A natural problem, that we will formulate and investigate solutions. We will conclude that the VA based on a Gaussian
in this work, is to search for soliton solutions, and analysis ofansatz(trial wave forn), which assumes equal widths of all
their stability, in the 3W system which combines two or- the three components of the solitons, yields quite accurate
thogonally polarized FF components and a single SH onegsults: basically, it predicts all the numerically found soli-
taking the birefringence and bojt?’ and x® nonlinearities  tons(the only branch of soliton solutions that the VA fails to
into regard. Besides the solitons, we will also consider, in andentify is one which strongly violates the assumption about
analytical form, a similar but simpler problem for equal widths in all the three componentEhe general struc-
continuous-wavé€CW) fields (in that case, the stability will ture of the soliton solutions is quite similar to that of the CW
be considered only against CW perturbations, while thestates. The solitons are found for both the self-focusing
modulational instability is not dealt with here (Kerr) and self-defocusinganti-Kern x'® nonlinearities[in

In this 3W model, exact solutions can be found for single-the latter case, solitons are possible provided thatxRe
component solitons, with only slow or fast FF componentnonlinearity is preseffithowever, the solitons are always un-
present. These solutions are obvious, as they nullifyyffle  stable in the anti-Kerr case.
terms and are identical to those found in the early wagy. A fundamental result is that the 3W soliton with three
The first issue is stability of the slow and fast solitons, as it ispositive component&herefore, it is labeled as BRPP one)
not obvious that it must be exactly the same as in the modgiresents, as a matter of fact, a crossover between two single-
without the y'?' terms and SH component. We will conclude component solitonsyiz., SH and slow-FF ones: with the in-
that, similar to the case considered in R@f2], the single- crease of they® mismatch parameter, a stable 3W soliton
component fast solitons are unstable in most cases; neverthieifurcates from a stable SH one; later, it becomes unstable,
less, an essentially novel result is that they maystadlein and, finally, it bifurcates into a weakly stable slow-FF soli-
some parametric region. As for their slow counterparts, theyon. We propose “phenomenological” normal forms of the
may be both stable and unstable, on the contrary to the birégwo bifurcations, deferring a consistent derivation to another
fringent two-wavey® system, where they are always stablework. The 3W soliton of th&®PPtype is stable indeed where
[12]. Besides that, an exact single-wave soliton containinghis is predicted by the VK criterion; however, 3W solitons
only the SH component will be found too, being supportedcontaining negative components may be unstable contrary to
solely by thex'® nonlinearity; quite unexpectedly, the latter this criterion, which we explain by consideration of th@
soliton may be stable in some parameter regibwas com- term in the system’s Hamiltonian.
monly believed that such solitons are always unstable against The VA generates parts of the soliton families in the
FF perturbations present model at values of the propagation congtatrinsic

A completely new problem is to find general 3W solitons frequency which belong to the continuous spectrum of the
in this model and analyze their stability. The formulation of system'’s linearized version. This circumstance means that, in
the model itself is a novel issue too, as it includes someyeneral, the corresponding parts of the solution branches rep-
FWM terms that, to the best of our knowledge, have neveresentdelocalized solitons.e., pulses with nonvanishing os-
been considered before, at least in the context oftRexy® cillating tails [17]. Actually, it is not unusual for the VA to
competition(a multicomponent model of another type, com- pick up such solution§l7]. In systems which support delo-
bining x® and x® interactions, was recently considered in calized solitons, it frequently happens that, with the variation
Ref. [13)). of the propagation constant, the amplitude of the tail crosses

A serious difficulty in studying this system in a systematic zero (vanishe$ at certain points. If this happens, one has an
manner is to determine whether one has found all possiblembeddedoliton (ES), which is a fully localized object that
soliton solutions for the parameters given. Numericallycoexists with linear radiation mod€ESs were reviewed in
searching the entire parameter space is not a realistic apecent paper$l8]); however, search for ESs in the present
proach in the present context. Another path is followed insystem is beyond the scope of this paper.
this work: we start with a more tractable CW counterpart of For unstable solitons, we monitor their instability-
the model, in which stationary solutions are to be found fromtriggered evolution by means of direct simulations. We con-
algebraic equations, rather than from ODEs. The set of thelude that the instabilities do not tend to turn unstable soli-
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tons into other stationary stable ones, but rather transforraters are real, and they may be positive or negative, with a
them into very persistertireathers i.e., solitary pulses fea- constraint thaty; andy, must have the same sign. The cases
turing periodic internal vibrations. However, the instability- y; ;>0 and vy, ,<<0 correspond, respectively, to the self-
development scenario is very different in the case of thdocusing(normal Ker) and self-defocusinganti-Kern y®
self-defocusing y'® nonlinearity, resulting in a violent nonlinearities.
“blow-up” of the soliton(transition into a strongly turbulent If the cubic nonlinearity is directly induced by the elec-
state. tronic response of the dielectric medium, the twd coef-

In the experiment, creation of stable 3W solitons shouldficients are not independent; it is easy to demonstrate that, in
be possible in essentially the same range of physical paranthis case, they are related so that
eters where two-wave optical solitons were earlier predicted
in models with competing¢® and x® nonlinearities(see ¥2=nl6. 4)
reviews[1] and [2], and also Refs[6]{9] and the experi-
mental work[10] for the most realistic case of the QPM-

i (2-,(3) i i i
in : mbined nonlinearity In f h f . e .
ducedy *: " combined nonlineariy In fact, the use o sarily hold, as the artificially induceg® terms may feature

the birefringence, which usually helps to match the funda

mental and second harmonics, may render the experimentgﬁrrtﬁnlg asy;nmﬁtrydbﬁ'r[]vi\;ere;n th’e FE ar\:\(/j S'; W;ti?ﬁg.rl\llak-)n

creation of the soliton more feasible than in the usual two~' - c'c>s: 10r IN€ AETNItENess sake, we adopt the re

wave system hereafter(in fact, taking v, different from y,/6 does not
; change any noteworthy aspect of the results

The rest of the paper is organized as follows. In Sec. I, ; . o D
the full 3W model is put forward; obvious solutions for the It is obvious that the b|refr|ngence coefficient in EqE)
nd (2) can always be normalized so thla&=1 (unlessb

above-mentioned single-component solitons are also given iﬁo Below we will use this normalization in Most cases
Sec. Il. Section Il reports investigation of CW solutions and_l__hzj'S theré remain two independent real barameters in the
their stability. Variational results for three-component soli- ’ P P

tons and predictions for their stability, based on the VK cri—SyStem' ”"?‘me'y- the single free nonlinear coefficigrt y,
and the mismatcl.

terion, are given in Sec. IV. Results of direct numerical simu- Equations 1)<(3) are written for the paraxial evolution in
lations (including formation of breathers from unstable thesqatial dznzgn)so thatz is the bro af)ation distanceis
solitong are reported in Sec. V, which also presents conjecih tp ' dinate in th propag di | !
single-components and 3W solitons. The paper is conclude? > T .

raction. A more general system, with independent coeffi-
by Sec. VI. . . o S

cients in front of the second-derivative terms in different
equations, may be introduced to describe the temporal-

domain evolution, withx replaced by the temporal variable.
A genera| 3W System Combining théZ) andX(3) nonlin- However, although tempora)((z) solitons have been ob-

earities and birefringence can be derived on the basis of thgerved in the experimerif.9], spatial solitons in SHG sys-

well-known model for the type-1l SHG systeft,2], and the tems are more feasible objedt$,2]. For this reason, we

one for the copropagation of two orthogonal linear polariza<confine the model to its spatial-domain version.

tions in the Kerr mediunj12,17. If the fieldsu andv are Equationg(1)~3) conserve a dynamical invaria(gower,

complex envelopes of the two components of the FF fieldalias the norm of the solution; in the temporal domain, it

andw is the single SH component, paraxial evolution equawould be energy

tions, including the usual terms accounting for the type-li oo

x'? interaction andy® terms that take into regard the self- E:f [UO)[2+ |0 ()2 + 4w(x)[2]dx. (5)

phase modulatiofSPM), cross-phase modulatiofKPM), —

and four-wave mixingFWM), are

If the cubic nonlinearity is induced by means of the above-
mentioned QPM technique, the relatioh) does not neces-

Il. THE MODEL AND SIMPLE SOLUTIONS

. . . . The system also conserves the momentum and Hamiltonian,
iU, + U+ 0 W+ 1 (5] + o2+ 2w)u+ Syw2u which will not be explicitly used in this work.

2 _ We will start by studying the CWcontinuous wavgeso-
+ ywl*v +bu=0, @) lutions to Eqs(1)—(3). These are sought for in the form of
i, + 200+ UWH 1 (3[v2+ U2+ 2wP)v + Sy 2" u(zx) =eA,  v(zx)=€e¥B, w(z,x)=e?¥C, (6)
+ y2lW|*u-bv =0, (2)  whereA, B, andC are real constants that satisfy a system of

cubic equations,
2iW, + Wy + Uv — qw+ 29, (2Jw]? + |u? + [v[Dw
e ' ~ (k-b)A+BC+ (A2 + 182+ 2C)A+ 1yC2B =0,

+y(uv” +Uu'v)W=0, 3) )
where b is a real birefringence coefficient, angl is the
phase-mismatch parameter that controls the SHG process. In 1h2 L 1a2 5 1 26
these equations, thg® coefficient is normalized to be 1, (k+b)B+AC+ 7(48 A0 )B+ sYCA=0,
while y; and y, are two y'® coefficients. All these param- (8)
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[ 4k + —
W= > qseclﬁv2(4k +g)x],
Y

(20)

A detailed study of the CW solutions is performed in Sec.Provided thaty>0 andk=+1>0, or &+q>0 (otherwise,

Next, we will seek for stationary soliton solutions in the

form

v(z,x) =V(x), wW(z,x) = e W(x),

(10)

u(z,x) = e¥U(x),

where the real propagation const&nis an intrinsic param-

eter of the soliton family, and the functiokk V, andW may
be assumed real too. The substitution of ELD) into Egs.

(1)—<(3) generates a system of ODHeecall we have set

6y,=y,=vyandb=1),
— (k= DU+ 3U"" +VW+ 9(FUZ + V2 + 2W2)U + 2RV
:O1 (11)

= (k+ DV + 2V + UW+ y(3V2 + 2U2+ 2WA)V + 2 WAU
=0, (12)

= (4k+ QW+ ZW'" + UV + 2y(2W2 + U2+ VAW + $yUVW
=0, (13

these simple solitons do not exist

The solutions(18) and (19) are also valid in the frame-
work of the two-component® model, in which Eq(3) is
dropped, and the variablg is set equal to zero in Eq$l)
and(2). A well-known resultf12] is that, in the latter model,
the soliton(18), which is called a slow one, is stable, and the
soliton (19), which is called fast, is unstable. However, it is
not immediately obvious whether or not these solitons are
stable as particular solutions to the full systéhp(3); this
issue will be investigated below.

Note that the calculation of the power of the solutions
(18) and(19) as per the definition5) yields

Eslow,fast: B/yV2(k+ 1). (21)

From here, we see that both expressi@®B satisfy the VK
criterion (14). Actually, in most cases the fast solitons are
clearly unstable, due to a mechanism different than what the
VK criteria addresses. This notwithstanding, the fast solitons
do appear to be stable in some cases, see below. As for the
slow solitons, it will be shown that they may be both stable
and unstable in the present model, in drastic contrast with the
above-mentioneqt'® system, where they are always stable.
As concerns the single-component solut{@g), it might
be expected that thg'? nonlinearity makes it unstable

with the prime standing ford/dx. Fundamental solitons, against FF perturbationg.e., small perturbations in the
which are the subject of the present work, are single-peakedndv components will mutually amplify each othem most

even functions ok vanishing atx= to,
For soliton solutions, the power defined as per &jis a

function ofk. The form of the functiorE(k) is important, as
the VK criterion[15] states that a necessaftyut, generally
speaking, not sufficientcondition for the stability of the

soliton is given by

dE/dk> 0. (14

Equations(11)—«13) admit obvious reductions to a single

equation by settingy=W=0, or U=W=0, or U=V=0. The
remaining equation takes the form, respectively,

~(k=DU+3U" + JU°=0, (15)
~(k+ DV+ 3V + V=0, (16)
- (4k+ QW+ W' + 4P =0. (17)

Exact soliton solutions to these equations are obvious:

Ugow =2 2k~ Dsecﬂi\r’Z(k— 1)x], (18)
Viast= 2 2(l<—;1)secl1i v2(k+ 1)x], (19

cases, this expectation is corroborated by direct simulations;
nevertheless, a parameter region will be found where the SH
solitons(20) arestable

Ill. CW SOLUTIONS

Ouir first objective is to study the CW solutions, which are
to be found from Eq9.7)—(9). For these solutions, the power
is defined not by the integral expressid, but rather as the
corresponding density,

P=A%+B?+4C?. (22

Note that Eqs(7)—(9) are invariant with respect to the simul-
taneous reversal of the signsAfandB, while the sign ofC

is kept fixed. Therefore, in what follows below, we do not
distinguish between solutions that may be transformed into
each other this way.

Taking linear combinations of Eq$7) and (8), one can
solve forAB andA?+B? in terms ofk andC. Then, inserting
these results into Eq9), one can finck as a function ofC,
hence, eventuallyh andB can also be found as functions of
C. In the process, one has to solve two quadratics, thus there
are two signs to choose, giving a total ffur different
branches of the CW solutions. In selecting the possible signs,
it is necessary to ensure that the final valuesApB, andk
are real. Each branch can meet this condition, giving rise to
a family of physical solutions.

Stability of the CW solutions was studied against pertur-
bations that also belong to the CW class, ixeindependent
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FIG. 1. The amplitude#, B, C, and power density vs k for the CW solutions, in the case bfg=vy=1. The continuous and dashed
lines represent stable and unstable solutions, respectively.

ones; from the viewpoint of the underlying equati¢hs«3), As one can see in Fig. 1, at small valueskahe ampli-
this of course implies only a necessary stability condition, agudes roughly follow a pattern of v (the Vk dependence is
possible modulational instability againstdependent pertur- expected when the SHG terms domina#é largerk, two of
bations is ignored in this section. To study the CW stability,the branches, one f@ and one forB, are seen to cross zero

we took perturbed solutions in the form of at different values ok. This behavior is due to a strong
_ interplay of they'® and they® nonlinearities occurring in
uz) = e A +ay(2) +iay(2)], this region. CW solutions also exist fé&r<<0, but further

consideration demonstrates that they all are unsi@ele be-
low), therefore the solutions fd«< 0 are not displayed here.

v(2) = €IB +by(2) +iby(2)], The four branches of the CW solutions can be classified
as follows. Branch 1 is seen to be stable up to about
W(2) = €XC + ¢y(2) +icy(2)], (23) ~100. It is the branch along which the amplituBecrosses
zero. Branch 2 seems to be stable forkalivhile branch 3 is
wherea, throughc, are real functions defining infinitesimal Unstable for alk. Branch 4 has a small segment of stability
perturbations. They are sought for as neark= 150, but .otherW|se appears to be unstable. It is the
branch along which the amplitudie crosses zero.

— ~(0) 0z — h(0) noz — ~0) oz In the plot of P in Fig. 1, one notes that the slopes of the
A =a R b= c2)=c e, (24) power curr)ves along alglJ the branches is posilﬂaedpessen-
tially constany. Thus the VK criterion does not stipulate any
part of these branches to be unstable, unlike the direct sta-
bility analysis based on the calculation of the eigenvalies
In terms of energy considerations, we would expect branch 2
to be stable, as it always has the lowest power density for a

Equations(7)—«(9) were solved not only in the indirect givenk. Indeed, this branch_ is a_lways stable. .
analytical form as described above, but also in a direct nu-. !N Many cases, the stability inferred from evaluating the

merical fashion. A conclusion following from the numerical €19envaluess as described above, correlates to the sign of

solution is that, as it could be expected, four different cwthe SHG term in the system’s Hamiltonian, which is
famil?es are fqunql for fixeqand_y. A typical example of the Hsne= - ABC. (25)
solution families is shown in Fig. 1, for the caseaf y=1

(recall we have also sdi=1), the amplitudes;, B, C, and  Stable solutions are the ones which haBC> 0, wherein
the power density [see Eq(22)] being plotted versuk (for ~ the SHG part of the Hamiltonian is negative, and unstable
k> 0). The plots also show the stability of the CW solutions, solutions haveABC<0. This conclusion is a very natural
predicted as described above from the calculation of the eiene, as stable solutions tend to minimize the Hamiltonian
genvaluess. [16]. Looking at the plots for the CW solutions, we see that

o being an instability growth rate. Substitution of E§a4)
into the linearized Eq(1)—(3) yields a sixth-order algebraic
equation fore. The (CW-)stability condition amounts to the
demand that the inequality Re<0 must hold simulta-
neously for all the roots of this equation.
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this criterion is true for branches 2 and 3, and is true almosthe latter assumption is not a serious limitation on the appli-
everywhere for branch 1. We also note that, in the plaBof cability of the VA, since direct numerical results show that
in Fig. 1, there appears to be a short segment of branch dimost all the soliton solutions do have approximately equal
whereB is negative, that by the Hamiltonian criteria, should widths, except wherk is near the edge of the continuous
be stable. But instead of being stable, this segment tests ogpectrum.

as unstable. However, branch 4 does not obey the criterion Thys, the variational ansatz is taken as

based on the sign of the terf®5), in that it would have to be
stable in the entire region whefe>0, which isk= 110, but,

in reality, only a small stability segment is found ndar
~150; otherwise, this branch tests out as an unstable one.
This finding stresses that the condition of the negativeness

of the Hamiltonian term(25) is only necessary, but not . . .
sufficient. for the stabilri?(y. ) y y whereA,,, ,, are real amplitudeg is the common width, and

CW solutions were also investigated in the case of thefusw @€ phases at the center of the respective component.
self-defocusingy® nonlinearity, withy< 0. For instance, in Inserting the ansatg27) into the Lagrangian densit{26),
the case ofy=-0.05 andg=b=1, two branches of the solu- One can calculate theffective Lagrangian
tions are stable and two are unstable. The stable branches all
have k<-1 in this case, which implies that they have no
soliton counterparts, sinagegula) solitons may only exist oo T . 5. ).
for k>1, see below. The unstable CW branches do havéeffzf L(x)dx== Ep(Auau+Avav+2Awaw)
parts withk>1, where solitons are possible. These results -

conform to the findings reported below, according to which a 1), 1),
all the solitons are unstable gt 0. /2|9t |Ay*+ | bp+ — |A
2 2p 2p
1)\, T
- bp - 2_p Au +2 EpAuAuAW COqau ta, - aw)

o] 8 A4 R+ e St

uu,w= Au,v,wexd_ (72/P2) + ia’u,u,w]r (27)

IV. THE VARIATIONAL APPROXIMATION
FOR THE 3W SOLITONS

In the presence of thg® nonlinearity only, VA turned

out to be an efficient tool for the analysis of 3W solitons 1~ 2

supported by the type-ll SHG generatigi20], which * 6"7TP[AUAvAW coday, ~ @)

strongly suggests to apply VA to the present model as well. Lioro

To this end, we note that the Lagrangian density from which + TAZAZ cod2a, - 2a,) ], (28)

the underlying Eqs(1)—«3) can be derived is

where the overdot stands fdrdz Since we are only inter-

1 1/l dulz |dv? ested in stationary soliton solutions, we assume that all the
L= E(iu*ﬁzu +iv g + 2w dw+c.c) + 5( a4 + ‘ i components contain a single propagation constapt;«,
T T =q,/2=k. It is an intrinsic parameter of the soliton family,
dw|? ) ) o x . rather than a variational one, whil,,,, and p are four
dr +b(|ul* = ol — qw|* + (u'v W+ W up) variational degrees of freedom. Then, the Euler-Lagrange
equationsiLgg/ IA, , w= Lt/ dp=0 yield the following sys-

Y Y tem:
+ 2 U+ o) + 20 + [of? + i) w2 + 2 (ulZo

* * '}’ * *
+Uv|w?+ v uw? + ==[(uv)?+ (v u)?], (26) A, 2 y

W oUW * g 2k | - A AR AD
V2

where c.c. stands for the complex conjugate expression.

In this work, we adopt the Gaussian ansatz for the soliton
trial functions. Of course, it incorrectly approximates far tails
of the soliton, which must decay exponentially, rather than
Gaussian-like. But in the one-dimensional case, this factor is (l +2(k+ b))i
not crucially important14]. Moreover, we assume that all 2 \,E
the three components of the solitons have identical widths
(an ansatz with different widths can be introduced, but it —Zy(A + @>A§,:0
gives rise to an extremely cumbersome algghdraany case, v 12 '

_2 _Y 2., A2
\EAUA\N 4Av(Au + Av)
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FIG. 2. The amplitudes of the three-wave solitdp A,, andA,,, and the poweE(k) as found from the variational approximation ks
for the first two solution branches, wheprb=1.

1 A, 2 3 continuous spectrum of the linearized system. Thus, this sec-
— +8k+2q) = - =AA, —4yA, tor of the solutions represents the above-mentioned delocal-
P V2 3 ized solitong17], and may possibly include embedded soli-
) 1 ) tons[18]. _
2N AT FEAATA =0, In the same figure, we show the soliton’s powgr
=p(Aa+A%+4A2) [which is the power(22) calculated with
the ansatz27)] versusk. One notes here that, in the left parts
1 \AZ 1 \A2 of all these solution branches, the curves have a negative
b“”; b + ‘b‘k”; 5 slope. Thus, by the VK criterion, the solutions should be
PN , PN unstable in this case. Numerical simulations of the full sys-
1 2 tem (1)«(3) (see the following sectignverify this prediction
+ (‘ q-4k+ p)iﬂ + =AAA T %S(Aﬁ +A))? for tﬁl(-,?_t&u?y( localized soluti(?ns. onverty this p
PIINZ N3 Two other families of the variational solutions for the soli-
, 1 2\ 2 tons are shown in Fig. 3. In this case, we clearly see a family
AT AR A A, =0, (290 which is a counterpart of branch 4 of the CW solution. How-
ever, the variational solutions fop=1.0 do not contain a
These equations feature close similarity to the CW Eqgscounterpart of the CW branch(Bote, however, that branch 3
(7)~9) derived above. In particular, as in the CW case, it isin the CW case was completely unstgblevertheless, that
a set of coupled cubic equations, and due to the symmetridsranch reappears at lower valuesypfand we have plotted it
involved, we can solve these equations by using only twdor y=0.3.
square roots, hence there are four possible solution branches. In addition, we also note the presence of another branch
We proceed by solving Eq&29) numerically. Typical ex-  which was not found in the CW case. It appears in the plot
amples of the solutions are presented in Fig. 2, where wéor A, in Fig. 3 as a very short branch near the bottom for
show two solution branches, for=-0.05,0.05,0.3, and 1.0. y=0.3. Actually, it is just another segment of branch 3,
This figure reveals two broggh terms of the range of values which exists only at finite values of the soliton’s widihthe
of k) families of solutions. As a matter of fact, these two CW solutions correspond tp=<, that is why this segment
families are counterparts of the branches 1 and 2 in the CWas not found among the CW stateblote thatA, may be
case. In particular, one notes that, fgr1 (the same value regarded as an internal parameter of the family of these so-
which was selected for the CW solutions in Fig, the shape lutions, and the latter segment is found in a rangeAgf
of each solution branch closely matches the correspondingrhich, in the CW case, did not produce a solution for branch
solution in the CW caségnote that thek axis in the CW 3. There is also a separate segment near zeroyfd@.05,
figures is linear, while in Fig. 2 it is logarithmjic which is clearly a continuation of branches 3 and 4 for that
We stress that the variational solutions exist also for thesalue of y.
defocusingy'® nonlinearity,y<0, although apparently only The solutions fory=0.05 andy=0.3 are also found to
for rather smally|. In particular, for negativey, the soliton  exist for k<1 (inside the continuous spectriyrand large
solution also exists fok<<1, i.e., for k belonging to the parts of the solution fory=0.05 extend even t&<0. The
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FIG. 3. The same as in Fig. 2 for the other two branches.

solutions in these ranges again correspond to delocalize@il, was earlier used in a different context, in order to de-
solitons(and, possibly, to embedded ohes scribe emission of radiation by a perturbed solit@®]).

In Fig. 3, we also shovE versusk for these solutions. As However, search for ESs in the present model is beyond the
is seen, fork>1 all the slopes are positive, hence thesescope of this work.
sections are stable by the VK criteria. It is clear from this The second plot in Fig. 4 shows, for the soliton solutions
plot that the two families are distinctly different. from Fig. 3, their width versuk. Here, fory=0.05, we note

In the first plot in Fig. 4, we show the soliton’s widthas ~ that p again diverges at smak. Note a principal difference
a function ofk for the first two branches. A noteworthy fea- from the previous plot: this time, the curvegk), obtained
ture evident in this plot is ainiversal dependencef the  for different values ofy, do not approximately collapse into
width versusk, which is insensitive toy. Another feature of a single one.
importance is thap does become very large, and in fact The VK criterion predicts that branches 1, 2, and 4 of the
appears to be going toward infinity, for the solutions with soliton solutions should have exactly the same stability as
k<1 (in the delocalized-soliton rangeThis is what one their CW counterparts, in the respective sectors. The new
would expect for a localized object with an infinitely long branch of the large-amplitude solitons found at small positive
tail, and is the best fit that the VA can produce, when re-y (in particular, for y=0.3) is expected to be always un-
stricted to the Gaussian approximation. We note that a morstable, sincé\,, A,, andA,, all are negative, making the SHG
sophisticated ansatz, combining the Gaussian approximatidriamiltonian term(25) positive for these solitons. Numerical
for the core of the(weakly) delocalized solitons, and a simulations of the full system of Eqél)<3) readily verify
cosine-based ansatz for the oscillating tails, makes it possiblis conjecture.
to pin (with good accuracya truly localized ESembedded
soliton) inside the family of the delocalized ong21] (a
similar variational ansatz, combining the sech approximation In this section, we will first find the 3W solitons in a
for the core of the soliton, and a long shelf approximating itsnumerically exact form by solving the two-point boundary-

V. NUMERICAL RESULTS

10

¥=0.05

01f

-10 0 10 20 30 40 50

FIG. 4. The variational solutions for the width of the solitewvs k, whengq=b=1. The results for the first two branches are on the left,
and those for the last two branches are on the right.
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value problem for Eqs(11)—<13), using the collocation A. Validation of the variational approximation
method[23]. In the computations of Eqg1)«3), the spec- First, we compare the numerical solutions against the re-
tral method was used for the space discretization, and th§u|ts furnished by the VA. It has been concluded that the VA
leap-frog 'm.e'thod for advancing ) solutions are always qualitatively correct, and are also ap-
_ As an initial wave form, we used particular exact solu-roximately correct in the quantitative sense. Some examples
tions are sufficient to make this point.
The first example is the numerically found families of

soliton solutions to Eqg11)—(13) for g=1 andy=-0.01 or
1, which are presented in Fig. 5. In this figure, the soliton’s
V=w=U, V=W=-U, V=-W=U, V=-W=-U, amplitudes,  (Unax Vmax Wmad =[U(x=0),V(x=0), W(x

(31) =0)], are plotted versuk, along with the poweE(k) which

is defined as per Eq5). Comparing branch 1 and branch 2

U = (3k/2)sech(v2kx/2), (30)

which are available in the case with in these graphs against their VA counterparts displayed in
Figs. 2 and 3, it is clear that the VA offers a correct qualita-
y=0, b=0, k>0, g=-3k. (32)  tive description of the soliton solutions. In particular, the

] ) . branch in Fig. 5 labeled “branch 5,” which is the numerical
Starting from here, soliton solutions for other values of theggytion for y=1, does correspond to the short segment pre-
parameters were found by continuation. Of course, this apqgicted fory=0.3 by the VA in Fig. 3, which is labeled there
proach comes with a risk of missing soliton families that doags pranch 3. So, it appears that the section labeled as branch
not abut onto the simple solutior{81) as the parameters s ip Fig. 5 is nothing else than a section of the VA solution
approach the special valu€32). However, the VA results, |apeled as branch 3. However, fg=1 (unlike y=0.3), this
and comparison with the CW solutions suggest that, follow~ slution did not exist, which is explained by the fact that,
ing this procedure, we have not missed other soliton familiesyg the exact numerical solution shows, the width of \tie
An exception is branch 5 of the soliton solutions, which iscomponent is much smaller than that of the other two com-
presented below: it, indeed, cannot be generated by ”gfonents, in violation of the equal-widths assumption implied
above method. This branch was found as a result of an agp the variational ansatg27). Since the VA did find this
ditional exploration of the parameter space, with the aim tGyranch fory=0.3, we may still infer that the VA produces
search for possibly missing solution families. qualitatively correct results, even if not quantitatively accu-

In order to distinguish between various branches of thgate in some cases. Other examples support this point as
soliton solutions, we took advantage of the fact that eackyq.
component of the fundamental soliton keeps a definite sign A5 concerns the continuation of the soliton solutions to
[and the relation between the signs is quite important for the, o atk=2 the numerical solution of th®PP type, by
stability of solitons, as is suggested by the Hamiltonian termyhich we mean the one with)(0)>0,V(0)>0,W(0) >0,
(25)]. Thus, we have adopted a notation bas_ed on the signs ofminates atdoes not continue belowy=-0.027. On the
the u, v, andw components: branches obtained by the COnher hand, the VA has found such solutions existing up to
tinuation of four distinct types of the solutions singled out in y=-0.05(see Fig. 2 So, in this case again, the qualitative
Eq. (31) will be designated by symboBPP, PNN, and S0 pregictions of the VA are correct, and the quantitative differ-
on, whereP andN stand for the positive or negative sign of once is not too large.
each component, v, w. _ _ _ Further evidence can be produced, to demonstrate that the
To test stability of soliton solutions, we simulated their nmerical findings for branches 3 and 4 of the soliton solu-
evolution W|_th|n the framework of the full system of_Eqs. tions, and for other values of verify the qualitative accu-
(1)—3), adding a small perturbation to a given stationaryyacy of the VA, and its generally good quantitative agreement
soliton[U(x), V(x),W(x)]. To this end, various perturbations ity the numerical results. Thus, the VA applies to the 3W
were used—in particular, those proportional &U(X)|  sglitons in they?: ¥® model, as well as it did in the vecto-
+[VX)[+|W(x)|] rand(x), wheree is a small amplitude of the  ria| @ one[20].
perturbation and rarg) is a random function taking values
in the interval(0,1). As a result, we have concluded that this
random perturbation always leads to precisely the same con- N . _
clusion concerning stability/instability of the unperturbed Now we proceed to the stability of the simple single-
soliton as a simpler perturbation, defined so that the inittaFomponent soliton solutions, which are given by Egs.

B. Stability of the single-component solitons

field configuration is deformed to (18)—<(20). We start with theU soliton (18), alias the slow
one, which is always stable in the two-way® model[12].
(U,v,W)o = (U,V,W) + e(|U] + |V| + W), (33)  Numerical tests conclude that, in the present system, the

slow soliton has its stabilitgnd instabilityregions. The soli-
which will be used in typical examples displayed below. Aston is considered to be stable if the perturbed solution re-
mentioned above, ifU(x),V(x),W(x)] is a stationary solu- mains close to the original soliton, as long as the perturbation
tion to Egs.(11)—(13), then[-U(x),-V(x),W(X)] is a solu- amplitudee is small[see Eq(33)], so that with the decrease
tion too. Therefore, without loss of generality, we alwaysof e the perturbed soliton gets closer to the original one.
takeU(x=0)=0. Figure 6 demonstrates that the slow solitons are stable for
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FIG. 5. Numerically found amplitudes and power of the three-wave solitons=fgr=1.

most of theq values except when 23q=<26 and 35=q [in the region of W(x=0)=4.7] was dropped after it has
<41.2=qy for k=5 (the meaning ofyy is explained below  become unstable, as it never restabilizes, and, if continued, it
The transition between stable and unstable solitons of thmakes the entire bifurcation diagragwhich is further ex-
U- (slow) type may seem differently. For example, the tran-plained in the following sectigrrather obscure due to osten-
sition atq=26 is smoother than aj=qy. As q approaches sible intersections with other branches. Thus, the single-
the transition pointg=26 from below, the breathgwhich  component SH solitons exist only &> -4k; most of them
replaces the unstable solitogradually becomes closer to the are unstable, except when k4 q<qy=-12, and when
unperturbed slow solito(the amplitude of the breather’s os- 2<q<5.
cillations decreasg¢sand finally the soliton becomes stable. In fact, the character of the stability in the latter short
But asq passes the valug, at the above-mentioned transi- interval is not quite clear. For a given initial perturbation
tion pointg=qy, the perturbed soliton is quickly transformed with an amplitudee, the difference between the perturbed
into a breather, which is significantly different from the un- solution, as produced by the simulations, and the original
perturbed slow soliton. Similar observations were made a¢oliton is almost proportional te, which suggests that the
other values ok. soliton is stable. A slight growth on the deviation from that
The stability of the single-component SM/) soliton (20) behavior was observed too, but, since the deviation was very
is also shown in Fig. 6 fok=5. An upper part of this branch small, we classify the SH soliton to be stable in this case.

40 60

FIG. 6. Stability regions of the single-mod#-(slow) and W-(SH) solitons, and three-mod@PP and PNN solitons fork=5,b=y=1.
Nonzero amplitudes of the solitons, i.&l(x=0),V(x=0), andW(x=0), are shown as functions of the mismatgh
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FIG. 7. An example of the transformation of an unsta¥léfast) soliton into a breather, in the case @f29, k=3, ande=0.01. The
behavior ofjw| is similar to that of|ul.

Even with these reservations, the observation of the SH solbranch in the(k,q) plane can be approximated by
ton which isstableagainst the FF perturbations appears to be
quite a noteworthy result, as it was commonly believed that gw=-2.08k-1)-4<q<qy=11.3k-1) -4.
such solitons can never be stable.

The stability test of the single-componevitsoliton [the
fast one, see Eq19)] demonstrates that it is almost always
unstable, as shown in the example displayed in Fig. Tgfor

=29 andk=3. The instability sets in somewhat faster for asq gets larger thamy,, the UVW soliton bifurcates fromthe

>0 than for negative [see Eq(33)] in this case. In both W soliton (20). Note that theU soliton exists fork>1 and
cases, the eventual result is transformation of the unstablg

Lo ) ny g, and thew soliton exists forq>—4k. Therefore, in the
soliton into an apparently stable breather. Established Valuer?-.gion(34) where the main 3W soliton branch exists. the

of t:lle t.amplétude tadnd freéquerlcr:]y OT the zregtherf'sthmtrlnsélcand W solitons exist too. Thus, th&JVW family actually
oscillations do not depend on the sign and size of the per urp')rovides for a crossover between the stdhleand unstable
bation amplitudes (provided that it is not too largeGener- W-soliton branches

ally, the established state of the breather has its amplitude in To illustrate the crossover, the amplitudds(x=0),V(x

the u andw components comparable to thatwof =0),W(x=0)] of the UVW soliton are plotted in Figs. 6 and

It is noteworthy that, despite the expect@bm the com- i .
parison with the well-known results for thg® model[12]) 8(b) fo_r the fixed \{alues of the propagatlon_constam,6.4
and k=5, respectively. Asq increases,U(x=0) monoto-

instability of theV soliton in a bigger part of the parameter nously increases from 0, whil&(x=0) monotonically ap-

space, we did observe, for instancekatb, that it isstable h imul v, th i g
for 60<q<64. As this stabilization is not related to any Proaches zero. Simultaneously, the amplitdde=0) in-
apparent bifurcation, one might conjecture that, in this intercréases from zero to some maximum value, and then decays

val, theV soliton remains formally unstable, but its instabil- Pack to zero. _

ity is, for some specific reason, extremely weak; then, for "€ amplitudes of theUVW solitons are also plotted

physical applications, it is a real stability interval anyway. 29@instk, for two fixed values of the mismatch=—6 and
Besides that, it is also noted that the instability of the 9d=4, in Figs. &) and &d). As k increasesU(x=0), V(x

soliton develops, if any, extremely slowly for very broad =0), and W(x=0) increase too. With respect to Fig(e§

solitons, with a small value ok+1. This feature is quite Figs. 8b)-8(d) and Fig. 6 actually show the amplitudes of

natural, as the amplitude of the soliton is very small in thisthe solitons along vertical cuts kt6.4 andk=5, and along
case. horizontal cuts atj=-6 andq=4.

Stability of the soliton solutions is the most important
issue. Therefore, the power functi@itk) defined in Eq.(5)
is also plotted in Figs. @) and &d), with the intention to

To present numerical results for the solitons in the generahpply the VK criterion. From the latter plots we see that, for
case, with all the three components present, we first focus op=4, the criterion for theUVW soliton to be stable,
the case ofy=1. By starting from the exact solutiof8l)  dE(k)/dk>0 [see Eq.(14)], does not hold ak<k ~2.2.
with V=W=U, then numerically continuing it frorb=y=0  The dashed line in Fig. (8 separates the region
to b=y=1, and after that varying the parametkmndqg, we  dE(k)/dk>0 from the regiondE(k)/dk<0, where the soli-
were able to find solitons with positive stationary fields, tons are unstable. We note that this presumably unstable re-
U(x)>0,V(x)>0,W(x)>0, in a large range ok and g, gion of the UVW soliton is the one with smalV and W
which is shown in Fig. &). According to the nomenclature components.
introduced above, these solitons are of BieP type. Then, the stability of the solitons along the lige4 was

For any fixedq, this branch of the soliton solutions exists tested in direct simulations, starting with a stablesoliton.
if k is larger than a critical value. Further analysis of theFor k in the region where the conditiofi4) is violated, the
numerical data demonstrates that the existence region of tHgVW solitons are found to be unstable indeed, as predicted

(34)

As g approachesy,, the UVW soliton (the general 3W one
of the PPP type bifurcates intothe slowU soliton (18), and

C. The main family of three-wave solitons: thePPP type
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=0),W(x=0), andE for q=-6 andq=4, respectively.

by the VK criterion, see Fig.@). As a typical example, the tially, the magnitudes of the fields and w are small in
evolution of the unstable soliton is displayed in Fig. 9 for comparison withu. Energy is then transferred between the
k=1.8,q=4. The simulations are conducted without impos-components periodically, i.e., the instability does not destroy
ing any perturbatiorji.e., e=0 in Eq. (33)], the truncation the soliton, but transforms it into a breather, as was also
error of the numerical scheme triggering the instability. Ini-found in the previous unstable cases.
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FIG. 9. Transformation of an unstaldl&/W soliton into a breather in the caselof 1.8,q=4,e=0. The behavior ofw| is similar to that
of Jvl.
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The stability tests were also run with an initially imposed investigated the stability of these solitons as they pass the
perturbatione>0. As € increases, the breathers are formedbifurcation points. The plot for th® PP types demonstrates
earlier(after passing a shorter distarmeand the oscillation that, near the bifurcation point, thé&/ soliton is stable at
period L of the established breather becomes smaller. Fog<q,, and unstable af>q,,. The U soliton is unstable at
instance,L=19 when e=0.02, andL=30 whene=0, as g<qy, andweakly stableatq>qy. The latter means that it is
shown in Fig. 9. The established amplitude of the oscillationstable against very small perturbations, but a slightly stron-
weakly depends o, being slightly smaller foe=0 than in  ger disturbance triggers transition to a breather which is not
the case of:=0.02. The actual independence of the estab€lose to the unperturbed soliton. For instance, agj=b=1
lished amplitude on the size of the perturbation is a majomandk=5, the stationary soliton found atg=41.2[which is
criterion in deciding whether the soliton is unstable: for avery close to the bifurcation poirg=qy, see Eq(34)] has
weakly stablesoliton, surrounded by a family of stable the amplitudeU(x=0)=5.65, and it is destabilized by the
weakly excited breathers, the amplitude of the internal oscilperturbation of the forng33) with e=0.005(while the soli-
lations of the breather is expected to scale as a power of th@n is certainly stable against the same perturbation with
perturbation amplitude, while for a truly unstable soliton, =0.0025; as a result, theU soliton transforms into a
the established amplitude, in the first approximation, shouldreather whose oscillating amplitudes take values in the

not depend ore. ranges, respectively, 48Ju(x=0)]<6.0, 2.6<|v(x
Increasingk further, the VK criterion(14) is met. In this  =0)|<4.6, and 1.9<|w(x=0)|<3.1.
case, a series of numerical simulations for BéW soliton These features, together with the aforementioned stability

was carried out, varying while other parameters were kept of the UVW soliton atq-qy— +0 and its instability ag
constant. For instance, k2.5 andk=10 this was done for —q,—-0, call for derivation of normal form§24] for the
€=0.02,0.01,0.005, and, finally, far=0. In this case, the two bifurcations. Close to either bifurcation point, two com-
initial perturbation also leads to a transition from the SO|it0nponents of the solitorfor instance, the andw components

to a breather. However, in contrast to the case when thaearq=q) are small, which suggests to perform expansion
soliton was unstable, this time we observed that, with thén powers of the small fields. One may expect that the qua-
decrease ofe, the br.eather’s. intrinsic 'frequency be_came dratic terms in the underlying Eqsl)~(3) will eventually
smaller, and the amplitude of its oscillatiodscreasedjuite  combine into cubic ones, and the normal-form equations will
significantly with e (almost linearly. Without adding the ini-  therefore contain linear and cubic terms.

tial perturbation(e=0), the original soliton is preserved, at  However, there is a difficulty in the course of the deriva-
least, for up taz=80. Therefore, according to the above ex-tion. For instance, in the case when theandw fields are
planation, the solitons are indeed stable when the VK critesmall, Eqs(2) and(3) in the linear approximation amount to
rion is met. However, the numerical results strongly suggesa fourth-order ODE system with potential terms
that there are families of breathers quite close to the solitonvsecﬁ[\,z(k_ 1)x] [see Eq.(18)], and, additionally, cross-
solutions, and that smdfinite perturbations may provoke the ¢oypling terms~sectiiy2(k-1)x]; it is not straightforward at
transition of the soliton into a breather. In other words, they 1o find exact eigenmodes of such a system, which is the
stable stationary soliton seems like a stable fixed point of thes; necessary step in the development of the bifurcation
center type, which is surrounded by a family of closed tra-ynqysis. For this reason, we here put forward “phenomeno-
jectories, in a finite-dimensional Hamiltonian dynamical SYS-|ogical” normal forms, that we expect to be valid for the two

tem. ) ) ) ) bifurcations, while a consistent derivation will be presented
In summary, moving along the lirg=4 and increasing, elsewhere.

we start with stableJ solitons, which change into unstable  The normal form that can describe the bifurcation at the

.UVV\'/soIitons(the.Iatter spontaneously evol\(e into breathers,point q=qy includes dynamical equations for two variables
in direct simulations Later, the UVW solitons became &(2) and &(2)

stable, in accordance with the conditigd).
At q=-6, the VK condition(14) is alwayssatisfied. Ac- o2
cordingly, theUVW solitons are found to be always stable in =l = _af(e- 0, & -, 8), (35)
direct simulations in this case. The stability tests were also dZ
conducted along the line d€=5, yielding the same result
(see the first plot in Fig.)6 Thus, with regard to Fig.(8), we e
concluqie that th&JVW solitons(with y= 1_) are found to be. bl Y k(e + bzgg + Czﬁ), (36)
stable in a larger part of the parametric space, except in a dz
small strip near the upper boundary, where the magnitudes of
V andW are small. wheree=(q—qy)/qy is the bifurcation parameteay ,, b; -,
andc, , being some positive constants. We stress that both
Egs.(35) and(36) contain the same control parameterAs
for the meaning of the variabl€g and¢,, we conjecture that
Getting back to the bifurcations between thgW soliton  they are proportional to two linearly independent combina-
and its single-componei andU counterparts at the points tions of the amplitude¥(x=0) and W(x=0).
g=qw andq=qy, which are shown in Fig. &he first plot for Equations(35) and (36) give rise to the following fixed
PPP type and second plot foPNN type), we have also points(FPS:

D. Normal-form description of the bifurcations
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FIG. 10. Evolution of an unstabléVW soliton in the case of the self-defocusig§’ nonlinearity, withy=-0.02k=2,q=1,e=0. The
fields [v| and|w| behave similarly tdul|.

&=g0=0, (37)  V(x=0). Actually, in this case we are dealing with a standard
pitchfork bifurcation[24].
Equation(43) has the fixed points

&=+ \elby, & =0 fore>0, (38) £9=0, (44)

which corresponds to thg soliton, and

£=0,8) = + \T/bz for e<0, (39) which corresponds to the/ soliton, and

—
which correspond to the solitons of th/Wtype. Assuming €= tVefor €>0, (45)
small perturbations around the FPs of the form(@zh an  which corresponds to thgVW soliton. The stability eigen-
elementary calculation yields the following stability ei- values of the FR44) are given by—yg:E’ which immediately
genvalues: means that th&V soliton is stable atj<qy (i.e., e<0), and
unstable afj>qy (i.e., e>0). The stability eigenvalues for

(1,272 = _
[v6 "= —ayze 40 the FP (45) are given byy?=-2¢, which means that the
for the FP(37), UVW soliton is stable where it existat e>0, i.e.,q>qy).
(172 22 These features closely resemble those reported above on the
[v+']°=2a16[ 771" =~ aze (41)  basis of direct simulations.

for the FPs(38), and . ) )
E. Three-wave solitons in the case of self-defocusing

[y = - aye[y?P = 2a0e (42 x? nonlinearity

for the FPs(39). Obviously, the FR37) is stable ate>0 The stability of the same soliton family was also tested for
(which meang;>qy), and unstable at<0 (q<gqy). The FP  the case of the self-defocusing® nonlinearity, i.e., for
(38) is unstable(through the eigenvalue/(f)), and the FP ¥<0. In this case, theJVW solitons were found to be
(39) is unstable todthrough the eigenvalua(l)). strongly unstable in all the cases. A typical example is shown
These properties mimic all the basic stability features re-'lz1 Fig. %]0 for. k':2|,qE1,y:f—O.02, r?{'dego' ;he §olut|on
ported aboveyiz., the instability of theJVW soliton close to  <©€PS the original shape for a while, but then it seems to

the bifurcation point and the fact that tié soliton is un-  PlOW Up into a state of spatiotemporal turbulendae
stable atq<qy and stable in the regiog>qy. The other blow-up never generates a breather, in this aBee turbu-

above-mentioned fact, that the stability margin of theoli- lent state _contains mary small-scale Iarge-amplitudg spikes,
ton in the regiong>qy is small (at small ¢), is also ac- therefore it is rather difficult to accurately analyze its dy-
counted for by the no?mal-form system, as ’the unstable Flgamical and statistical properties. Very accurate investigation

(38) is quite close to the stable o1i@g7) at small positives, of this Fegime C(_)UId require to use a numerical_ scheme with
hence weak finite perturbations, with an amplitude compa@ SPecial adaptive mesh, which is not an objective of the

rable to the separation between the coexisting stable and u resent yvork. Howeve_r, we .t00k care to check th_at the
stable FP, may destabilize the former one. low-up is not a numerical artifact. To this end, the simula-

The normal form expected to describe the bifurcation altions Were rerun several “"?es' _consecutive_ly decreasing the
the pointq=qy, is simpler, as it is enough to conjecture a Stepsize in poth th& and z directions. In p_artlcular the pic-
single equation for a variablg2): ture shown in Fig. 10 was reproduced taking the formgr step-
size asAx=1/48,1/96, and 1/25€n the present notation
d’¢ 5 while the latter stepsize was chosenAzs=(7/40)Ax. In all
Ezg(f_f ), (43 the cases tested this way, using the finer mesh never pro-
duced any visible change in the result. Therefore, we believe
where, this timeg=(q-aqw)/|aul, and it is conjectured that that the blow-up is a real effect, although its further detailed
¢ is a linear combination of the amplitudé$(x=0) and  study is necessary.
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FIG. 11. (a) The existence region of tteNN and PPN solitons.(b) The amplitudedJ(x=0),V(x=0),W(x=0) vs q for k=44.(c) and(d)
U(x=0),V(x=0),W(x=0), together with the poweE(k), are displayed v& for q=90 andg=-20, respectively.

It should also be mentioned that, in the limit f~-0, =0),W(x=0)] is also plotted in Fig. 1(b)-11(d) againstk for
the 3W soliton goes over into its counterpart in the vectoriaky=90 andg=-20, along with the corresponding power func-
model with the purey® interaction, where, generally, such tion E(k) defined in Eq.(5). As it was mentioned already,
solitons are stablé20]. We did not try to follow this transi-  there is a point wher&/(x=0) changes its sign. We stress
tion at extremely small negative valuespgfas the issue is a that, at this point, the soliton'¥ component as a whole i®t

rather formal one. zero. Instead, close to the point, the solution changes its
shape from the normal single-hump one to a multihumped
shape, however with a relatively small amplitude.
Since the VK condition(14) is satisfied everywhere for
Similar to what was done before, we also tested stabilitythese newly introduced 3W soliton solutiojsee Figs. 1(c)
of solitons which have different signs of their different com- and 11d)], it remains to test the stability of the solutions in
ponents, cf. Eq31). In this case, we again focus on the casedirect simulations. The result fae=5 is shown in the second
of y=1. In particular,, starting from the exact soluti®l)  plot of Fig. 6. Asq increases, the stab\§f soliton bifurcates
for b=7y=0 with V=W=-U (which is thePNNtype, accord-  to an unstabl®®NN-soliton. Asq continues to increase, the
ing to the nomenclature introduced ab@veontinuing the |atter one becomes stable. Eventually, it becomes unstable
solution numerically tdo=7y=1, and then varyink andq,  again. Finally, agv| and |w| decrease, th®NN soliton de-
we were able to find a soliton branch which keéfx)  generates into a stablé soliton.
negative. The field/(x) is negative at first, and then it be-  We now describe in detail a stability test of tR&IN-type
comes positive whelt becomes sufficiently large. Accord- soliton for (k,q)=(6.4,4), which turns out to be a delicate
ingly, the solitons change their type frofNNto PPN This  case. With a perturbation amplitude e£0.02, the soliton
branch corresponds to branch 1 of the variational solutions iglevelops into a breather, with noticeable energy shedding in
Fig. 2. the u and v components, as shown in Fig. 12. However,
The existence region of thBNN and PPN solitons is  when the perturbation was slashed ¢s0.01, a similar
plotted in Fig. 11a), the dashed line indicating where the breather, with almost the same amplitude, did develop, but
change betweerPNN and PPN occurs. The region is not until having passed essentially twice the distance of the
bounded by théJ solitons(18) from above, and th&V soli-  ¢=0.02 casdfor €=0.01, the amplitude of the component
tons (200 from below. The amplitudesU(x=0),V(x first peaked az~10.8, whereas foe=0.02, this first hap-
=0),W(x=0) are plotted against| for k=44 in Fig. 11b)  pened atz=5.2) Reducing the perturbation further te
(this is the largesk for which theV component never crosses =0.005 reveals that thENN soliton is now actuallystable
zero asq increasep For k>44, the branch starts out as a remaining close to the unperturbed one, at leastzfap to
PPN soliton for smallg, and then carries over into RNN  120. What this most plausibly means is that BleN soliton
one asg increases. The set of the amplitudéix=0),V(x is stable indeed, but with a very narrow stability basin, and

F. Three-wave solitons with different signs of the components
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FIG. 12. Evolution of a stable soliton of tieNNtype, atk=6.4 andq=4, under the action of the initial perturbatiofsee Eq(33)] with
€=0.02 ande=0.005.

with breather states located neartay similar situation was waveguide, which combineg? and y'® nonlinearities, the
encountered above in thePP case. latter including SPM, XPM, and FWM terms. Both self-
The stability of thePPN solitons was tested too, and they focusing and self-defocusing® nonlinearities were consid-
were found to be unstable. For example, in the case oéred. The birefringence of the two fundamental waves, and
(k,q)=(60, 20, the soliton of this type always evolves into a the phase mismatch between them and the second harmonic
breather, even as approaches zer@n this case, very small were taken into regard. The model can be realized experi-
stepsizes irx and z have to be used in the simulations, be- mentally by means of the QPM technique in quadratically
cause of the large value df); actually, thePPN soliton  nonlinear birefringent media. Several types of solitons were
manifests its instability even in the simulations wigkkr0.  found by means of the variational approximation and nu-
The instability of thePPN solitons is not surprising, since merical methods: single-component on@sr which exact
the @ term (25) in the system’s Hamiltonian is positive for solutions are availabjeand generic 3W solitons of different
them (unlike the PNN soliton, for which it is negative types, classified by relative signs of the their components.
Two other branches of solitons were also found. One is inThe 3W solitons were constructed by means of the varia-
some sense the reverse of tARBIN—it is the PPN branch tional approximation, and in a numerical form. In some para-
shown in Fig. 11. It carries solitons of tHePN type atk  metric regions, the solitons overlap with the continuous spec-
small; ask increases, the amplitude changes its sign, and trum and are therefore delocalizéar might even be of the
the soliton switches into th&lPN type (which is actually ~€embedded type
tantamount to th®NNtype, due to the symmetry against the These _solitons are amenable to experimental observation
simultaneous change of the signs Of and V). Another in essentially the same range of physical parameters where
branch carries solitons of tHfeNP type. These two branches tWo-wave solitons were already predicted in models with the
provide for a crossover between théandV solitons. We do competingy'?’ and x'® nonlinearities, Refs[1] and[2]. In
not aim here to describe them in detail: however, we mentiofact: the use of the birefringence, which often helps to match
that the solitons of thélPN type make the termi25) nega- the fundamental and second harmonics, can make the cre-
tive, and, as it might be expected, they are stable in somg['onlOf solitons in such a system more feasible than in the
cases. On the contrary, all the solitons of &P and PPN Usual two-wave settings employing the QPM technique.

tvoes are unstable. evolving into stable breathers. Their in- Stability of the solitons was tested in direct simulations,
yp ' 9 : and it was concluded that it, generally, complies with two

stability is simply explained(zk))y the fact that, as well as for ye.qrefical predictions: First, soliton families tend to be
their PPN counterparts, the'® interaction term25) in the  gaple if the VK criterion is satisfied for them; second, the

Hamiltonian is positive for them. cubic term(25) in the Hamiltonian density, which accounts
for the ' coupling between the three waves, must be nega-
o ) tive for the stability. As a result, it was concluded that the

As stated before, the birefringence parameétér the un- 3w soliton family of thePPP type (with positive fields in all
derlying Egs.(1)—3) could be rescaled to 1, unlebs0. In  the componeniss mostly stable. Th@NN family is stable,
the latter case, solitons exist and have +V. Typical ex-  but only in the marginal sense. It was also found that the fast
amples of these solitons were also tested for the stability. Asingle-component fundamental-frequency soliton is unstable
one may anticipate on the basis of the above results, thi& most cases, but, nevertheless, it features a narrow stability
stability of any soliton is basically determined by the signinterval. Its slow counterpart and the single-component
which it lends thex'? Hamiltonian term(25). For instance, second-harmonic soliton may be both stable and unstable.
we have found that thePP andPNN solitons withb=0 and  The possibility that the fast single-component soliton and the
(k,a)=(2,1) are stable. On the other hand, tRl®N and  second-harmonic one may be stable in some cases are unex-
PNP solitons withb=0 were found to be unstable, evolving pected results, which we not reported in other models.
into stable breathers in direct simulations. Unstable solitons do not decay into radiation, but rather
evolve into stable breathers. A different instability was found
in the case of the self-defocusing® nonlinearity: in this

In this paper, we have introduced a general model oftase, the solitons blow up into a turbulent state with a large
three-wave interactions in the spatial domain for an opticahumber of narrow spikes.

G. Soliton solutions in the case of zero birefringence

VI. CONCLUSION
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