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We formulate a general model of three-wave optical interactions(in the spatial domain), which combines
quadraticsxs2dd and cubicsxs3dd nonlinearities, the latter including four-wave mixing. The model can be
realized inxs2d materials where an effectivexs3d nonlinearity is engineered by means of the quasi-phase-
matching technique. Both self-focusing and self-defocusingxs3d nonlinearities are considered. The birefrin-
gence of the two fundamental-frequency(FF) waves is taken into regard. Several types of solitons in this
system are found, by means of the variational approximation and numerical methods. These are exact single-
component solitons and generic three-wave(3W) ones, which are classified by relative signs of their compo-
nents. Stability of the solitons is investigated by means of the Vakhitov-Kolokolov(VK ) criterion, and then
tested by direct simulations. One type of the single-component FF solitons(the “fast” one, in terms of the
known two-component birefringentxs3d model) is, chiefly, unstable, as in that model, but nevertheless a
stability intervalis found for it, which provides for the first example of stable fast solitons. The other FF soliton
(the “slow” one, in terms of the samexs3d model, where it is always stable) has its stability and instability
regions. A single-component soliton in the second harmonic(SH) is found too; it also has itsstability region,
contrary to the common belief that such a soliton must always be unstable due to the parametric interaction.
The 3W solitons are stable indeed if this is predicted by the VK condition, in the case when all the three
components are positive. Following variation of thexs2d mismatch parameter, the 3W soliton bifurcates from
the SH one, and at another point it bifurcates back into the slow-FF single-component soliton; conjectured
normal forms of the respective bifurcations are given. 3W solitons with different signs of their components
may be unstablecontrary to the VK criterion, which is explained by consideration of thexs2d term in the
system’s Hamiltonian. In direct simulations, unstable solitons evolve into stable breathers. A different insta-
bility takes place in the case of the self-defocusingxs3d nonlinearity, when all the solitons blow up into a
turbulent state. Parallel to the solitons, continuous-wave solutions are studied too. In terms of the existence and
stability, they resemble solitons of similar types.
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I. INTRODUCTION

Solitons in optical media with the quadraticfxs2dg nonlin-
earity, alias second-harmonic-generating(SHG) systems, is a
subject that has been studied in detail theoretically and ex-
perimentally, see reviews[1] and [2]. An important case is
the so-called type-IIxs2d interaction, when the material bire-
fringence is employed to phase-match two orthogonal lin-
early polarized components of the fundamental-frequency
(FF) wave to a single second-harmonic(SH) component. In
fact, this mechanism, which gives rise to stable three-wave
(3W) solitary waves, was used in the first experimental ob-
servation of spatialxs2d solitons[3]. Basic properties of the
3W solitons were investigated in detail some time ago(see
the above-mentioned reviews). Other effects that essentially
affect dynamics of solitons, such as combination of linear
mixing between the two FF polarizations and group-velocity
birefringence, were considered more recently[4].

On the other hand, thexs2d interaction may compete with
the less specific cubic[xs3d, alias Kerr] nonlinearity. In two-
wave (type-I) settings, the competition between thexs2d and
xs3d nonlinearities was another subject of detailed studies(re-

sults can also be found in the reviews[1,2]). In uniform
media admitting the phase-matchedxs2d interaction, the natu-
ral Kerr nonlinearity is usually much weaker than its qua-
dratic counterpart; nevertheless, in Ref.[5] it was demon-
strated, in a direct experiment, thatxs2d and xs3d

nonlinearities can be made comparable in an optical crystal
(actually, it was KTP) by properly adjusting the beam’s
Poynting vector relative to the crystallographic axes. Another
possibility is to create a strong artificialxs3d nonlinearity of
either sign(self-focusing or self-defocusing), which can be
induced, in a basicallyxs2d medium, by means of the well-
known QPM (quasi-phase-matching) technique, i.e., a peri-
odic structure(grating) composed of alternating domains
with opposite signs of thexs2d coefficient. This technique
was first predicted as a means to create solitons supported by
competingxs2d :xs3d nonlinearities in Ref.[6]; later, an imple-
mentation in an optical crystal, employing sinusoidal modu-
lation of the medium, was proposed in Ref.[7] (see also a
review [8]). A still strongerxs3d interaction can be induced in
two-period QPM gratings[9].

It should be stressed that the artificialxs3d nonlinearity
induced via the QPM technique manifests a wider variety of
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properties than its classical Kerr counterpart; in particular,
the artificial nonlinearity may feature an arbitrary asymmetry
between the FF and SH waves[for instance, with noxs3d

self-phase modulation at the SH[6,7]; see also below]. Ex-
perimentally, an effectivexs3d nonlinearity engineered on the
basis of the fundamental SHG process in a QPM structure
was first demonstrated in Ref.[10].

On the other hand, interplay of the Kerr nonlinearity and
birefringence(in the absence of SHG interactions) is a well-
investigated topic[11]. In particular, a known result is that, if
the four-wave mixing(FWM) involving two linear polariza-
tions is taken into regard, the soliton with the so-calledslow
polarization is stable, while the one with the orthogonalfast
polarization is unstable[12] (exact definitions of the slow
and fast, which refer to the birefringence, are given below).

A natural problem, that we will formulate and investigate
in this work, is to search for soliton solutions, and analysis of
their stability, in the 3W system which combines two or-
thogonally polarized FF components and a single SH one,
taking the birefringence and bothxs2d andxs3d nonlinearities
into regard. Besides the solitons, we will also consider, in an
analytical form, a similar but simpler problem for
continuous-wave(CW) fields (in that case, the stability will
be considered only against CW perturbations, while the
modulational instability is not dealt with here).

In this 3W model, exact solutions can be found for single-
component solitons, with only slow or fast FF component
present. These solutions are obvious, as they nullify thexs2d

terms and are identical to those found in the early work[12].
The first issue is stability of the slow and fast solitons, as it is
not obvious that it must be exactly the same as in the model
without thexs2d terms and SH component. We will conclude
that, similar to the case considered in Ref.[12], the single-
component fast solitons are unstable in most cases; neverthe-
less, an essentially novel result is that they may bestablein
some parametric region. As for their slow counterparts, they
may be both stable and unstable, on the contrary to the bire-
fringent two-wavexs3d system, where they are always stable
[12]. Besides that, an exact single-wave soliton containing
only the SH component will be found too, being supported
solely by thexs3d nonlinearity; quite unexpectedly, the latter
soliton may be stable in some parameter region(it was com-
monly believed that such solitons are always unstable against
FF perturbations).

A completely new problem is to find general 3W solitons
in this model and analyze their stability. The formulation of
the model itself is a novel issue too, as it includes some
FWM terms that, to the best of our knowledge, have never
been considered before, at least in the context of thexs2d :xs3d

competition(a multicomponent model of another type, com-
bining xs2d and xs3d interactions, was recently considered in
Ref. [13]).

A serious difficulty in studying this system in a systematic
manner is to determine whether one has found all possible
soliton solutions for the parameters given. Numerically
searching the entire parameter space is not a realistic ap-
proach in the present context. Another path is followed in
this work: we start with a more tractable CW counterpart of
the model, in which stationary solutions are to be found from
algebraic equations, rather than from ODEs. The set of the

CW solutions suggests how many their soliton counterparts,
and of which types, are to be expected in the same parameter
region. Then, we construct approximate soliton solutions in a
(semi) analytical form by means of the variational approxi-
mation (VA; see a general review of this technique in Ref.
[14]; a description of specific applications of VA toxs2d mod-
els can be found in the review[1]). Predictions concerning
the stability of the 3W solitons will be first drawn by means
of the known Vakhitov-Kolokolov(VK ) criterion, which was
proposed 30 years ago[15], and has been successfully ap-
plied to many models since then(see reviews[1,2,14] and
[16]).

Analytical results produced by VA for both the shape of
the stationary solitons and(in combination with the VK cri-
terion) for their stability will then be tested against numerical
solutions. We will conclude that the VA based on a Gaussian
ansatz(trial wave form), which assumes equal widths of all
the three components of the solitons, yields quite accurate
results: basically, it predicts all the numerically found soli-
tons(the only branch of soliton solutions that the VA fails to
identify is one which strongly violates the assumption about
equal widths in all the three components). The general struc-
ture of the soliton solutions is quite similar to that of the CW
states. The solitons are found for both the self-focusing
(Kerr) and self-defocusing(anti-Kerr) xs3d nonlinearities[in
the latter case, solitons are possible provided that thexs2d

nonlinearity is present]; however, the solitons are always un-
stable in the anti-Kerr case.

A fundamental result is that the 3W soliton with three
positive components(therefore, it is labeled as aPPP one)
presents, as a matter of fact, a crossover between two single-
component solitons,viz., SH and slow-FF ones: with the in-
crease of thexs2d mismatch parameter, a stable 3W soliton
bifurcates from a stable SH one; later, it becomes unstable,
and, finally, it bifurcates into a weakly stable slow-FF soli-
ton. We propose “phenomenological” normal forms of the
two bifurcations, deferring a consistent derivation to another
work. The 3W soliton of thePPP type is stable indeed where
this is predicted by the VK criterion; however, 3W solitons
containing negative components may be unstable contrary to
this criterion, which we explain by consideration of thexs2d

term in the system’s Hamiltonian.
The VA generates parts of the soliton families in the

present model at values of the propagation constant(intrinsic
frequency) which belong to the continuous spectrum of the
system’s linearized version. This circumstance means that, in
general, the corresponding parts of the solution branches rep-
resentdelocalized solitons, i.e., pulses with nonvanishing os-
cillating tails [17]. Actually, it is not unusual for the VA to
pick up such solutions[17]. In systems which support delo-
calized solitons, it frequently happens that, with the variation
of the propagation constant, the amplitude of the tail crosses
zero (vanishes) at certain points. If this happens, one has an
embeddedsoliton (ES), which is a fully localized object that
coexists with linear radiation modes(ESs were reviewed in
recent papers[18]); however, search for ESs in the present
system is beyond the scope of this paper.

For unstable solitons, we monitor their instability-
triggered evolution by means of direct simulations. We con-
clude that the instabilities do not tend to turn unstable soli-
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tons into other stationary stable ones, but rather transform
them into very persistentbreathers, i.e., solitary pulses fea-
turing periodic internal vibrations. However, the instability-
development scenario is very different in the case of the
self-defocusing xs3d nonlinearity, resulting in a violent
“blow-up” of the soliton(transition into a strongly turbulent
state).

In the experiment, creation of stable 3W solitons should
be possible in essentially the same range of physical param-
eters where two-wave optical solitons were earlier predicted
in models with competingxs2d and xs3d nonlinearities(see
reviews [1] and [2], and also Refs.[6]–[9] and the experi-
mental work [10] for the most realistic case of the QPM-
inducedxs2d :xs3d combined nonlinearity). In fact, the use of
the birefringence, which usually helps to match the funda-
mental and second harmonics, may render the experimental
creation of the soliton more feasible than in the usual two-
wave system.

The rest of the paper is organized as follows. In Sec. II,
the full 3W model is put forward; obvious solutions for the
above-mentioned single-component solitons are also given in
Sec. II. Section III reports investigation of CW solutions and
their stability. Variational results for three-component soli-
tons and predictions for their stability, based on the VK cri-
terion, are given in Sec. IV. Results of direct numerical simu-
lations (including formation of breathers from unstable
solitons) are reported in Sec. V, which also presents conjec-
tured normal forms describing bifurcations between the
single-components and 3W solitons. The paper is concluded
by Sec. VI.

II. THE MODEL AND SIMPLE SOLUTIONS

A general 3W system combining thexs2d andxs3d nonlin-
earities and birefringence can be derived on the basis of the
well-known model for the type-II SHG system[1,2], and the
one for the copropagation of two orthogonal linear polariza-
tions in the Kerr medium[12,11]. If the fieldsu and v are
complex envelopes of the two components of the FF field,
andw is the single SH component, paraxial evolution equa-
tions, including the usual terms accounting for the type-II
xs2d interaction andxs3d terms that take into regard the self-
phase modulation(SPM), cross-phase modulation(XPM),
and four-wave mixing(FWM), are

iuz + 1
2uxx + v*w + g1s 1

4uuu2 + 1
6uvu2 + 2uwu2du + 1

12g1v
2u*

+ g2uwu2v + bu= 0, s1d

ivz + 1
2vxx + u*w + g1s 1

4uvu2 + 1
6uuu2 + 2uwu2dv + 1

12g1u
2v*

+ g2uwu2u − bv = 0, s2d

2iwz + 1
2wxx + uv − qw+ 2g1s2uwu2 + uuu2 + uvu2dw

+ g2suv* + u*vdw = 0, s3d

where b is a real birefringence coefficient, andq is the
phase-mismatch parameter that controls the SHG process. In
these equations, thexs2d coefficient is normalized to be 1,
while g1 and g2 are twoxs3d coefficients. All these param-

eters are real, and they may be positive or negative, with a
constraint thatg1 andg2 must have the same sign. The cases
g1,2.0 and g1,2,0 correspond, respectively, to the self-
focusing snormal Kerrd and self-defocusingsanti-Kerrd xs3d

nonlinearities.
If the cubic nonlinearity is directly induced by the elec-

tronic response of the dielectric medium, the twoxs3d coef-
ficients are not independent; it is easy to demonstrate that, in
this case, they are related so that

g2 = g1/6. s4d

If the cubic nonlinearity is induced by means of the above-
mentioned QPM technique, the relations4d does not neces-
sarily hold, as the artificially inducedxs3d terms may feature
strong asymmetry between the FF and SH wavesf6,7g. Nev-
ertheless, for the definiteness’ sake, we adopt the relations4d
hereaftersin fact, taking g2 different from g1/6 does not
change any noteworthy aspect of the resultsd.

It is obvious that the birefringence coefficient in Eqs.(1)
and (2) can always be normalized so thatb;1 (unlessb
=0). Below, we will use this normalization in most cases.
Thus, there remain two independent real parameters in the
system, namely, the single free nonlinear coefficientg;g1
and the mismatchq.

Equations(1)–(3) are written for the paraxial evolution in
thespatial domain, so thatz is the propagation distance,x is
the transverse coordinate in the corresponding planar wave-
guide, and the second derivatives account for transverse dif-
fraction. A more general system, with independent coeffi-
cients in front of the second-derivative terms in different
equations, may be introduced to describe the temporal-
domain evolution, withx replaced by the temporal variable.
However, although temporalxs2d solitons have been ob-
served in the experiment[19], spatial solitons in SHG sys-
tems are more feasible objects[1,2]. For this reason, we
confine the model to its spatial-domain version.

Equations(1)–(3) conserve a dynamical invariant(power,
alias the norm of the solution; in the temporal domain, it
would be energy),

E =E
−`

+`

fuusxdu2 + uvsxdu2 + 4uwsxdu2gdx. s5d

The system also conserves the momentum and Hamiltonian,
which will not be explicitly used in this work.

We will start by studying the CW(continuous wave) so-
lutions to Eqs.(1)–(3). These are sought for in the form of

usz,xd = eikzA, vsz,xd = eikzB, wsz,xd = e2ikzC, s6d

whereA, B, andC are real constants that satisfy a system of
cubic equations,

− sk − bdA + BC+ gs 1
4A2 + 1

4B2 + 2C2dA + 1
6gC2B = 0,

s7d

− sk + bdB + AC+ gs 1
4B2 + 1

4A2 + 2C2dB + 1
6gC2A = 0,

s8d
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− s4k + qdC + AB+ 2gs2C2 + A2 + B2dC + 1
3gABC= 0.

s9d

A detailed study of the CW solutions is performed in Sec.
III.

Next, we will seek for stationary soliton solutions in the
form

usz,xd = eikzUsxd, vsz,xd = eikzVsxd, wsz,xd = e2ikzWsxd,

s10d

where the real propagation constantk is an intrinsic param-
eter of the soliton family, and the functionsU, V, andW may
be assumed real too. The substitution of Eq.s10d into Eqs.
s1d–s3d generates a system of ODEssrecall we have set
6g2=g1;g andb;1d,

− sk − 1dU + 1
2U88 + VW+ gs 1

4U2 + 1
4V2 + 2W2dU + 1

6gW2V

= 0, s11d

− sk + 1dV + 1
2V88 + UW+ gs 1

4V2 + 1
4U2 + 2W2dV + 1

6gW2U

= 0, s12d

− s4k + qdW+ 1
2W88 + UV + 2gs2W2 + U2 + V2dW+ 1

3gUVW

= 0, s13d

with the prime standing ford/dx. Fundamental solitons,
which are the subject of the present work, are single-peaked
even functions ofx vanishing atx= ±`.

For soliton solutions, the power defined as per Eq.(5) is a
function of k. The form of the functionEskd is important, as
the VK criterion [15] states that a necessary(but, generally
speaking, not sufficient) condition for the stability of the
soliton is given by

dE/dk. 0. s14d

Equations(11)–(13) admit obvious reductions to a single
equation by settingV=W=0, or U=W=0, or U=V=0. The
remaining equation takes the form, respectively,

− sk − 1dU + 1
2U88 +

g

4
U3 = 0, s15d

− sk + 1dV + 1
2V88 +

g

4
V3 = 0, s16d

− s4k + qdW+ 1
2W88 + 4gW3 = 0. s17d

Exact soliton solutions to these equations are obvious:

Uslow = 2Î2sk − 1d
g

sechfÎ2sk − 1dxg, s18d

Vfast= 2Î2sk + 1d
g

sechfÎ2sk + 1dxg, s19d

W=Î4k + q

2g
sechfÎ2s4k + qdxg, s20d

provided thatg.0 and k71.0, or 4k+q.0 sotherwise,
these simple solitons do not existd.

The solutions(18) and (19) are also valid in the frame-
work of the two-componentxs3d model, in which Eq.(3) is
dropped, and the variablew is set equal to zero in Eqs.(1)
and(2). A well-known result[12] is that, in the latter model,
the soliton(18), which is called a slow one, is stable, and the
soliton (19), which is called fast, is unstable. However, it is
not immediately obvious whether or not these solitons are
stable as particular solutions to the full system(1)–(3); this
issue will be investigated below.

Note that the calculation of the power of the solutions
(18) and (19) as per the definition(5) yields

Eslow,fast= s8/gdÎ2sk 7 1d. s21d

From here, we see that both expressionss21d satisfy the VK
criterion s14d. Actually, in most cases the fast solitons are
clearly unstable, due to a mechanism different than what the
VK criteria addresses. This notwithstanding, the fast solitons
do appear to be stable in some cases, see below. As for the
slow solitons, it will be shown that they may be both stable
and unstable in the present model, in drastic contrast with the
above-mentionedxs3d system, where they are always stable.

As concerns the single-component solution(20), it might
be expected that thexs2d nonlinearity makes it unstable
against FF perturbations(i.e., small perturbations in theu
andv components will mutually amplify each other). In most
cases, this expectation is corroborated by direct simulations;
nevertheless, a parameter region will be found where the SH
solitons(20) arestable.

III. CW SOLUTIONS

Our first objective is to study the CW solutions, which are
to be found from Eqs.(7)–(9). For these solutions, the power
is defined not by the integral expression(5), but rather as the
corresponding density,

P = A2 + B2 + 4C2. s22d

Note that Eqs.s7d–s9d are invariant with respect to the simul-
taneous reversal of the signs ofA andB, while the sign ofC
is kept fixed. Therefore, in what follows below, we do not
distinguish between solutions that may be transformed into
each other this way.

Taking linear combinations of Eqs.(7) and (8), one can
solve forAB andA2+B2 in terms ofk andC. Then, inserting
these results into Eq.(9), one can findk as a function ofC,
hence, eventually,A andB can also be found as functions of
C. In the process, one has to solve two quadratics, thus there
are two signs to choose, giving a total offour different
branches of the CW solutions. In selecting the possible signs,
it is necessary to ensure that the final values forA, B, andk
are real. Each branch can meet this condition, giving rise to
a family of physical solutions.

Stability of the CW solutions was studied against pertur-
bations that also belong to the CW class, i.e.,x-independent
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ones; from the viewpoint of the underlying equations(1)–(3),
this of course implies only a necessary stability condition, as
possible modulational instability againstx-dependent pertur-
bations is ignored in this section. To study the CW stability,
we took perturbed solutions in the form of

uszd = eikzfA + a1szd + ia2szdg,

vszd = eikzfB + b1szd + ib2szdg,

wszd = e2ikzfC + c1szd + ic2szdg, s23d

wherea1 throughc2 are real functions defining infinitesimal
perturbations. They are sought for as

a1,2szd = a1,2
s0desz, b1,2= b1,2

s0desz, cszd = c1,2
s0desz, s24d

s being an instability growth rate. Substitution of Eqs.s24d
into the linearized Eq.s1d–s3d yields a sixth-order algebraic
equation fors. The sCW-dstability condition amounts to the
demand that the inequality Resø0 must hold simulta-
neously for all the roots of this equation.

Equations(7)–(9) were solved not only in the indirect
analytical form as described above, but also in a direct nu-
merical fashion. A conclusion following from the numerical
solution is that, as it could be expected, four different CW
families are found for fixedq andg. A typical example of the
solution families is shown in Fig. 1, for the case ofq=g=1
(recall we have also setb=1), the amplitudesA, B, C, and
the power densityP [see Eq.(22)] being plotted versusk (for
k.0). The plots also show the stability of the CW solutions,
predicted as described above from the calculation of the ei-
genvaluess.

As one can see in Fig. 1, at small values ofk the ampli-
tudes roughly follow a pattern of ±Îk (the Îk dependence is
expected when the SHG terms dominate). At largerk, two of
the branches, one forA and one forB, are seen to cross zero
at different values ofk. This behavior is due to a strong
interplay of thexs2d and thexs3d nonlinearities occurring in
this region. CW solutions also exist fork,0, but further
consideration demonstrates that they all are unstable(see be-
low), therefore the solutions fork,0 are not displayed here.

The four branches of the CW solutions can be classified
as follows. Branch 1 is seen to be stable up to aboutk
<100. It is the branch along which the amplitudeB crosses
zero. Branch 2 seems to be stable for allk, while branch 3 is
unstable for allk. Branch 4 has a small segment of stability
neark<150, but otherwise appears to be unstable. It is the
branch along which the amplitudeA crosses zero.

In the plot ofP in Fig. 1, one notes that the slopes of the
power curves along all the branches is positive(and essen-
tially constant). Thus the VK criterion does not stipulate any
part of these branches to be unstable, unlike the direct sta-
bility analysis based on the calculation of the eigenvaluess.
In terms of energy considerations, we would expect branch 2
to be stable, as it always has the lowest power density for a
given k. Indeed, this branch is always stable.

In many cases, the stability inferred from evaluating the
eigenvaluess as described above, correlates to the sign of
the SHG term in the system’s Hamiltonian, which is

HSHG= − ABC. s25d

Stable solutions are the ones which haveABC.0, wherein
the SHG part of the Hamiltonian is negative, and unstable
solutions haveABC,0. This conclusion is a very natural
one, as stable solutions tend to minimize the Hamiltonian
f16g. Looking at the plots for the CW solutions, we see that

FIG. 1. The amplitudesA, B, C, and power densityP vs k for the CW solutions, in the case ofb=q=g=1. The continuous and dashed
lines represent stable and unstable solutions, respectively.
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this criterion is true for branches 2 and 3, and is true almost
everywhere for branch 1. We also note that, in the plot ofB
in Fig. 1, there appears to be a short segment of branch 1
whereB is negative, that by the Hamiltonian criteria, should
be stable. But instead of being stable, this segment tests out
as unstable. However, branch 4 does not obey the criterion
based on the sign of the terms25d, in that it would have to be
stable in the entire region whereA.0, which isk*110,but,
in reality, only a small stability segment is found neark
<150; otherwise, this branch tests out as an unstable one.
This finding stresses that the condition of the negativeness
of the Hamiltonian terms25d is only necessary, but not
sufficient, for the stability.

CW solutions were also investigated in the case of the
self-defocusingxs3d nonlinearity, withg,0. For instance, in
the case ofg=−0.05 andq=b=1, two branches of the solu-
tions are stable and two are unstable. The stable branches all
have k,−1 in this case, which implies that they have no
soliton counterparts, since(regular) solitons may only exist
for k.1, see below. The unstable CW branches do have
parts withk.1, where solitons are possible. These results
conform to the findings reported below, according to which
all the solitons are unstable atg,0.

IV. THE VARIATIONAL APPROXIMATION
FOR THE 3W SOLITONS

In the presence of thexs2d nonlinearity only, VA turned
out to be an efficient tool for the analysis of 3W solitons
supported by the type-II SHG generation[20], which
strongly suggests to apply VA to the present model as well.
To this end, we note that the Lagrangian density from which
the underlying Eqs.(1)–(3) can be derived is

L =
1

2
siu*]zu + iv*]zv + 2iw*]zw + c.c.d +

1

2
SUdu

dt
U2

+ Udv
dt
U2

+ Udw

dt
U2D + bsuuu2 − uvu2d − quwu2 + su*v*w + w*uvd

+
g

8
suuu4 + uvu4d + 2gsuuu2 + uvu2 + uwu2duwu2 +

g

6
suuu2uvu2

+ u*vuwu2 + v*uuwu2d +
g

24
fsu*vd2 + sv*ud2g, s26d

where c.c. stands for the complex conjugate expression.
In this work, we adopt the Gaussian ansatz for the soliton

trial functions. Of course, it incorrectly approximates far tails
of the soliton, which must decay exponentially, rather than
Gaussian-like. But in the one-dimensional case, this factor is
not crucially important[14]. Moreover, we assume that all
the three components of the solitons have identical widths
(an ansatz with different widths can be introduced, but it
gives rise to an extremely cumbersome algebra). In any case,

the latter assumption is not a serious limitation on the appli-
cability of the VA, since direct numerical results show that
almost all the soliton solutions do have approximately equal
widths, except whenk is near the edge of the continuous
spectrum.

Thus, the variational ansatz is taken as

u,v,w = Au,v,wexpf− st2/r2d + iau,v,wg, s27d

whereAu,v,w are real amplitudes,r is the common width, and
au,v,w are phases at the center of the respective component.
Inserting the ansatzs27d into the Lagrangian densitys26d,
one can calculate theeffective Lagrangian,

Leff ; E
−`

+`

Lsxddx= −Îp

2
rsAu

2ȧu + Av
2ȧv + 2Aw

2ȧwd

−Îp

2
FSqr +

1

2r
DAw

2 + Sbr +
1

2r
DAv

2

− Sbr −
1

2r
DAu

2G + 2Îp

3
rAuAvAw cossau + av − awd

+ ÎprFsAu
2 + Av

2 + Aw
2dAw

2 +
1

16
SAu

4 +
4

3
Au

2Av
2 + Av

4DG
+

1

6
ÎprfAuAvAw

2 cossau − avd

+ 1
4Au

2Av
2 coss2au − 2avdg , s28d

where the overdot stands ford/dz. Since we are only inter-
ested in stationary soliton solutions, we assume that all the
components contain a single propagation constant,ȧu=ȧv
=ȧw/2;k. It is an intrinsic parameter of the soliton family,
rather than a variational one, whileAu,v,w and r are four
variational degrees of freedom. Then, the Euler-Lagrange
equations]Leff /]Au,v,w=]Leff /]r=0 yield the following sys-
tem:

S 1

r2 + 2sk − bdDAu

Î2
−

2
Î3

AvAw −
g

4
AusAu

2 + Av
2d

− 2gSAu +
Av

12
DAw

2 = 0,

S 1

r2 + 2sk + bdDAv

Î2
−

2
Î3

AuAw −
g

4
AvsAu

2 + Av
2d

− 2gSAv +
Au

12
DAw

2 = 0,
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S 1

r2 + 8k + 2qDAw

Î2
−

2
Î3

AuAv − 4gAw
3

− 2gSAu
2 + +

1

6
AuAv + Av

2D = 0,

Sb − k +
1

2r2DAu
2

Î2
+ S− b − k +

1

2r2DAv
2

Î2

+ S− q − 4k +
1

2r2DAw
2

Î2
+

2
Î3

AuAvAw +
g

16
sAu

2 + Av
2d2

+ gSAu
2 +

1

6
AuAv + Av

2DAw
2 = 0. s29d

These equations feature close similarity to the CW Eqs.
(7)–(9) derived above. In particular, as in the CW case, it is
a set of coupled cubic equations, and due to the symmetries
involved, we can solve these equations by using only two
square roots, hence there are four possible solution branches.

We proceed by solving Eqs.(29) numerically. Typical ex-
amples of the solutions are presented in Fig. 2, where we
show two solution branches, forg=−0.05,0.05,0.3, and 1.0.
This figure reveals two broad(in terms of the range of values
of k) families of solutions. As a matter of fact, these two
families are counterparts of the branches 1 and 2 in the CW
case. In particular, one notes that, forg=1 (the same value
which was selected for the CW solutions in Fig. 1), the shape
of each solution branch closely matches the corresponding
solution in the CW case(note that thek axis in the CW
figures is linear, while in Fig. 2 it is logarithmic).

We stress that the variational solutions exist also for the
defocusingxs3d nonlinearity,g,0, although apparently only
for rather smallugu. In particular, for negativeg, the soliton
solution also exists fork,1, i.e., for k belonging to the

continuous spectrum of the linearized system. Thus, this sec-
tor of the solutions represents the above-mentioned delocal-
ized solitons[17], and may possibly include embedded soli-
tons [18].

In the same figure, we show the soliton’s powerE
=rsAu

2+Av
2+4Aw

2d [which is the power(22) calculated with
the ansatz(27)] versusk. One notes here that, in the left parts
of all these solution branches, the curves have a negative
slope. Thus, by the VK criterion, the solutions should be
unstable in this case. Numerical simulations of the full sys-
tem (1)–(3) (see the following section) verify this prediction
for the truly localized solutions.

Two other families of the variational solutions for the soli-
tons are shown in Fig. 3. In this case, we clearly see a family
which is a counterpart of branch 4 of the CW solution. How-
ever, the variational solutions forg=1.0 do not contain a
counterpart of the CW branch 3(note, however, that branch 3
in the CW case was completely unstable). Nevertheless, that
branch reappears at lower values ofg, and we have plotted it
for g=0.3.

In addition, we also note the presence of another branch
which was not found in the CW case. It appears in the plot
for Av in Fig. 3 as a very short branch near the bottom for
g=0.3. Actually, it is just another segment of branch 3,
which exists only at finite values of the soliton’s widthr (the
CW solutions correspond tor=`, that is why this segment
was not found among the CW states). Note thatAw may be
regarded as an internal parameter of the family of these so-
lutions, and the latter segment is found in a range ofAw
which, in the CW case, did not produce a solution for branch
3. There is also a separate segment near zero forg=0.05,
which is clearly a continuation of branches 3 and 4 for that
value ofg.

The solutions forg=0.05 andg=0.3 are also found to
exist for k,1 (inside the continuous spectrum), and large
parts of the solution forg=0.05 extend even tok,0. The

FIG. 2. The amplitudes of the three-wave solitonAu, Av, andAw, and the powerEskd as found from the variational approximation vsk
for the first two solution branches, whenq=b=1.
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solutions in these ranges again correspond to delocalized
solitons(and, possibly, to embedded ones).

In Fig. 3, we also showE versusk for these solutions. As
is seen, fork.1 all the slopes are positive, hence these
sections are stable by the VK criteria. It is clear from this
plot that the two families are distinctly different.

In the first plot in Fig. 4, we show the soliton’s widthr as
a function ofk for the first two branches. A noteworthy fea-
ture evident in this plot is auniversal dependenceof the
width versusk, which is insensitive tog. Another feature of
importance is thatr does become very large, and in fact
appears to be going toward infinity, for the solutions with
k,1 (in the delocalized-soliton range). This is what one
would expect for a localized object with an infinitely long
tail, and is the best fit that the VA can produce, when re-
stricted to the Gaussian approximation. We note that a more
sophisticated ansatz, combining the Gaussian approximation
for the core of the(weakly) delocalized solitons, and a
cosine-based ansatz for the oscillating tails, makes it possible
to pin (with good accuracy) a truly localized ES(embedded
soliton) inside the family of the delocalized ones[21] (a
similar variational ansatz, combining the sech approximation
for the core of the soliton, and a long shelf approximating its

tail, was earlier used in a different context, in order to de-
scribe emission of radiation by a perturbed soliton[22]).
However, search for ESs in the present model is beyond the
scope of this work.

The second plot in Fig. 4 shows, for the soliton solutions
from Fig. 3, their width versusk. Here, forg=0.05, we note
that r again diverges at smallk. Note a principal difference
from the previous plot: this time, the curvesrskd, obtained
for different values ofg, do not approximately collapse into
a single one.

The VK criterion predicts that branches 1, 2, and 4 of the
soliton solutions should have exactly the same stability as
their CW counterparts, in the respective sectors. The new
branch of the large-amplitude solitons found at small positive
g (in particular, for g=0.3) is expected to be always un-
stable, sinceAu, Av, andAw all are negative, making the SHG
Hamiltonian term(25) positive for these solitons. Numerical
simulations of the full system of Eqs.(1)–(3) readily verify
this conjecture.

V. NUMERICAL RESULTS

In this section, we will first find the 3W solitons in a
numerically exact form by solving the two-point boundary-

FIG. 3. The same as in Fig. 2 for the other two branches.

FIG. 4. The variational solutions for the width of the solitonr vs k, whenq=b=1. The results for the first two branches are on the left,
and those for the last two branches are on the right.
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value problem for Eqs.(11)–(13), using the collocation
method[23]. In the computations of Eqs.(1)–(3), the spec-
tral method was used for the space discretization, and the
leap-frog method for advancing inz.

As an initial wave form, we used particular exact solu-
tions

U = s3k/2dsech2sÎ2kx/2d, s30d

V = W= U, V = W= − U, V = − W= U, V = − W= − U,

s31d

which are available in the case with

g = 0, b = 0, k . 0, q = − 3k. s32d

Starting from here, soliton solutions for other values of the
parameters were found by continuation. Of course, this ap-
proach comes with a risk of missing soliton families that do
not abut onto the simple solutionss31d as the parameters
approach the special valuess32d. However, the VA results,
and comparison with the CW solutions suggest that, follow-
ing this procedure, we have not missed other soliton families.
An exception is branch 5 of the soliton solutions, which is
presented below: it, indeed, cannot be generated by the
above method. This branch was found as a result of an ad-
ditional exploration of the parameter space, with the aim to
search for possibly missing solution families.

In order to distinguish between various branches of the
soliton solutions, we took advantage of the fact that each
component of the fundamental soliton keeps a definite sign
[and the relation between the signs is quite important for the
stability of solitons, as is suggested by the Hamiltonian term
(25)]. Thus, we have adopted a notation based on the signs of
the u, v, andw components: branches obtained by the con-
tinuation of four distinct types of the solutions singled out in
Eq. (31) will be designated by symbolsPPP, PNN, and so
on, whereP andN stand for the positive or negative sign of
each componentu, v, w.

To test stability of soliton solutions, we simulated their
evolution within the framework of the full system of Eqs.
(1)–(3), adding a small perturbation to a given stationary
soliton fUsxd ,Vsxd ,Wsxdg. To this end, various perturbations
were used—in particular, those proportional toefuUsxdu
+ uVsxdu+ uWsxdug randsxd, wheree is a small amplitude of the
perturbation and randsxd is a random function taking values
in the interval(0,1). As a result, we have concluded that this
random perturbation always leads to precisely the same con-
clusion concerning stability/instability of the unperturbed
soliton as a simpler perturbation, defined so that the initial
field configuration is deformed to

su,v,wd0 = sU,V,Wd + esuUu + uVu + uWud, s33d

which will be used in typical examples displayed below. As
mentioned above, iffUsxd ,Vsxd ,Wsxdg is a stationary solu-
tion to Eqs.s11d–s13d, then f−Usxd ,−Vsxd ,Wsxdg is a solu-
tion too. Therefore, without loss of generality, we always
takeUsx=0dù0.

A. Validation of the variational approximation

First, we compare the numerical solutions against the re-
sults furnished by the VA. It has been concluded that the VA
solutions are always qualitatively correct, and are also ap-
proximately correct in the quantitative sense. Some examples
are sufficient to make this point.

The first example is the numerically found families of
soliton solutions to Eqs.(11)–(13) for q=1 andg=−0.01 or
1, which are presented in Fig. 5. In this figure, the soliton’s
amplitudes, sUmax,Vmax,Wmaxd;fUsx=0d ,Vsx=0d ,Wsx
=0dg, are plotted versusk, along with the powerEskd which
is defined as per Eq.(5). Comparing branch 1 and branch 2
in these graphs against their VA counterparts displayed in
Figs. 2 and 3, it is clear that the VA offers a correct qualita-
tive description of the soliton solutions. In particular, the
branch in Fig. 5 labeled “branch 5,” which is the numerical
solution forg=1, does correspond to the short segment pre-
dicted forg=0.3 by the VA in Fig. 3, which is labeled there
as branch 3. So, it appears that the section labeled as branch
5 in Fig. 5 is nothing else than a section of the VA solution
labeled as branch 3. However, forg=1 (unlike g=0.3), this
VA solution did not exist, which is explained by the fact that,
as the exact numerical solution shows, the width of theW
component is much smaller than that of the other two com-
ponents, in violation of the equal-widths assumption implied
in the variational ansatz(27). Since the VA did find this
branch forg=0.3, we may still infer that the VA produces
qualitatively correct results, even if not quantitatively accu-
rate, in some cases. Other examples support this point as
well.

As concerns the continuation of the soliton solutions to
g,0, at k=2 the numerical solution of thePPP type, by
which we mean the one withUs0d.0,Vs0d.0,Ws0d.0,
terminates at(does not continue below) g=−0.027. On the
other hand, the VA has found such solutions existing up to
g=−0.05 (see Fig. 2). So, in this case again, the qualitative
predictions of the VA are correct, and the quantitative differ-
ence is not too large.

Further evidence can be produced, to demonstrate that the
numerical findings for branches 3 and 4 of the soliton solu-
tions, and for other values ofg verify the qualitative accu-
racy of the VA, and its generally good quantitative agreement
with the numerical results. Thus, the VA applies to the 3W
solitons in thexs2d :xs3d model, as well as it did in the vecto-
rial xs2d one [20].

B. Stability of the single-component solitons

Now we proceed to the stability of the simple single-
component soliton solutions, which are given by Eqs.
(18)–(20). We start with theU soliton (18), alias the slow
one, which is always stable in the two-wavexs3d model[12].
Numerical tests conclude that, in the present system, the
slow soliton has its stabilityand instabilityregions. The soli-
ton is considered to be stable if the perturbed solution re-
mains close to the original soliton, as long as the perturbation
amplitudee is small[see Eq.(33)], so that with the decrease
of e the perturbed soliton gets closer to the original one.
Figure 6 demonstrates that the slow solitons are stable for
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most of theq values except when 23øqø26 and 35øq
ø41.2;qU for k=5 (the meaning ofqU is explained below).

The transition between stable and unstable solitons of the
U- (slow) type may seem differently. For example, the tran-
sition atq<26 is smoother than atq=qU. As q approaches
the transition pointq=26 from below, the breather(which
replaces the unstable soliton) gradually becomes closer to the
unperturbed slow soliton(the amplitude of the breather’s os-
cillations decreases), and finally the soliton becomes stable.
But asq passes the valueqU at the above-mentioned transi-
tion pointq=qU, the perturbed soliton is quickly transformed
into a breather, which is significantly different from the un-
perturbed slow soliton. Similar observations were made at
other values ofk.

The stability of the single-component SHsWd soliton (20)
is also shown in Fig. 6 fork=5. An upper part of this branch

[in the region ofWsx=0dù4.7] was dropped after it has
become unstable, as it never restabilizes, and, if continued, it
makes the entire bifurcation diagram(which is further ex-
plained in the following section) rather obscure due to osten-
sible intersections with other branches. Thus, the single-
component SH solitons exist only ifq.−4k; most of them
are unstable, except when −4k,q,qW;−12, and when
2,q,5.

In fact, the character of the stability in the latter short
interval is not quite clear. For a given initial perturbation
with an amplitudee, the difference between the perturbed
solution, as produced by the simulations, and the original
soliton is almost proportional to«, which suggests that the
soliton is stable. A slight growth on the deviation from that
behavior was observed too, but, since the deviation was very
small, we classify the SH soliton to be stable in this case.

FIG. 5. Numerically found amplitudes and power of the three-wave solitons forb=q=1.

FIG. 6. Stability regions of the single-modeU-(slow) andW-(SH) solitons, and three-modePPP and PNN solitons fork=5,b=g=1.
Nonzero amplitudes of the solitons, i.e.,Usx=0d ,Vsx=0d, andWsx=0d, are shown as functions of the mismatchq.
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Even with these reservations, the observation of the SH soli-
ton which isstableagainst the FF perturbations appears to be
quite a noteworthy result, as it was commonly believed that
such solitons can never be stable.

The stability test of the single-componentV soliton [the
fast one, see Eq.(19)] demonstrates that it is almost always
unstable, as shown in the example displayed in Fig. 7 forq
=29 andk=3. The instability sets in somewhat faster for
e.0 than for negativee [see Eq.(33)] in this case. In both
cases, the eventual result is transformation of the unstable
soliton into an apparently stable breather. Established values
of the amplitude and frequency of the breather’s intrinsic
oscillations do not depend on the sign and size of the pertur-
bation amplitudee (provided that it is not too large). Gener-
ally, the established state of the breather has its amplitude in
the u andw components comparable to that ofv.

It is noteworthy that, despite the expected(from the com-
parison with the well-known results for thexs3d model [12])
instability of theV soliton in a bigger part of the parameter
space, we did observe, for instance atk=5, that it isstable
for 60,q,64. As this stabilization is not related to any
apparent bifurcation, one might conjecture that, in this inter-
val, theV soliton remains formally unstable, but its instabil-
ity is, for some specific reason, extremely weak; then, for
physical applications, it is a real stability interval anyway.

Besides that, it is also noted that the instability of theV
soliton develops, if any, extremely slowly for very broad
solitons, with a small value ofk+1. This feature is quite
natural, as the amplitude of the soliton is very small in this
case.

C. The main family of three-wave solitons: thePPP type

To present numerical results for the solitons in the general
case, with all the three components present, we first focus on
the case ofg=1. By starting from the exact solution(31)
with V=W=U, then numerically continuing it fromb=g=0
to b=g=1, and after that varying the parametersk andq, we
were able to find solitons with positive stationary fields,
Usxd.0,Vsxd.0,Wsxd.0, in a large range ofk and q,
which is shown in Fig. 8(a). According to the nomenclature
introduced above, these solitons are of thePPP type.

For any fixedq, this branch of the soliton solutions exists
if k is larger than a critical value. Further analysis of the
numerical data demonstrates that the existence region of the

branch in thesk,qd plane can be approximated by

qW = − 2.05sk − 1d − 4 , q , qU = 11.3sk − 1d − 4.

s34d

As q approachesqU, theUVW soliton sthe general 3W oned
of the PPP type bifurcates intothe slowU soliton s18d, and
asq gets larger thanqW, theUVWsolitonbifurcates fromthe
W soliton s20d. Note that theU soliton exists fork.1 and
anyq, and theW soliton exists forq.−4k. Therefore, in the
regions34d, where the main 3W soliton branch exists, theU
and W solitons exist too. Thus, theUVW family actually
provides for a crossover between the stableU- and unstable
W-soliton branches.

To illustrate the crossover, the amplitudesfUsx=0d ,Vsx
=0d ,Wsx=0dg of the UVW soliton are plotted in Figs. 6 and
8(b) for the fixed values of the propagation constant,k=6.4
and k=5, respectively. Asq increases,Usx=0d monoto-
nously increases from 0, whileWsx=0d monotonically ap-
proaches zero. Simultaneously, the amplitudeVsx=0d in-
creases from zero to some maximum value, and then decays
back to zero.

The amplitudes of theUVW solitons are also plotted
againstk, for two fixed values of the mismatch,q=−6 and
q=4, in Figs. 8(c) and 8(d). As k increases,Usx=0d, Vsx
=0d, and Wsx=0d increase too. With respect to Fig. 8(a),
Figs. 8(b)–8(d) and Fig. 6 actually show the amplitudes of
the solitons along vertical cuts atk=6.4 andk=5, and along
horizontal cuts atq=−6 andq=4.

Stability of the soliton solutions is the most important
issue. Therefore, the power functionEskd defined in Eq.(5)
is also plotted in Figs. 8(c) and 8(d), with the intention to
apply the VK criterion. From the latter plots we see that, for
q=4, the criterion for theUVW soliton to be stable,
dEskd /dk.0 [see Eq.(14)], does not hold atk,k* <2.2.
The dashed line in Fig. 8(a) separates the region
dEskd /dk.0 from the regiondEskd /dk,0, where the soli-
tons are unstable. We note that this presumably unstable re-
gion of the UVW soliton is the one with smallV and W
components.

Then, the stability of the solitons along the lineq=4 was
tested in direct simulations, starting with a stableU soliton.
For k in the region where the condition(14) is violated, the
UVW solitons are found to be unstable indeed, as predicted

FIG. 7. An example of the transformation of an unstableV (fast) soliton into a breather, in the case ofq=29, k=3, ande=0.01. The
behavior ofuwu is similar to that ofuuu.

THREE-WAVE SOLITONS AND CONTINUOUS WAVES IN… PHYSICAL REVIEW E 69, 056605(2004)

056605-11



by the VK criterion, see Fig. 8(d). As a typical example, the
evolution of the unstable soliton is displayed in Fig. 9 for
k=1.8,q=4. The simulations are conducted without impos-
ing any perturbation[i.e., e=0 in Eq. (33)], the truncation
error of the numerical scheme triggering the instability. Ini-

tially, the magnitudes of the fieldsv and w are small in
comparison withu. Energy is then transferred between the
components periodically, i.e., the instability does not destroy
the soliton, but transforms it into a breather, as was also
found in the previous unstable cases.

FIG. 8. (a) The UVW solitons of thePPP type exist betweenqw andqu. In the region wheredE/dk,0, the solitons are unstable.(b)
Amplitudes of theUVW soliton Usx=0d ,Vsx=0d ,Wsx=0d for k=6.4. (c) and (d) Amplitudes and power of theUVW soliton Usx=0d ,Vsx
=0d ,Wsx=0d, andE for q=−6 andq=4, respectively.

FIG. 9. Transformation of an unstableUVW soliton into a breather in the case ofk=1.8,q=4,e=0. The behavior ofuwu is similar to that
of uvu.
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The stability tests were also run with an initially imposed
perturbatione.0. As e increases, the breathers are formed
earlier(after passing a shorter distancez), and the oscillation
period L of the established breather becomes smaller. For
instance,L<19 when e=0.02, andL<30 when e=0, as
shown in Fig. 9. The established amplitude of the oscillations
weakly depends one, being slightly smaller fore=0 than in
the case of«=0.02. The actual independence of the estab-
lished amplitude on the size of the perturbation is a major
criterion in deciding whether the soliton is unstable: for a
weakly stablesoliton, surrounded by a family of stable
weakly excited breathers, the amplitude of the internal oscil-
lations of the breather is expected to scale as a power of the
perturbation amplitudee, while for a truly unstable soliton,
the established amplitude, in the first approximation, should
not depend one.

Increasingk further, the VK criterion(14) is met. In this
case, a series of numerical simulations for theUVW soliton
was carried out, varyinge while other parameters were kept
constant. For instance, atk=2.5 andk=10 this was done for
e=0.02,0.01,0.005, and, finally, fore=0. In this case, the
initial perturbation also leads to a transition from the soliton
to a breather. However, in contrast to the case when the
soliton was unstable, this time we observed that, with the
decrease ofe, the breather’s intrinsic frequency became
smaller, and the amplitude of its oscillationsdecreasedquite
significantly withe (almost linearly). Without adding the ini-
tial perturbation(e=0), the original soliton is preserved, at
least, for up toz=80. Therefore, according to the above ex-
planation, the solitons are indeed stable when the VK crite-
rion is met. However, the numerical results strongly suggest
that there are families of breathers quite close to the soliton
solutions, and that smallfinite perturbations may provoke the
transition of the soliton into a breather. In other words, the
stable stationary soliton seems like a stable fixed point of the
center type, which is surrounded by a family of closed tra-
jectories, in a finite-dimensional Hamiltonian dynamical sys-
tem.

In summary, moving along the lineq=4 and increasingk,
we start with stableU solitons, which change into unstable
UVWsolitons(the latter spontaneously evolve into breathers,
in direct simulations). Later, the UVW solitons became
stable, in accordance with the condition(14).

At q=−6, the VK condition(14) is alwayssatisfied. Ac-
cordingly, theUVWsolitons are found to be always stable in
direct simulations in this case. The stability tests were also
conducted along the line ofk=5, yielding the same result
(see the first plot in Fig. 6). Thus, with regard to Fig. 8(a), we
conclude that theUVW solitons(with g=1) are found to be
stable in a larger part of the parametric space, except in a
small strip near the upper boundary, where the magnitudes of
V andW are small.

D. Normal-form description of the bifurcations

Getting back to the bifurcations between theUVWsoliton
and its single-componentW andU counterparts at the points
q=qW andq=qU, which are shown in Fig. 6(the first plot for
PPP type and second plot forPNN type), we have also

investigated the stability of these solitons as they pass the
bifurcation points. The plot for thePPP types demonstrates
that, near the bifurcation point, theW soliton is stable at
q,qW, and unstable atq.qW. The U soliton is unstable at
q,qU andweakly stableat q.qU. The latter means that it is
stable against very small perturbations, but a slightly stron-
ger disturbance triggers transition to a breather which is not
close to the unperturbedU soliton. For instance, atg=b=1
andk=5, the stationaryU soliton found atq=41.2[which is
very close to the bifurcation pointq=qU, see Eq.(34)] has
the amplitudeUsx=0d=5.65, and it is destabilized by the
perturbation of the form(33) with eù0.005(while the soli-
ton is certainly stable against the same perturbation withe
ø0.0025); as a result, theU soliton transforms into a
breather whose oscillating amplitudes take values in the
ranges, respectively, 4.8, uusx=0du,6.0, 2.6, uvsx
=0du,4.6, and 1.9, uwsx=0du,3.1.

These features, together with the aforementioned stability
of the UVW soliton at q−qW→ +0 and its instability atq
−qU→−0, call for derivation of normal forms[24] for the
two bifurcations. Close to either bifurcation point, two com-
ponents of the soliton(for instance, thev andw components
nearq=qU) are small, which suggests to perform expansion
in powers of the small fields. One may expect that the qua-
dratic terms in the underlying Eqs.(1)–(3) will eventually
combine into cubic ones, and the normal-form equations will
therefore contain linear and cubic terms.

However, there is a difficulty in the course of the deriva-
tion. For instance, in the case when thev and w fields are
small, Eqs.(2) and(3) in the linear approximation amount to
a fourth-order ODE system with potential terms
,sech2fÎ2sk−1dxg [see Eq.(18)], and, additionally, cross-
coupling terms,sechfÎ2sk−1dxg; it is not straightforward at
all to find exact eigenmodes of such a system, which is the
first necessary step in the development of the bifurcation
analysis. For this reason, we here put forward “phenomeno-
logical” normal forms, that we expect to be valid for the two
bifurcations, while a consistent derivation will be presented
elsewhere.

The normal form that can describe the bifurcation at the
point q=qU includes dynamical equations for two variables
j1szd andj2szd,

d2j1

dz2 = − a1j1se − b1j1
2 − c1j2

2d, s35d

d2j2

dz2 = − a2j2se + b2j2
2 + c2j1

2d, s36d

wheree;sq−qUd /qU is the bifurcation parameter,a1,2, b1,2,
and c1,2 being some positive constants. We stress that both
Eqs.s35d ands36d contain the same control parametere. As
for the meaning of the variablesj1 andj2, we conjecture that
they are proportional to two linearly independent combina-
tions of the amplitudesVsx=0d andWsx=0d.

Equations(35) and (36) give rise to the following fixed
points (FPs):
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j1
s0d = j2

s0d = 0, s37d

which corresponds to theU soliton, and

j1
s+d = ± Îe/b1,j2

s+d = 0 for e . 0, s38d

j1
s−d = 0,j2

s−d = ± Î− e/b2 for e , 0, s39d

which correspond to the solitons of theUVW type. Assuming
small perturbations around the FPs of the form expsgzd, an
elementary calculation yields the following stability ei-
genvalues:

fg0
s1,2dg2 = − a1,2e s40d

for the FPs37d,

fg+
s1dg2 = 2a1e,fg+

s2dg2 = − a2e s41d

for the FPss38d, and

fg−
s1dg2 = − a1e,fg−

s2dg2 = 2a2e s42d

for the FPss39d. Obviously, the FPs37d is stable ate.0
swhich meansq.qUd, and unstable ate,0 sq,qUd. The FP
s38d is unstablesthrough the eigenvalueg+

s1dd, and the FP
s39d is unstable toosthrough the eigenvalueg−

s1dd.
These properties mimic all the basic stability features re-

ported above,viz., the instability of theUVWsoliton close to
the bifurcation point and the fact that theU soliton is un-
stable atq,qU and stable in the regionq.qU. The other
above-mentioned fact, that the stability margin of theU soli-
ton in the regionq.qU is small (at small e), is also ac-
counted for by the normal-form system, as the unstable FP
(38) is quite close to the stable one(37) at small positivee,
hence weak finite perturbations, with an amplitude compa-
rable to the separation between the coexisting stable and un-
stable FP, may destabilize the former one.

The normal form expected to describe the bifurcation at
the point q=qW is simpler, as it is enough to conjecture a
single equation for a variablejszd:

d2j

dz2 = jse − j2d, s43d

where, this time,e;sq−qWd / uqWu, and it is conjectured that
j is a linear combination of the amplitudesUsx=0d and

Vsx=0d. Actually, in this case we are dealing with a standard
pitchfork bifurcationf24g.

Equation(43) has the fixed points

js0d = 0, s44d

which corresponds to theW soliton, and

js+d = ± Îe,for e . 0, s45d

which corresponds to theUVW soliton. The stability eigen-
values of the FPs44d are given byg0

2=e, which immediately
means that theW soliton is stable atq,qW si.e., e,0d, and
unstable atq.qW si.e., e.0d. The stability eigenvalues for
the FP s45d are given byg−

2=−2e, which means that the
UVW soliton is stable where it existssat e.0, i.e.,q.qWd.
These features closely resemble those reported above on the
basis of direct simulations.

E. Three-wave solitons in the case of self-defocusing
x„3… nonlinearity

The stability of the same soliton family was also tested for
the case of the self-defocusingxs3d nonlinearity, i.e., for
g,0. In this case, theUVW solitons were found to be
strongly unstable in all the cases. A typical example is shown
in Fig. 10 for k=2,q=1,g=−0.02, ande=0. The solution
keeps the original shape for a while, but then it seems to
blow up into a state of spatiotemporal turbulence(the
blow-up never generates a breather, in this case). The turbu-
lent state contains many small-scale large-amplitude spikes,
therefore it is rather difficult to accurately analyze its dy-
namical and statistical properties. Very accurate investigation
of this regime could require to use a numerical scheme with
a special adaptive mesh, which is not an objective of the
present work. However, we took care to check that the
blow-up is not a numerical artifact. To this end, the simula-
tions were rerun several times, consecutively decreasing the
stepsize in both thex andz directions. In particular the pic-
ture shown in Fig. 10 was reproduced taking the former step-
size asDx=1/48,1/96, and 1/256(in the present notation),
while the latter stepsize was chosen asDz=sp /40dDx. In all
the cases tested this way, using the finer mesh never pro-
duced any visible change in the result. Therefore, we believe
that the blow-up is a real effect, although its further detailed
study is necessary.

FIG. 10. Evolution of an unstableUVW soliton in the case of the self-defocusingxs3d nonlinearity, withg=−0.02,k=2,q=1,e=0. The
fields uvu and uwu behave similarly touuu.
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It should also be mentioned that, in the limit ofg→−0,
the 3W soliton goes over into its counterpart in the vectorial
model with the purexs2d interaction, where, generally, such
solitons are stable[20]. We did not try to follow this transi-
tion at extremely small negative values ofg, as the issue is a
rather formal one.

F. Three-wave solitons with different signs of the components

Similar to what was done before, we also tested stability
of solitons which have different signs of their different com-
ponents, cf. Eq.(31). In this case, we again focus on the case
of g=1. In particular,, starting from the exact solution(31)
for b=g=0 with V=W=−U (which is thePNN type, accord-
ing to the nomenclature introduced above), continuing the
solution numerically tob=g=1, and then varyingk and q,
we were able to find a soliton branch which keepsWsxd
negative. The fieldVsxd is negative at first, and then it be-
comes positive whenk becomes sufficiently large. Accord-
ingly, the solitons change their type fromPNN to PPN. This
branch corresponds to branch 1 of the variational solutions in
Fig. 2.

The existence region of thePNN and PPN solitons is
plotted in Fig. 11(a), the dashed line indicating where the
change betweenPNN and PPN occurs. The region is
bounded by theU solitons(18) from above, and theW soli-
tons (20) from below. The amplitudesUsx=0d ,Vsx
=0d ,Wsx=0d are plotted againstq for k=44 in Fig. 11(b)
(this is the largestk for which theV component never crosses
zero asq increases). For k.44, the branch starts out as a
PPN soliton for smallq, and then carries over into aPNN
one asq increases. The set of the amplitudesfUsx=0d ,Vsx

=0d ,Wsx=0dg is also plotted in Fig. 11(b)–11(d) againstk for
q=90 andq=−20, along with the corresponding power func-
tion Eskd defined in Eq.(5). As it was mentioned already,
there is a point whereVsx=0d changes its sign. We stress
that, at this point, the soliton’sV component as a whole isnot
zero. Instead, close to the point, the solution changes its
shape from the normal single-hump one to a multihumped
shape, however with a relatively small amplitude.

Since the VK condition(14) is satisfied everywhere for
these newly introduced 3W soliton solutions[see Figs. 11(c)
and 11(d)], it remains to test the stability of the solutions in
direct simulations. The result fork=5 is shown in the second
plot of Fig. 6. Asq increases, the stableW soliton bifurcates
to an unstablePNN-soliton. Asq continues to increase, the
latter one becomes stable. Eventually, it becomes unstable
again. Finally, asuvu and uwu decrease, thePNN soliton de-
generates into a stableU soliton.

We now describe in detail a stability test of thePNN-type
soliton for sk,qd=s6.4,4d, which turns out to be a delicate
case. With a perturbation amplitude ofe=0.02, the soliton
develops into a breather, with noticeable energy shedding in
the u and v components, as shown in Fig. 12. However,
when the perturbation was slashed toe=0.01, a similar
breather, with almost the same amplitude, did develop, but
not until having passed essentially twice the distance of the
e=0.02 case(for e=0.01, the amplitude of thev component
first peaked atz<10.8, whereas fore=0.02, this first hap-
pened atz<5.2.) Reducing the perturbation further toe
=0.005 reveals that thePNN soliton is now actuallystable,
remaining close to the unperturbed one, at least forz up to
120. What this most plausibly means is that thePNN soliton
is stable indeed, but with a very narrow stability basin, and

FIG. 11. (a) The existence region of thePNNandPPNsolitons.(b) The amplitudesUsx=0d ,Vsx=0d ,Wsx=0d vs q for k=44. (c) and(d)
Usx=0d ,Vsx=0d ,Wsx=0d, together with the powerEskd, are displayed vsk for q=90 andq=−20, respectively.
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with breather states located nearby(a similar situation was
encountered above in thePPP case).

The stability of thePPN solitons was tested too, and they
were found to be unstable. For example, in the case of
sk,qd=s60,20d, the soliton of this type always evolves into a
breather, even ase approaches zero(in this case, very small
stepsizes inx and z have to be used in the simulations, be-
cause of the large value ofk); actually, thePPN soliton
manifests its instability even in the simulations withe=0.
The instability of thePPN solitons is not surprising, since
the xs2d term (25) in the system’s Hamiltonian is positive for
them (unlike thePNN soliton, for which it is negative).

Two other branches of solitons were also found. One is in
some sense the reverse of thePNN—it is the PPN branch
shown in Fig. 11. It carries solitons of thePPN type at k
small; ask increases, theu amplitude changes its sign, and
the soliton switches into theNPN type (which is actually
tantamount to thePNN type, due to the symmetry against the
simultaneous change of the signs ofU and V). Another
branch carries solitons of thePNP type. These two branches
provide for a crossover between theW andV solitons. We do
not aim here to describe them in detail; however, we mention
that the solitons of theNPN type make the term(25) nega-
tive, and, as it might be expected, they are stable in some
cases. On the contrary, all the solitons of thePNP andPPN
types are unstable, evolving into stable breathers. Their in-
stability is simply explained by the fact that, as well as for
their PPN counterparts, thexs2d interaction term(25) in the
Hamiltonian is positive for them.

G. Soliton solutions in the case of zero birefringence

As stated before, the birefringence parameterb in the un-
derlying Eqs.(1)–(3) could be rescaled to 1, unlessb=0. In
the latter case, solitons exist and haveU= ±V. Typical ex-
amples of these solitons were also tested for the stability. As
one may anticipate on the basis of the above results, the
stability of any soliton is basically determined by the sign
which it lends thexs2d Hamiltonian term(25). For instance,
we have found that thePPPandPNNsolitons withb=0 and
sk,qd=s2,1d are stable. On the other hand, thePPN and
PNP solitons withb=0 were found to be unstable, evolving
into stable breathers in direct simulations.

VI. CONCLUSION

In this paper, we have introduced a general model of
three-wave interactions in the spatial domain for an optical

waveguide, which combinesxs2d and xs3d nonlinearities, the
latter including SPM, XPM, and FWM terms. Both self-
focusing and self-defocusingxs3d nonlinearities were consid-
ered. The birefringence of the two fundamental waves, and
the phase mismatch between them and the second harmonic
were taken into regard. The model can be realized experi-
mentally by means of the QPM technique in quadratically
nonlinear birefringent media. Several types of solitons were
found by means of the variational approximation and nu-
merical methods: single-component ones(for which exact
solutions are available) and generic 3W solitons of different
types, classified by relative signs of the their components.
The 3W solitons were constructed by means of the varia-
tional approximation, and in a numerical form. In some para-
metric regions, the solitons overlap with the continuous spec-
trum and are therefore delocalized(or might even be of the
embedded type).

These solitons are amenable to experimental observation
in essentially the same range of physical parameters where
two-wave solitons were already predicted in models with the
competingxs2d and xs3d nonlinearities, Refs.[1] and [2]. In
fact, the use of the birefringence, which often helps to match
the fundamental and second harmonics, can make the cre-
ation of solitons in such a system more feasible than in the
usual two-wave settings employing the QPM technique.

Stability of the solitons was tested in direct simulations,
and it was concluded that it, generally, complies with two
theoretical predictions: First, soliton families tend to be
stable if the VK criterion is satisfied for them; second, the
cubic term(25) in the Hamiltonian density, which accounts
for thexs2d coupling between the three waves, must be nega-
tive for the stability. As a result, it was concluded that the
3W soliton family of thePPP type(with positive fields in all
the components) is mostly stable. ThePNN family is stable,
but only in the marginal sense. It was also found that the fast
single-component fundamental-frequency soliton is unstable
in most cases, but, nevertheless, it features a narrow stability
interval. Its slow counterpart and the single-component
second-harmonic soliton may be both stable and unstable.
The possibility that the fast single-component soliton and the
second-harmonic one may be stable in some cases are unex-
pected results, which we not reported in other models.

Unstable solitons do not decay into radiation, but rather
evolve into stable breathers. A different instability was found
in the case of the self-defocusingxs3d nonlinearity: in this
case, the solitons blow up into a turbulent state with a large
number of narrow spikes.

FIG. 12. Evolution of a stable soliton of thePNN type, atk=6.4 andq=4, under the action of the initial perturbations[see Eq.(33)] with
e=0.02 ande=0.005.
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Parallel to the consideration of the solitons, CW solutions
were also studied, with a conclusion that their existence and
stability (against CW perturbations) generally correlate with
those of analogous solitons.
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