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Abstract. In this paper, we study various dissipative mechanics associated
with the Boussinesq systems which model two-dimensional small amplitude

long wavelength water waves. We will show that the decay rate for the damped
one-directional model equations, such as the KdV and BBM equations, holds
for some of the damped Boussinesq systems.

1. Introduction. Considered here are waves on the surface of an inviscid fluid
in a flat channel. When one is interested in the propagation of one-directional
irrotational small amplitude long waves, it is classical to model the waves by the
well-known KdV (Korteweg-de Vries) equation (see [23])

ut + ux + uxxx + uux = 0,

or its regularized version, the so-called regularized long wave equation or BBM
(Benjamin-Bona-Mahony) equation,

ut + ux − utxx + uux = 0.

When one is dealing with two-directional waves, so the effects of wave interactions
and/or wave reflections are not excluded from the study, a restricted four-parameter
family of systems (see [5]),

ηt + ux + (uη)x + auxxx − bηxxt = 0,

ut + ηx + uux + cηxxx − duxxt = 0,
(1)

may be used. The dimensionless variables η(x, t), u(x, t), x, and t are scaled by the

length scale h0 and time scale (h0/g)
1
2 where h0 denotes the still water depth and

g denotes the acceleration of gravity. The variable η(x, t) is the non-dimensional
deviation of the water surface from its undisturbed position and u(x, t) is the non-
dimensional horizontal velocity at a height θh0, with 0 ≤ θ ≤ 1, above the bottom

2000 Mathematics Subject Classification. Primary: 35Q35, 35Q53,76B15; Secondary: 65M70.
Key words and phrases. waves, two-way propagation, Boussinesq systems, dissipation, long-

time asymptotics.

509



510 MIN CHEN AND OLIVIER GOUBET

of the channel. The constants a, b, c, d are dispersive constants which satisfy the
physical relevant constraints

(C0) a + b + c + d =
1

3
and c + d =

1

2
(1 − θ2) ≥ 0.

This class of systems contains some of the well-known systems, such as the clas-
sical Boussinesq system (a = b = c = 0, d = 1/3) (see for example [9, 18, 22, 1, 20])
and the Bona-Smith system (a = 0, b = d > 0, c < 0) [8]. It is shown in [5, 6]
that a physically relevant system in (1) is linearly well posed and locally nonlinearly
wellposed in certain natural Sobolev spaces if the constants a, b, c, d satisfy

(C1) b ≥ 0, d ≥ 0, a ≤ 0, c ≤ 0,

or

(C2) b ≥ 0, d ≥ 0, a = c > 0.

It is also shown in [4, 7] that the above systems have the capacity to capture the
main characteristics of the flow in an ideal fluid. But when the damping effect
is comparable with the effects of nonlinearity and/or dispersion, as occurs in the
real laboratory-scale experiments and in the fields (see [7, 16, 12, 17]), it should be
considered in order for the model and its numerical results to correspond in detail
with the experiments. The full system would be the Navier-Stokes equations with a
free boundary, which is very difficult to handle both theoretically and numerically
(cf. [21, 3]). Therefore, it is useful to construct simpler model systems which
are capable of capturing the main properties of water waves under various special
circumstances.

For example, many researchers have studied the dissipative one-way propagation
model equations, such as the dissipative KdV and dissipative regularized long-wave
equations and their generalizations. As a model to our study, we recall the results
from [2] for the dissipative BBM equation,

ut − uxxt − νuxx + uux = 0,

u(x, 0) = u0(x)

where ν is a positive constant.

Theorem 1. Assume u0 is in L1(R) ∩ L2(R), then there exists a constant C such
that

‖u(t)‖L2 ≤ C(1 + t)−1/4. (2)

Here L1(R) and L2(R) are the classical Banach spaces. A similar result holds for
the corresponding dissipative KdV equation. See also [7], [15] and the references
therein.

In this article, we aim to analyze the effect of dissipation on systems (1) and
study the decay rates of solutions (η, u) toward zero. We will restrict our study to
the cases where constants a, b, c, d satisfy (C0)-(C1) or (C0)-(C2). The goal of this
research is to find the appropriate dissipative term (or terms) which will provide
the right amount of energy dissipation for all wave numbers while keeping the mass
conserved.

In this article, two kinds of dissipations will be considered:

Complete dissipation: replacing the

(
0
0

)
in the right-hand side of (1) by the vector

(
ηxx

uxx

)
, and
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Partial dissipation: replace the

(
0
0

)
in the right-hand side of (1) by the vector

(
0

uxx

)
.

The decay rates of solutions to the linearized systems supplemented with either
complete or partial dissipations will be studied first. These equations read

ηt + ux + auxxx − bηxxt = νηxx,

ut + ηx + cηxxx − duxxt = uxx,
(3)

with ν = 0 or ν = 1. Systems which satisfy the dichotomy property in the Fourier
space:

• decay as t−1/4 for low frequencies (small ξ);
• decay as exp(−βt) or exp(−βξ2t) for high frequencies (large ξ);

will be identified and studied. It is shown in Section 3 that the dichotomy property

will lead to the decay rate t−
1
4 for ‖(η, u)‖L2×Hh where h will be specified later.

For later use, we shall emphasize (and it is easy to check) that the dichotomy
property holds true for two fundamentally different equations: the linearized BBM-
Burgers equation ut−uxxt +ux−uxx = 0 and the linearized KdV-Burgers equation
ut + uxxx + ux − uxx = 0. If the high frequency part of the solution to a system
is damped as exp(−βt), we say that the system belongs to the BBM-Burgers class
since solutions to linearized BBM-Burgers equation feature this property. If the
high frequency part of the solution is damped as exp(−βξ2t), which is the case
for linearized KdV-Burgers equation, then we say that the system belongs to the
KdV-Burgers class. The low frequency parts of the solutions to the linearized BBM-
Burgers and KdV-Burgers equations behave in a similar fashion.

The main result in Section 3 is to classify the linearized systems accordingly
and to prove that for systems which satisfy the dichotomy property, a decay rate
comparing to (2) is valid. We shall also present some systems where the decay rates
can be arbitrarily small, behaving as the solution of

ut − uxxt + u = 0, u(x, 0) = u0(x),

where by Fourier transform,

û(t, ξ) = e
− t

1+ξ2 û0(ξ),

and therefore ‖u(., t)‖L2 could decay arbitrarily slow.
In Section 4, we extend the linear theory to nonlinear systems and show that the

decay rate as (2) is valid for weakly dispersive systems, i.e. systems with b > 0 and
d > 0, and for some systems in the KdV-Burgers class with total dissipation, which
include the KdV-KdV system (a = c = 1

6 , b = d = 0), with small initial data. In
Section 5, the decay rate with respect to L∞-norm is presented and in Section 6,
spectral method is used on several systems to demonstrate that the rates obtained
in Section 4 and Section 5 are sharp and the constants involved in the bounds are
reasonably sized.

It is worthwhile to note that there are other methods, such as the energy methods
(like the so-called Schonbek’s splitting method which has been applied to the clas-
sical Boussinesq system [19] in large dimensions), can be used in proving decay rate
for solutions of (1) with dissipation. We believe that those methods will be helpful
especially in the cases where b = d so there is a Hamiltonian(see [6]). They might
also be useful in extending our local results to global ones. The authors in [2] used
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a kind of Cole–Hopf transformation for single equations, such as the KdV-Burgers
and BBM-Burgers equations, and were able to control the extra-terms. This line of
study will be carried out elsewhere.

2. Notations and Preparations. Throughout the paper, the standard notation
on Sobolev spaces will be used. The Lp(R) norm will be denoted as ‖ · ‖Lp for
1 ≤ p ≤ ∞ and the Hs norm will be denoted as ‖ · ‖Hs . When several variables are
involved, we may also set Lp

x for Lp(R) to specify that the norm is computed with
respect to the x-variable. The product space X × X will be abbreviated by X and
a function f = (f1, f2) in X carries the norm

‖f‖X =
(
‖f1‖2

X + ‖f2‖2
X

) 1
2 .

The Euclidean norm of a vector is denoted by | · |. We will use C and β as generic
positive constants whose values may change with each appearance. Fourier trans-

form of a function f is denoted by either f̂ or F(f).

2.1. Some notations. Consider ν ∈ {0, 1}. As stated before, we plan to first
estimate the decay rates of solutions to the linear systems

ηt + ux + auxxx − bηxxt = νηxx,

ut + ηx + cηxxx − duxxt = uxx,
(4)

when t goes to +∞.
Following [6], we introduce the Fourier multipliers

ω1 =
1 − aξ2

1 + bξ2
and ω2 =

1 − cξ2

1 + dξ2
.

Since a, b, c, d satisfy (C1) or (C2), ω1ω2 is nonnegative and we denote

Ĥ =

(
ω1

ω2

)1/2

and σ = (ω1ω2)
1/2,

with the conventional notation 0
0 = 1. We also denote

α =
ξ2

1 + bξ2
and ε =

ξ2

1 + dξ2
.

Remark 1. When a system satisfying (C2) assumption is the subject of the study,
ω1 and ω2 do change signs, but ω1ω2 ≥ 0.

Definition 1. Consider a nonnegative function ξ → κ̂(ξ). The order of κ̂ (when it
exists) is defined as the number m such that

κ̂(ξ) ∼ C|ξ|m

when |ξ| → +∞. The (pseudo–differential) operator κ with order m is defined by
setting

κu = v iff κ̂û = v̂.

Therefore κ maps L2
x into H

−order(κ)
x (or Hn

x into H
n−order(κ)
x ).

Since (4) is a linear system, it is convenient to use the Fourier transform. Let

(η̂, û) denote the Fourier transform of (η, u) and set Ŷ = (η̂, ŵ) with ŵ = Ĥû, then
(4) reads

Ŷt + AŶ = 0, (5)
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where

A(ξ) =

(
να i sgn(ω1)ξσ

i sgn(ω2)ξσ ε

)

is the symbol of the linear (unbounded) operator in (4). Since we are dealing with
a system, A(ξ) is a matrix.

By multiplying Ŷ ∗ on (5), taking the real part and integrating over R,

1

2

d

dt

∫
(|η̂(t, ξ)|2 + |ŵ(t, ξ)|2)dξ

+ ν

∫
α(ξ)|η̂(t, ξ)|2dξ +

∫
ε(ξ)|ŵ(t, ξ)|2dξ = 0.

(6)

Since α(ξ) and ε(ξ) are positive,

d

dt
E(t) ≤ 0

with

E(t) :=

∫

R

|Ŷ (t, ξ)|2dξ (7)

where |Ŷ | = (|η̂|2 + |ŵ|2)1/2 is the Euclidean norm on C2. We shall prove below
that E(t) decays towards 0 as t → ∞ and find the decay rates of solutions to the
linear systems in (4) and to the nonlinear systems in (3).

2.2. Linear algebra. We recall some facts from linear algebra and then apply
them to the dissipative systems (4).

Definition 2. Let M be a 2 × 2 matrix in the complex space, the norm of M is
defined by

‖M‖ = sup
Y ∈C2\{0}

|MY |
|Y | .

Lemma 1. Let ρ(M) denote the spectral radius of a matrix M and tr(M) denote
the trace of M , then

‖M‖ = ρ(M∗M)1/2 ≤ tr(M∗M)1/2.

We are now going to bound E(t) (see (5) and (7)) by using the pointwise estimate

|Ŷ (t, ξ)| ≤ ‖e−tA‖ |Ŷ0(ξ)|. (8)

Noticing that the matrix A can be written as A = D + U , where D =

(
να 0
0 ε

)

represents the dissipation terms and U =

(
0 isgn(ω1)ξσ

isgn(ω2)ξσ 0

)
is skew-

symmetric. When D and U commute, the behavior of ‖e−tA‖ with respect to ξ
is characterized by the behaviors of ε and α via

‖e−tA‖ ≤ e−t min{να(ξ),ε(ξ)}. (9)

But when D and U do not commute, a more accurate estimate than (9) can be
obtained by studying e−tA in detail.

We now recall the following lemma (Theorem 9.28 from [13]).
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Lemma 2. There exists a unitary matrix Q (i.e. QQ∗ = Q∗Q = I) such that

A = Q∗
(

λ1 z
0 λ2

)
Q,

where λ1 and λ2 are the eigenvalues of A, ordered by Re(λ1) ≤ Re(λ2).

As a consequence, one can prove the following lemma (which is given at the end
of this subsection).

Lemma 3. There exists C > 0 such that

‖ exp(−tA)‖ ≤ C

(
1 + |z|min

(
t,

1

|λ2 − λ1|

))
exp(−tRe(λ1)). (10)

It is easy to see that λ1 and λ2 are the roots of the characteristic equation

λ2 − tr(A)λ + det(A) = 0 (11)

where
tr(A) = λ1 + λ2 = να + ε ≥ 0 (12)

and
det(A) = λ1λ2 = ναε + ξ2σ2 ≥ 0. (13)

We now estimate ‖ exp(−tA)‖ by separating the cases ∆ ≤ 0 and ∆ > 0 where
∆ is the determinant of (11), namely

∆ = tr(A)2 − 4 det(A) = (ε − να)2 − 4ξ2σ2. (14)

Lemma 4. For any t > 0 and for any ξ ∈ R,
• when ∆ ≤ 0 (perturbation range),

‖ exp(−tA)‖ ≤ C(1 + tr(A)t) exp

(
− tr(A)

2
t

)

≤ C exp

(
− tr(A)

4
t

)
;

(15)

• when ∆ > 0 (non-perturbation range),

‖ exp(−tA)‖ ≤ C

(
1 + 2|ξ|σ min

(
t,

1√
∆

))
exp(−tλ1), (16)

where λ1 satisfies

det(A)

tr(A)
≤ λ1 ≤ min

(
tr(A),

2 det(A)

tr(A)

)
. (17)

Proof. It is worthwhile to note from Lemma 2 that

tr(A∗A) = |λ1|2 + |λ2|2 + |z|2 = ν2α2 + ε2 + 2ξ2σ2. (18)

When ∆ ≤ 0 (perturbation range): matrix A has two conjugate complex eigen-
values λ1 and λ2 with

|λ1| = |λ2|, Re(λ1) = Re(λ2) =
tr(A)

2
, |λ1|2 = |λ2|2 = det(A).

Using (18) and then (13)-(12) leads to

|z|2 = ν2α2 + ε2 + 2ξ2σ2 − 2|λ1|2

= ν2α2 + ε2 + 2ξ2σ2 − 2 det(A) = (να − ε)2 ≤ tr(A)2.

Hence (15) follows from Lemma 3.
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When ∆ > 0 (non-perturbation range): tr(A) ≥ 0 and det(A) ≥ 0 imply that the
matrix A features two real eigenvalues 0 ≤ λ1 < λ2. Then (18) leads to

|z|2 = ν2α2 + ε2 + 2ξ2σ2 − tr(A)2 + 2 det(A) = 4ξ2σ2

and (16) is proved by using Lemma 3. Since λ2 ≤ tr(A) ≤ 2λ2, one sees immediately
that

det(A)

tr(A)
≤ λ1 =

det(A)

λ2
≤ 2 det(A)

tr(A)

and (17) follows. �

It is noted that when ∆ ≤ 0, the dissipation can be considered as a perturbation
term with respect to the skew symmetric operator. More precisely, the decay is the
same as pretending U and D commute, up to a linear correction.

When ∆ > 0, this is no longer valid. In the first case, matrix A has conjugate
complex eigenvalues. In the latter case, A has real positive eigenvalues and the
smallest one monitors the decay estimate. ∆ = 0 is the bifurcation point.

For the sake of completeness, we now give the proof of Lemma 3.
Proof of Lemma 3. Straightforward computations lead to

e−tA = Q∗
(

e−tλ1 z e−tλ1−e−tλ2

λ1−λ2

0 e−tλ2

)
Q,

where
e−tλ1 − e−tλ2

λ1 − λ2
= −te−tλ2 , if λ1 = λ2.

Lemma 1 then yields

‖e−tA‖2 ≤ tr(e−tA∗

e−tA)

= e−2tRe(λ1) + e−2tRe(λ2) + |z|2
∣∣∣∣
e−tλ1 − e−tλ2

λ1 − λ2

∣∣∣∣
2

.
(19)

Therefore, if |λ1 − λ2| > 0

‖e−tA‖2 ≤ (2 +
|z|2

|λ1 − λ2|2
)e−2tRe(λ1)

which proves part of the lemma.
Now, for |λ1 − λ2| ≥ Λ, where Λ > 0 will be chosen later,

|e−tλ1 − e−tλ2 |
|λ1 − λ2|

≤ 2

Λ
e−tRe(λ1); (20)

and for |λ1 − λ2| ≤ Λ, using |eζ − 1| ≤ |ζ| exp(|ζ|) for any complex number ζ,

|e−tλ1 − e−tλ2 | = e−tRe(λ1)|e−t(λ2−λ1) − 1|
≤ e−tRe(λ1)t|λ2 − λ1|etΛ.

(21)

Therefore, choosing Λ =
1

t
in (20) and (21),

|e−tλ1 − e−tλ2 |
|λ1 − λ2|

≤ Cte−tRe(λ1).

Substituting above into (19) completes the proof. �
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3. Decay rate of linear systems. In subsections 3.1, 3.2 and 3.3, low-frequency
(|ξ| close to 0), high-frequency (large |ξ|) and middle range frequency analysis for
the linear systems are performed respectively. We will identify systems for which
there exist positive constants β and δm such that for any t > 0 and

• for |ξ| ≤ δm, ‖ exp(−tA)‖ ≤ C exp(−βtξ2),

• for |ξ| > δm, ‖ exp(−tA)‖ ≤ C exp(−βt).
(22)

Here ‖ exp(−tA)‖ is the norm of the linear operator exp(−tA(ξ)) acting on C2.
The generic constants C and β are independent of t and ξ. If δm = +∞ is feasible
in (22), the system is in the KdV–Burgers class. Otherwise the system is in the
BBM–Burgers class. A summary of decay rates for the linear systems is given in
subsection 3.4.

Remark 2. It will become apparent soon that (22) is sufficient but not necessary
for proving the desired decay rate. An example is given in Section 3.3 where (22)
is not valid but the linear system has the desired decay rate.

3.1. Low frequency analysis. We now prove that for |ξ| → 0, all systems are
equivalent. This is to say

Proposition 1. There exist positive constants δm, β and C depending on the data
a, b, c, d and ν, such that for |ξ| ≤ δm and for any t > 0,

‖ exp(−tA)‖ ≤ C exp(−βξ2t). (23)

Consequently, for any initial data Y0 with supp(Ŷ0) ⊂ [−δm, δm],

E(t) ≤ C t−1/2‖Y0‖2
L1

x
.

Proof. By referring to the definitions of ∆, α and ε, one sees that as |ξ| → 0,

∆ ∼ −4ξ2 and tr(A) = να + ε ∼ (ν + 1)ξ2.

Therefore, there exists δm > 0 such that for ξ in [−δm, δm], ∆ ≤ 0 and

1

2
≤ tr(A)

(ν + 1)ξ2
≤ 2.

(23) then follows promptly from (15).

Now, for any initial data Y0 with supp(Ŷ0) ⊂ [−δm, δm], it is obtained

E(t) =

∫

|ξ|≤δm

|Ŷ (t, ξ)|2dξ ≤ C

∫
exp(−2βtξ2)dξ(sup

ξ
(|Ŷ0(ξ)|2))

≤ Ct−1/2‖Y0‖2
L1

x

by using the change of variable τ =
√

2βtξ. �

3.2. High frequency analysis. For the high frequency analysis, the complete
dissipation and the partial dissipation cases have to be studied separately. In the
latter case, we will give one example where the decay rate can be arbitrarily small.

Let us first introduce the notation

{r} =

{
1, if r 6= 0,

0, if r = 0,

for r ∈ R. Then order(σ) = {a} + {c} − {b} − {d} and order(ε) = 2 − 2{d}.
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3.2.1. The complete dissipation case (ν = 1). It is observed in the following that
order(σ) dictates if the system is in the KdV-Burgers class or in the BBM-Burgers
class.

Proposition 2. Assume ν = 1. For any δ > 0, there exists β > 0, such that if

supp(Ŷ0) ⊂ R\[−δ, δ],
E(t) ≤ exp(−2βt)‖Y0‖2

L2
x

(24)

for any t > 0. In addition,

• if order(σ) ≤ 0, the system is in the BBM–Burgers class. Namely, there exist
positive constants δM , β and C, such that for |ξ| > δM and t > 0,

‖ exp(−tA)‖ ≤ Ce−βt;

• if order(σ) ≥ 1, the system is in the KdV–Burgers class. Namely, there exist
positive constants δM , β and C, such that for |ξ| > δM and t > 0,

‖ exp(−tA)‖ ≤ Ce−βξ2t.

Proof. From (6), one finds that for ξ almost everywhere,

1

2

d

dt
|Ŷ (t, ξ)|2 + α(ξ)|η̂(t, ξ)|2 + ε(ξ)|ŵ(t, ξ)|2 = 0.

This gives directly, by setting β = min{α(δ), ε(δ)} which is positive, that (24) is
valid. Furthermore, ‖ exp(−tA)‖ ≤ Ce−βt for |ξ| > δ. To figure out if the system is
in the BBM-Burgers or in the KdV-Burgers classes, we separate the cases as follows.

• Assume first order(σ) ≥ 1. Then either d = 0 or b = 0. Without loss of
generality, let us assume d = 0.

– If ∆ = (α − ε)2 − 4ξ2σ2 > 0 for |ξ| large enough, then order(σ) = 1. In
that case, there exist β > 0 and δM > 0

λ1 ≥ det(A)

tr(A)
=

α + σ2

α
ξ2 + 1

≥ 2βξ2

for |ξ| > δM . By using (16)

‖ exp(−tA)‖ ≤ C(1 + tξ2)e−2βtξ2 ≤ Ce−βtξ2

for |ξ| > δM and the system is in the KdV-Burgers class.
– If ∆ ≤ 0 for |ξ| large enough, then there exists δM > 0 such that for

|ξ| > δM , 1
2ξ2 ≤ tr(A) ≤ 2ξ2, and (15) implies that the system is in the

KdV-Burgers class.
• Assume now that order(σ) ≤ 0.

– If b 6= 0 and d 6= 0 (weakly dispersive systems) then for |ξ| large enough,
Re(λ1) ≤ tr(A) ∼ 1

b + 1
d as |ξ| → ∞. This shows that a damping like

e−βtξ2

is unlikely for high frequencies. Therefore the weakly dispersive
systems are in the BBM-Burgers class.

– If (b 6= 0 and d = 0) or (b = 0 and d 6= 0), without loss of generality, let
us consider the case b 6= 0 and d = 0. Since ∆ ∼ ξ4 as |ξ| → ∞, we have

λ1 ≤ 2 det(A)

tr(A)
=

2(α + σ2)
α
ξ2 + 1

∼ C = O(1)

as |ξ| → ∞. This shows that a damping like e−βtξ2

is again unlikely for
high frequencies. Therefore the system is in the BBM-Burgers class.

�
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3.2.2. The partial dissipation case (ν = 0). We first note that when a system sat-

isfies (C2) hypothesis, σ = 0 and therefore λ1 = 0 at ξ = a− 1
2 . But one can always

chose δM large enough so for |ξ| > δM , σ is positive, bounded from below and away
from zero. Therefore the point where σ vanishes will be considered in the next sub-
section. We now prove that in the partial dissipation case, the decay rate is related
to order(σ) and the strength of the dissipation which is characterized by order(ε).

Proposition 3. With ν = 0,

• if order(σ) ≥ 2 − 1
2order(ε), then the system is in the KdV-Burgers class;

• if |order(σ)| < 2 − 1
2order(ε), then the system is in the BBM-Burgers class;

• if order(σ) ≤ −2 + 1
2order(ε), arbitrarily slow decay can occur.

In the first two cases, when Ŷ0 is supported in R\[−δM , δM ], then for any t > 0,

E(t) ≤ C exp(−2βt)‖Y0‖2
L2

x
.

Proof. To begin, one observes that ∆ = ε2 − 4ξ2σ2. When ∆ > 0, λ1 satisfies

2λ1 = ε

(
1 −

(
1 − 4ξ2σ2

ε2

)1/2
)

(25)

which is a direct consequence of (11).

• When order(ε)=0, i.e d 6= 0 (and order(σ) ≤ 1):
– if order(σ) ≥ −1, and if ∆ = ε2 − 4ξ2σ2 > 0 for |ξ| large enough, which

is possible only for order(σ) = −1, we have

λ1 ≥ det(A)

tr(A)
≥ Cξ2σ2 = O(1)

as |ξ| → ∞. Then by (16) we have

‖e−tA‖ ≤ C(1 + t|ξ|σ)e−tλ1 ≤ Ce−βt

for |ξ| large enough and the system is in the BBM-Burgers class. On the
other hand, if ∆ ≤ 0 for high frequencies, since tr(A) ∼ 1

d as |ξ| → ∞,
then (15) implies that the system is in the BBM-Burgers class;

– if order(σ) = −2, ∆ ∼ 1
d2 > 0 as |ξ| → ∞ and by (25), λ1 ∼ C|ξ|−2,

therefore arbitrarily slow decay could occur. An example of such case
will be given below.

• When order(ε) = 2 i.e d = 0 (and order(σ) ≥ −1): ∆ = ξ2(ξ2 − 4σ2) has a
limit ∆0 in [−∞, +∞] when |ξ| approaches +∞.

– If ∆0 is in [−∞, 0], then since tr(A) = ξ2, (15) implies that the system is
in the KdV-Burgers class. This occurs when order(σ) = 2 and may occur
when order(σ) = 1.

– If ∆0 is in (0, +∞], then since

2 det(A)

tr(A)
≥ λ1 ≥ det(A)

tr(A)
= σ2,

(16) implies for any ξ

‖ exp(−tA)‖ ≤ C

(
1 + |ξ|σ min

(
t,

1√
∆

))
exp(−tσ2). (26)

∗ If order(σ) = 1, then (26) implies the system is in the KdV-Burgers
class.
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∗ If order(σ) = 0, |ξσ|√
∆

= O(1) as |ξ| → ∞, the system is in the BBM-

Burgers class. And similarly,
∗ if order(σ) = −1, any arbitrarily slow decay could occur.

�

Example of slow decay: Consider the linearized BBM-BBM system with par-
tial dissipation,

ηt + ux − bηxxt = 0,

ut + ηx − duxxt = uxx,

which has order(ε) = 0 and order(σ) = −2. Since as |ξ| → +∞,

∆ ∼ 1

d
> 0, |z| = 2|ξ|σ ∼ 2√

bd

1

|ξ| ,

2λ1 = tr(A)

(
1 −

(
1 − 4 det(A)

(tr(A))2

)1/2
)

∼ 2
det(A)

tr(A)
∼ 2

dξ2
.

Therefore

‖e−tA‖ ≤ C exp

(
−βt

ξ2

)

which shows that any arbitrary slow decay could occur.

3.3. Middle range frequency analysis. We first note from Lemma 4 that to get
the optimal decay estimates for the cases where det(A) (and therefore λ1) has a
zero for |ξ| > 0, these cases need to be discussed separately. Therefore, we have the
following two propositions.

Proposition 4. Assume that ν = 1, or that ν = 0 and the dispersive coefficients
a, b, c, d satisfy (C1). Then for any δm and δM , 0 < δm ≤ δM , there exists β > 0
such that for |ξ| ∈ [δm, δM ] and for any t > 0,

‖ exp(−tA)‖ ≤ C exp(−βt). (27)

Moreover for any Ŷ0 with support included in [δm, δM ] ∪ [−δM ,−δm],

E(t) ≤ C exp(−2βt)||Y0||2L2
x
.

Proof. Since tr(A) and det(A) cannot vanish for |ξ| ∈ [δm, δM ] under the assump-
tions, (27) is the direct consequence of (15) and (16). In addition

E(t) ≤ sup
ξ

||e−tA||2 ||Ŷ0||2L2
ξ
≤ C exp(−2βt)||Y0||2L2

x
,

which completes the proof of the proposition. �

Remark 3. By noticing that (27) can be replaced by

‖ exp(−tA)‖ ≤ C exp(−β∗tξ2).

with β∗ = β/δ2
M , the middle range frequency analysis and the high frequency anal-

ysis can be combined to simplify certain calculations for these systems regardless if
they are in BBM-Burgers class or KdV-Burgers class.

Proposition 5. Assume that ν = 0 and the dispersive coefficients satisfy (C2).

Then for any 0 < δm < δM with r = a− 1
2 ∈ [δm, δM ], there exist β > 0 and C > 0

such that for any |ξ| ∈ [δm, δM ] and for any t > 0,

‖ exp(−tA)‖ ≤ Cexp{−βt(|ξ| − r)2)}. (28)
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Moreover for any Ŷ0 with support included in [δm, δM ] ∪ [−δM ,−δm] and for any
t > 0,

E(t) ≤ Ct−1/2||Y0||2L1
x
.

Remark 4. Proposition 5 shows that even when the dichotomy is not valid, the
energy could decay as O(t−1/4) when t goes to +∞.

Proof. Since det(A) vanishes at r = (
√

a)−1 and, when |ξ| → r, ∆ ∼ a
a+d > 0,

λ1 ∼ βdet(A) ∼ βσ2 ∼ β(|ξ| − r)2. Therefore, from (16),

‖ exp(−tA)‖ ≤ C(1 + min(t, 1)σ)exp(−βσ2t)

for |ξ| in the neighborhood of r. Using the fact that for any t > 0, min(t, 1) ≤
√

t,
there exists C > 0 such that

‖ exp(−tA)‖ ≤ C(1 +
√

tσ)exp(−βσ2t) ≤ Cexp(−β

2
σ2t),

we obtain the estimate (28) for |ξ| close to r. For other |ξ| in [δm, δM ], the same
argument in the proof of Proposition 4 and Remark 3 applies. To prove the decay
rate of E(t), the same argument as in the proof of Propositions 1 can be used. In
fact, |ξ| − r plays the same role as |ξ| in that case. �

3.4. Decay for linear systems. Since linear system (3) defines a semi-group e−tA

for t ≥ 0 which is contracting on L2 × L2 in the variable (η, w), the initial value
problem is therefore well-posed and the L2 norm decays.

Combining the low, middle and high frequency analysis, the decay rate for the
linear system (3) can be stated as

Theorem 2. For systems (3) with the dispersive constants a, b, c, d satisfy the
constraints (C0)-(C1) or (C0)-(C2), assuming either {ν = 1} or, {ν = 0 and
order(σ) > −2 + 1

2order(ε)}, then for any (η0, Hu0) = (η0, w0) ∈ (L1(R) ∩ L2(R))2

where Ĥû0 = ( (1−aξ2)(1+dξ2)
(1−cξ2)(1+bξ2) )

1
2 û0, there exists a constant C, such that for any t > 0

‖(η, Hu)‖L2
x

= ‖(η, w)‖L2
x
≤ Ct−1/4.

Remark 5. Theorem 2 implies, with respect to physical variables (η, u), that for
any (η0, u0) ∈ (L2

x ∩ L1
x) × (Hh

x ∩ Wh,1
x ),

‖(η, u)‖L2
x×Hh

x
≤ Ct−1/4

for any t > 0, where h = order(Ĥ) = {a} + {d} − {c} − {b}.
Proof. Combining the low, middle and high frequency analysis, we have

E(t) = Elow(t) + Emiddle(t) + Ehigh(t) ≤ C(η0, u0)(t
− 1

2 + e−2βt)

for t > 0 where C(η0, u0) is a function of the dispersive coefficients and the norms
of η0 and u0. �

We complete this section with the following corollaries and remark.

Corollary 1. For any dissipation, the classical Boussinesq system, the Bona–Smith
system, the coupled KdV–BBM (b = c = 0) system, the BBM–KdV systems (a =
d = 0) and the weakly dispersive systems (b > 0 and d > 0) with a < 0 or c < 0
belong to the BBM–Burgers class.

Corollary 2. With complete dissipation, the KdV–KdV system (b = d = 0, a =
c > 0) belongs to the KdV–Burgers class; the weakly dispersive systems (b > 0 and
d > 0) belong to the BBM–Burgers class.
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Remark 6. When the consideration is restricted to the linear systems, a result
similar to Theorem 2 (substituting α for ε in the statement) holds when one replaces
(νηxx, uxx) by (ηxx, νuxx) in the right-hand side of (4) since η and u play the same
role.

4. Nonlinear Theory. For convenience, we will only consider in this section (i)
the complete dissipation and (ii) the partial dissipation with a, b, c, d satisfy the (C1)
assumption. The partial dissipation with a, b, c, d satisfy (C2) will be considered
elsewhere.

4.1. A general result. Consider an evolution equation that reads

vt + Lv + ∂x(F (v)) = 0, v(t = 0) = v0 (29)

where L is a linear unbounded operator with symbol A and F is a nonlinear qua-
dratic operator.

Assuming that L generates a semi–group S(t) on L2
x that satisfies the dichotomy

assumption (22), namely there exist β > 0 and δ > 0 (δ can be +∞) such that for
any t > 0 and

• for |ξ| ≤ δ, ‖S(t)‖ ≤ C exp(−βtξ2),

• for |ξ| > δ, ‖S(t)‖ ≤ C exp(−βt).
(30)

In addition,

sup
t≥0

(t1/4‖S(t)v0‖L2
x
) ≤ C1‖v0‖L1

x∩L2
x

= C. (31)

Assuming also the nonlinear term F (v) satisfies

sup
|ξ|≤δ

|F̂ | +
(∫

|ξ|≥δ

|ξ|2|F̂ |2dξ

)1/2

≤ C‖v‖2
L2

x
(32)

for any t > 0, where F̂ = F(F (v)).
Let us recall that a mild solution to (29) is a solution to the integral equation

v(t) = S(t)v0 −
∫ t

0

S(t − s)∂xF (v(s))ds. (33)

Under the above assumptions, we may construct a solution to (33) by performing
a fixed point argument (see [10], [14], [6], [11]) on the space

E =

{
u : sup

t>0
{t1/4‖u(t)‖L2

x
} < ∞

}

which is a Banach space of functions that are continuous in time with value in L2

that are O(t−1/4) when t goes to +∞. If C is small enough, a fixed point argument
to the Duhamel’s form of the equation in a ball in E centered at origin would provide
the solution.

Theorem 3. For system (29) with assumptions (30)-(31)-(32), there exists a nu-
merical constant C such that for any mild solution to (29) starting from v0 with

‖v0‖L1
x∩L2

x
≤ C,

one finds

‖v(t)‖L2
x
≤ O(t−1/4) as t → ∞. (34)
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Proof. To begin, we first control the low frequency part of the nonlinear term.
Let

N̂ := F
(∫ t

0

S(t − s)∂xF (v(s))ds

)

= i

∫ t

0

e−(t−s)AξF̂ (v(s))ds.

Using the first inequality in (30) in combination with (32), one obtains
(∫

|ξ|≤δ

|N̂ |2dξ

)1/2

≤ C

∫ t

0

[∫

|ξ|≤δ

‖e−(t−s)A‖2ξ2|F̂ |2dξ

]1/2

ds

≤ C

∫ t

0

[∫

R

ξ2e−2β(t−s)ξ2

dξ

]1/2
(

sup
|ξ|≤δ

|F̂ |
)

ds

≤ C

∫ t

0

‖v(s)‖2
L2

x

(t − s)3/4
ds.

(35)

We now control the high frequency part of the nonlinear term, using the second
inequality in (30) in combination with (32)

(∫

|ξ|≥δ

|N̂ |2dξ

)1/2

≤ C

∫ t

0

e−β(t−s)

(∫

|ξ|>δ

ξ2|F̂ |2dξ

)1/2

ds

≤ C

∫ t

0

e−β(t−s)‖v(s)‖2
L2

x
ds.

(36)

Introducing the norm

M(t) = sup
s∈[0,t]

(s1/4‖v(s)‖L2
x
), (37)

and if v solves (33), then due to (35)–(36),

t1/4‖v(t)‖L2
x
≤ t1/4‖S(t)v0‖L2

x
+ t1/4‖N̂(t)‖L2

ξ

≤ t1/4‖S(t)v0‖L2
x

+ CM(t)2
∫ t

0

[
t1/4

s1/2(t − s)3/4
+

t1/4

s1/2
exp(−β(t − s))

]
ds.

By applying the change of variable s = τt in the integration, one finds
∫ t

0

[
t1/4

s1/2(t − s)3/4
+

t1/4

s1/2
exp(−β(t − s))

]
ds

≤C +

∫ 1

0

t3/4

τ
1
2

exp(−βt(1 − τ))dτ ≤ C.

Therefore, using the property (31), the positive and nondecreasing function M(t)
satisfies M(0) = 0 and for any t ≥ 0,

C0M(t)2 − M(t) + C ≥ 0, (38)

where C0 is a positive constant. Choosing C such that C0x
2 − x + C = 0 has two

real roots 0 < r1 < r2, namely choosing C < 1
4C0

, then (38) holds only if M(t) is

trapped in the interval [0, r1]. Therefore when

‖v0‖L1
x∩L2

x
≤ C

C1
<

1

4C0C1
,

M(t) is bounded and (34) is valid. �
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4.2. Applications to weakly dispersive systems with complete dissipation
or partial dissipation. Since b > 0 and d > 0, order(σ) ≤ 0 and the corresponding
linearized system is in the BBM-Burgers class. From Proposition 2 and Proposi-
tion 3, this corresponds to consider complete dissipation, or partial dissipation with
order(σ) ≥ −1.

Theorem 4. Consider a weakly dispersive two–way wave model (b > 0 and d > 0)
with either the complete dissipation or the partial dissipation with a < 0 or c < 0.
Then, for small initial data,

• if H is of order 0,

‖η(t)‖2
L2

x
+ ‖u(t)‖2

L2
x
≤ O(t−1/2); (39)

• if H is of order 1,

‖η(t)‖2
L2

x
+ ‖u(t)‖2

H1
x
≤ O(t−1/2); (40)

• if H is of order −1,

‖η(t)‖2
H1

x
+ ‖u(t)‖2

L2
x
≤ O(t−1/2); (41)

as t → ∞.

Proof. Note that the theorem is proved after (32) is validated and we will do that
by discussing the cases according to the order of H .

• If H is of order 0 or 1. Introducing the change of variable

v = F−1(η̂, Ĥû) = F−1(η̂, ŵ),

the full nonlinear system

ηt + ux + auxxx − bηxxt + (ηu)x = νηxx,

ut + ηx + cηxxx − duxxt + uux = uxx,
(42)

transforms to
vt + Lv = −∂xF (v),

where L has symbol A =

(
να isgn(ω1)ξσ

isgn(ω2)ξσ ε

)
and F reads

F (v) =

(
(1 − b∂2

x)−1ηH−1w
1
2H(1 − d∂2

x)−1(H−1w)2

)
.

To check (32), it is natural to separate the estimate into two parts.
– Low frequency (|ξ| ≤ δ) estimate: Since H−1, which has order 0 or −1, is

bounded on L2
x, straightforward computations lead to

‖ ̂ηH−1w‖L∞

ξ
+ ‖ ̂(H−1w)2‖L∞

ξ
≤ C(‖η‖2

L2
x

+ ‖H−1w‖2
L2

x
)

≤ C(‖η‖2
L2

x
+ ‖w‖2

L2
x
).

Because (1 − b∂2
x)−1 and H(1 − d∂2

x)−1 are bounded operators,

sup
|ξ|≤δ

|F̂ | ≤ C‖v‖2
L2

x
.

– High frequency (|ξ| > δ) estimate: Since ∂x(1 − b∂2
x)−1 is a smoothing

operator (it is of order −1) and H−1 is a bounded operator on L2
x,

‖∂x(1 − b∂2
x)−1(ηH−1w)‖L2

x
≤ C‖ηH−1w‖H−1

x

≤ C‖η‖L2
x
‖H−1w‖L2

x
≤ C(‖η‖2

L2
x

+ ‖w‖2
L2

x
),
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where Lemma 2.2(ii) in [6],

‖fg‖H−1 ≤ C‖f‖L2‖g‖L2

is used. Now, consider the term ∂x(H(1 − d∂2
x)−1)((H−1w)2) in F . If H

is of order 0, it can be bounded in the same way. If H is of order 1, then

‖∂xH(1 − d∂2
x)−1(H−1w)2‖L2

x
≤ C‖(H−1w)2‖L2

x

≤ C‖H−1w‖2
H1

x
≤ C‖w‖2

L2
x
,

where Lemma 2.2(iv) in [6]

‖fg‖L0 ≤ C‖f‖H1‖g‖H1

is used.
Combining the lower frequency and higher frequency analysis, one sees (32)

is valid and Theorem 3 yields the desired result.
• If H is of order −1, introducing the change of variable

v = F−1((H−1η̂, û)) (43)

and setting τ̂ = H−1η̂, the full nonlinear system (42) reads

vt + Lv = −∂xF (v)

where L has symbol A =

(
να isgn(ω1)ξσ

isgn(ω2)ξσ ε

)
and

F (v) =

(
H−1(1 − b∂2x)−1(uHτ)

1
2 (1 − d∂2

x)−1(u2)

)
.

The proof is then very similar to the previous case and therefore omitted.

�

Corollary 3. For the following two special cases, we have

• solutions to Bona–Smith system (a = 0, b > 0, c < 0 and d > 0) with complete
or partial dissipation satisfy (41);

• solutions to BBM–BBM system with complete dissipation (a = c = 0, ν = 1)
satisfy (39).

4.3. Application to systems in the KdV-Burgers class with complete dis-
sipation. Using Proposition 2, this implies that order(σ) ≥ 1, and then that b = 0
and/or d = 0.

First case: Consider the case where b = d = 0. The analysis in [6] implies that a =
c = 1/6, so the system satisfies (C2) assumptions. Since the dichotomy assumption
(30) was proved in Section 3 and the linearized system is in the KdV-Burgers class,
Theorem 3 applies when (32) with δ = +∞ is verified.

Let us observe that H = 1 and that the full nonlinear system reads

vt + Lv = −∂xF (v)

where v = (η, u), L has symbol A =

(
ξ2 isgn(ω1)ξσ

isgn(ω2)ξσ ξ2

)
and

F (v) =

(
ηu
u2

2

)
.

Since
‖F (v)‖L1

x
≤ C(‖η‖2

L2
x

+ ‖u‖2
L2

x
),
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one finds (32) with δ = ∞.

Second case: Consider the case where b > 0 and d = 0. Due to (C0), c ≥ 0. Since
order(σ) ≥ 1, the system must have a = c > 0 and therefore order(H) = −1. Using
the change of variable (43), the system reads as (4.3) with the following nonlinearity

F (v) =

(
H−1(1 − b∂2x)−1(uHτ)

u2

2

)
.

It is then straightforward to show (32) with δ = ∞ is valid.

Third case: Consider the case where b = 0 and d > 0. Since order(σ) = 1, a and c
can not vanish and order(H) = 1. In this case, with the change of variable (4.2),
the system reads as (4.3) with F being

F (v) =

(
ηH−1w

1
2H(1 − d∂2

x)−1(H−1w)2

)
.

One can again easily prove (32) with δ = ∞.
The following is the outcome of the analysis.

Theorem 5. For a system in the KdV-Burgers class with complete dissipation and
for small initial data,

• if H is of order 0,

‖η(t)‖2
L2

x
+ ‖u(t)‖2

L2
x
≤ O(t−1/2); (44)

• if H is of order 1,

‖η(t)‖2
L2

x
+ ‖u(t)‖2

H1
x
≤ O(t−1/2); (45)

• if H is of order −1,

‖η(t)‖2
H1

x
+ ‖u(t)‖2

L2
x
≤ O(t−1/2); (46)

as t → ∞.

Remark 7. This result can be predicted for KdV-KdV system (b = d = 0) since if
we introduce the new variables η = w1 + w2 and u = w1 − w2, then (42) reads as
a system of two linear KdV–Burgers systems (weakly) coupled through nonlinear
terms. See Section 2.3 in [6].

5. The L∞
x –decay rate. It is first observed that for the cases of weakly dispersive

wave equations and KdV-KdV system, the nonlinear terms satisfy

sup
|ξ|≤δ

|ξF̂ | +
(∫

|ξ|>δ

|ξ|4|F̂ |2dξ

)1/2

≤ C‖v‖L2
x
‖vx‖L2

x
. (47)

We will estimate the decay rate of ∂xv(t) in L2
x when v solves (33). To begin, we

differentiate (33) with respect to x and treat the nonlinear term of the resulting
equation with a procedure similar to the one in the proof of Theorem 3, but using
(47) instead of (32).

It is useful to first note that for low frequencies,
(∫

|ξ|≤δ

ξ2|N̂ |2dξ

)1/2

≤ C

∫ t

0

‖v(s)‖L2
x
‖vx(s)‖L2

x

(t − s)3/4
ds
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and for high frequencies
(∫

|ξ|≥δ

ξ2|N̂ |2dξ

)1/2

≤ C

∫ t

0

e−β(t−s)‖v‖L2
x
‖vx‖L2

x
ds.

We now consider the linear part. For v0 in H1(R) ∩ L2(R), the linear term can
be estimated by splitting the region of integration into low frequencies and high
frequencies. By using (30), it obtains

‖∂xS(t)v0‖2
L2

x
≤ C

[(∫
ξ2e−βξ2tdξ

)
‖v0‖2

L2
x

+ e−2βt‖∂xv0‖2
L2

x

]

≤ C

t3/2
‖v0‖2

L2 + Ce−2βt‖v0‖2
H1 .

Therefore, the linear part behaves like O(t−3/4) as t → ∞. Since ‖v‖L2 is O(t−1/4)
as t → ∞,

‖∂xv(t)‖L2
x
≤ C(v0)t

−3/4 + C sup
s∈[0,t]

(
s1/4‖v(s)‖L2

)

×
∫ t

0

‖vx(s)‖L2
x

(t − s)3/4

1

s1/4
+

e−β(t−s)

s1/4
‖vx(s)‖L2

x
ds.

Simple calculations show
∫ t

0

ds

s1/4(t − s)3/4
+

∫ t

0

e−β(t−s)

s1/4
ds ≤ C.

Therefore

‖∂xv(t)‖L2
x
≤ C(v0)t

−3/4 + C sup
s∈[0,t]

‖∂xv(s)‖L2
x

sup
s∈[0,t]

(s1/4‖v(s)‖L2)

≤ C(v0)t
−3/4 + C2M(t) sup

s∈[0,t]

‖∂xv(s)‖L2
x
.

(48)

Since M(t), which is defined in (37), is bounded by the first root r1 of

C0x
2 − x + C = 0,

and r1 ∼ C as C → 0 (since 1
C0

(1 − (1 − 4C0C)1/2) ∼ 2C as C → 0), M(t) ≤ 2C

when C is small enough. Hence by choosing C satisfying

2C2C ≤ 1

2
, (49)

one finds from (48)

‖∂xv(t)‖L2
x
≤ 2C(v0)t

−3/4 (50)

and we obtain the following theorem.

Theorem 6. For system (29) with assumptions (30)-(31)-(32), assume v0 is in
H1(R) ∩ L1(R) and ‖v0‖L1∩L2 is small enough. Then

‖v‖L∞

x
≤ O(t−1/2)

as t → ∞.

Proof. Using (50) and (34) together with

‖v‖L∞

x
≤ ‖v‖1/2

L2
x
‖∂xv‖1/2

L2
x

yields the desired result. �
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6. Numerical result. Numerical simulations are performed on several systems
and results on BBM-BBM and Bona-Smith systems with complete or partial dissi-
pations are reported here. The results show not only that the theoretical results on
the decay rates are sharp, but also the constants involved are reasonably sized.

In these numerical computations, the initial data are taken to be

η0 = sech2(

√
2

2
(x − x0)),

u0 = η0 − η2
0/4,

where x0 is in the spatial domain [0, L], where L is taken to be large enough so the
solution near the boundary is smaller than the machine roundoff error during the
whole computation. The spectral method is used on the spatial domain [0, L] and
the leap-frog algorithm is used on the time advancing. The decay rate r and the
constant C in

‖v‖ ∼ Ct−r, as t → ∞
is calculated by first computing

r(tn) := −
log ‖v‖(tn)

‖v‖(tn−1)

log tn

tn−1

.

The interval of time integration is chosen large enough so r(tn) is approaching to a
constant and the value r is obtained by averaging the last five data. The constant
C is then computed by averaging the last five ‖v‖(tn)trn.

In the computations reported below, L = 320, dx = 0.1 and dt = 0.05, where dx
and dt are the meshsizes in space and in time respectively.

BBM-BBM system (a = c = 0, b = d = 1/6) with complete dissipation. It
is shown in Theorem 4 and 6 that for small data,

‖v‖L2 ≤ C1t
−1/4 and ‖v‖L∞ ≤ C2t

−1/2.

The numerical computation is performed for time interval [0, 50], and the result
shows

‖v‖L2 ∼ 1.4232t−0.2470 and ‖v‖L∞ ∼ 1.4989t−0.4963.

Therefore, it is clear that the theoretical result is sharp and the constants involved
are not large. Moreover, it seems that the small data requirement is not necessary
and might be removed if, for example, other methods were employed.

Bona-Smith system (a = 0, b = −c = d = 1/3) with complete and partial
dissipation. This case is again covered by Theorem 4 and 6. By direct computa-
tion, we obtain for complete dissipation,

‖v‖L2 ∼ 1.4015t−0.2477, ‖v‖L∞ ∼ 1.4466t−0.4998,

and for partial dissipation

‖v‖L2 ∼ 0.6676t−0.2519, ‖v‖L∞ ∼ 0.6595t−0.5105.
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