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Abstract—It was shown in [1,2] that surface water waves in a water tunnel can be described by
systems of the form

M + vz + (UN)z + alzzzr — Mzxt = 0, (1)

Ut + Nz + YUz + Nzzz — QUzzt =0,

where a, b, ¢, and d are real constants. In this paper, we show that to find an exact traveling-wave
solution of the system, it is suffice to find a solution of an ordinary differential equation, and the
solution of the ordinary differential equation in a prescribed form can be found by solving a sysiem
of nonlinear algebraic equation. The exact solutions for some of the systems are presented at the end
of the paper. © 1998 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

To describe small amplitude and long waves in a water channel, systems in the form of (1), which
include the classical Boussinesq system (cf. [3]), were derived by Bona, Saut and Toland in [1],
where a, b, ¢, and d are real constants and determined by three parameters A\, 4, and 0 <8< 1
in the following way:

1 1 1
a=z(#-3)» o=3("-5)a-»
e=2 (=P  d=z(1-)(1-p).

The dimensionless variables z and t are scaled, respectively, by h and (h/g)!/? where h denotes
the undisturbed water depth and g denotes the acceleration of gravity. The variable n(z,t) is the
nondimensional deviation of the water surface (scaled by h) from its undisturbed position and
u(zx, t) is the nondimensional horizontal velocity (scaled by +/gh) at a height 6h with 0 <6 <1
above the bottom of the channel. These three parameter family of systems are formally equivalent
and correct through first order with regard to the small parameter ¢ = sup{n(z,t)}. In this
paper, we concentrate on finding exact traveling-wave solutions of (1) which approach constants
at infinities. The existence of these solutions is useful in the theoretical and numerical studies of
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the model systems. In fact, one of the exact solution we found here for the regularized Boussinesq
system (a = ¢ =0, b = d = 1/6) has been used in [2] to demonstrate the convergence rate of a
numerical algorithm.

2. MAIN RESULTS

Denoting £ = x + z¢ — C,t with zy and C, being constants, we first present the result on the
existence of traveling-wave solution

nz,t) =n),  ulzt)=u(), (2)

that n(£) and u(¢) are asymptotically small at large ¢ and proportional to each other, so
Jm (1), u(€) =0, n(e,) = Bu(z, ), ®)

with B being a constant. Substituting (2) and (3) into system (1) and using the fact that the
resulting two equations are consistent, one can prove the following.

THEOREM. For a given system in the form of (1), if the constants a, b, c, d satisfy one of the
following conditions:

(i) a-b+2d#0,p=(-b+c+2d)/(a—b+2d) >0, and (p—1/2)((b — a)p ~ b) > 0;

(ii) a=b=¢>0,d=0;

(iii) e=b=¢<0,d=0;

(ivia-b+2d=0,a=c¢,d>0;

(v) a—b+2d=0,a=c,d<0;
then the given system has solitary-wave solutions. Moreover, the exact solitary-wave solutions
are of the form

n(z,t) = no sech? (A\(z + zo — Cyt)),
3
u(z,t) = i”ﬂo T3 sech? (\M(z + zo — C,t)),

3+ 2no P 210
+/338+m) 2Y 3(a —b)+2b(no + 3)’

where

8=

and no can be any constant satisfies

in Case (i), mo = (3(1 — 2p))/2p;

in Case (ii), 0 < np < +00;

in Case (iii), -3 <19 < 0;

in Case (iv), no > —3 and 3/(ng + 3) is not in the closed interval between 1 and b/d;
in Case (v), no > —3 and 3/(no + 3) is in the closed interval between 1 and b/d.

e o o o

With a more general approach, one can find exact solutions where u(¢) and 7(€) are not
proportional to each other and they do not approaches zero at infinity. Assuming that the
traveling-wave solution (u(£), 7(£)) tends to (uco, o) 88 € tends to +o0. Substituting functions

h(&) = 77(5) = Noos 'U({) = ’U,(E) = Uoo) (4)
into (1) and integrating the system once, one obtains

~Cah + v+ vh + oot + teoh + av” +bC,h" = 0,

5
—Cyv+ h + %v2 + UV + ch” + dCev" = 0. ®)
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Eliminating one of the dependent variables, one can find that v(£) (or h(£)) satisfies a forth-order
ordinary differential equations (cf. [4]). For instance, in the case that ¢ # 0, one can eliminate h(§)
and obtain an ordinary differential equation on v(£) as follows. Notice from (5) that h and h”
can be expressed as a function of v(£),

_ gl(v) " _ M
=T ™ =Ty (6)

where

f(’U) = C(—C, +v+ u'oo) - bC,,
g1(v) = ¢(~v — av” — neov) — bC, (C,v - %vz —dC,v" — uwv) ,

1
g2(v) = v+ av” + ooV + (—Cs + v + uo) (C,v - §v2 —dC,v" - umv) .

Differentiating the first equation in (6) twice with respect to { and using the second equation,
one finds
o2 =g{f* - auf"f - 290 f +201 (F)", (7
which is an ordinary differential equation with dependent variable v(£). One can therefore es-
tablished the fact that in order to find a traveling-wave solution of (1), it is suffice to find a
solution v(¢) satisfying the ordinary differential equation.
Notice again that the ordinary differential equation (7) involves only

vm/’ UI,UHI’ (v”)!’ vr/’ (’U')2

terms, the Ansatz equation

@)’ =p?+ov®, p20, (8)
can be used to find solutions in the form of
1
() = ~Looc? (3v5¢) ©)

(cf. [6]). Substituting (8) into (9) yields a polynomial equation on v(£) where the coefficients
depend on p, g, C,, oo, and 7o By requiring the coefficients to be zero, one obtains a system
of algebraic equations and the solution p, 0, C,, U, and N provides the solution of ordinary
differential equation in the form of (9), which in turn yields the exact traveling-wave solution of
the system with the help of (6) and (4).

The method described above is used on a large class of the systems in (1) which includes
the system in [5] (formula (13.101)), the systems in [6], regularized Boussinesq system in [1],
Boussinesq’s original system (cf. [3]), and the integrable version of the Boussinesq system (cf. [7]).
The exact traveling-wave solutions founded are listed in next section. The method presented in
this paper is quite general and it recovered the solutions founded in [8,9], where a homogeneous
balance method was used.

Other Ansatz equations can be used to find solutions in different forms [10].

3. EXACT TRAVELING-WAVE
SOLUTIONS FOR SYSTEMS IN (1)

Denote ¢ = z + xp — C,t, where o and C, are arbitrary constants, one can find the exact
traveling-wave solutions for the following systems (p > 0 is an arbitrary constant).

e a=0:
w(€) = (1 — dp) C, + 3dC,p sech? (%ﬁg) ,
n(¢) = -1.
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ea=0 c#0:

u(§) = % (—b+2c+2d — bep) + éC,bpsechQ (%\/ﬁ{) ’

2
n(§)=-1+%(bz—4bd+4d2 b2cp + 2bedp) + cfb(b 2d)psech2( ﬁg).
ea=c=0

) = 2 (3 - 5tp) + 5Cubpsech? (V)
17(€)-~1+-q—2-b(10b 6d) p?
+ 202 (56— 3d) (2sech2 (-;-ﬁg) —3sech4(%\/ﬁg)).
eb=c=0,d#0:

_ —a+2dC? - 2dClp 2 1
() = 24C, + 3dC,psech (E\/f}&) ,

7(€) = -1+ 4;(;’2 (a —2d°CZp) + gapsech’ (%\/ﬁﬁ) -

ec=d=0,b+#0:
u(€) = +c - Cbp+56’ bpsechz(lﬁﬁ),

a2
_ o 212 2 (9 25 2,2 2 2(1
17({)---~1+16b20,2 12a,p+ C Tb°p° + (4ap+ 3C’,bp sech 2ﬁ£

- -2—§b2k2 2 (5\/7;{) .
eb=c=d=0,a>0:
1
W) = G, vaptanh (V7).
1 1
nE)=-1+ Eapsech2 (5\/&) .
eb=c=d=0,a<0:
u(€) = Cy £ v—apsech (%\/Bf) ,
7€) = -1 - %ap+ -;-apsech2 (%\/ﬁ{) .

eb=d=0,a=c

ey = D20+ +20, £ 32 o2 (%m)

7 =152 + 2 oeen (15¢).
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