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In this Letter, we present an analytical study of a high-order acoustic wave equation in one dimension,
and reformulate a previously given equation in terms of an expansion of the acoustic Mach number. We
search for non-trivial traveling wave solutions to this equation, and also discuss the accuracy of acoustic
wave equations in terms of the range of Mach numbers for which they are valid.
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1. Background

Traveling wave solutions in the form of solitons have been studied in detail for nonlinear wave equations of the KdV type, as well as in
other areas of physics. In the case of acoustic wave equations, these solutions have received considerably less attention. In a recent series
of papers, Sugimoto et al. [1–3] demonstrated the existence of acoustic solitary waves in an air-filled tube containing a periodic array of
Helmholtz resonators. In [1,2] the problem was studied theoretically, and then in [3] the results were confirmed by a set of laboratory
experiments. In another series of papers, Jordan [4] studied diffusive soliton solutions to Kuznetsov’s equation, which models weakly-
nonlinear acoustic wave propagation, and then Jordan and Puri [5,6] applied similar analysis techniques to the problem of traveling wave
solutions in nonlinear viscoelastic media. The governing equations in the viscoelastic case are similar to the acoustic wave equation. In
another related work, Jordan [7] studied finite amplitude waves in a porous medium. Rasmussen et al. [8] derived an alternative nonlinear
wave equation, and then derived an analytical traveling wave solution that allowed for studying front interaction.

The classical theory of nonlinear acoustics, as given in Refs. [9,17–20], gives the speed of wave propagation in an adiabatic fluid as

c = c0 ± 1

2
(γ − 1)u (1)

where c0 is the small-signal speed of sound in a linear fluid, γ is the ratio of specific heats, and u is the particle velocity of the fluid.
We note that u varies with both space and time. Since u in Eq. (1) varies with amplitude of the wave, the areas of higher amplitude in a
wave will propagate with a faster speed than those of lower amplitude. This will lead to shock formation.

Eq. (1) shows that initially smooth waves (with smooth input signals) in a nonlinear lossless fluid will eventually steepen to form
shocks, and thus cannot propagate as traveling waves, since the speed of the wave always depends on position in the waveform. The
interesting question is then to consider the lossy terms in the equations of motion, along with the nonlinear terms, and to assess if
traveling wave solutions are possible in the presence of both lossy and nonlinear terms.

In this Letter, we extend recent results by Jordan [4], who studied traveling wave solutions to the Kuznetsov equation, which models
nonlinear acoustic waves in lossy fluids up to second order. In our approach, we use a higher-order equation [9–11], which is valid up to
higher acoustic Mach numbers than Kuznetsov’s equation. Since the speed of the traveling wave depends on the acoustic Mach number,
this high-order equation allows for a more accurate assessment of traveling wave velocities.
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In the case of linear acoustic theory, it is easy to see that traveling wave solutions exist, since there are no dissipative or nonlinear
effects that would distort the waves. The more interesting case is whether these solutions can exist when nonlinear and dissipative terms
are included. In most cases, it depends on the physical constants involved, as we will show here.

It is instructive to begin the discussion with the linear wave equation, which in one dimension is given as

c2
0φxx − φtt = 0 (2)

where φ is the velocity potential, and c0 is the linear speed of sound. Traveling waves exist for this equation, and are of the form given
by the d’Alembert solution

φ(x ± vt) (3)

where v = c0 is the wave speed.
In 1971, Kuznetsov [12] derived a nonlinear acoustic wave equation that extended the linear wave equation to include dissipative and

nonlinear effects. The equation takes the form

c2
0φxx − φtt + ν(γ )φtxx = ∂

∂t

[
(φx)

2 + 1

c2
0

(β − 1)(φt)
2
]

(4)

where β is the coefficient of nonlinearity, γ = C p
Cv

is the ratio of specific heats, and ν(γ ) is the diffusivity of sound. We note that the
first two terms of Kuznetsov’s equation are the same as the linear wave equation, (2). The additional terms account for dissipation and
nonlinear effects. However, Kuznetsov’s equation is only a second order equation in terms of the nonlinearities, which means that it is
only valid for certain ranges of acoustic Mach numbers. More on this will be given later in this section, when we re-write this equation
in a nondimensional form.

A higher order acoustic wave equation (HOAWE) exists for gases [9–11]. This equation uses a more accurate equation of state, rather
than the Taylor series expansion used in Kuznetsov’s equation. Consequently, it is valid for larger values of acoustic Mach number, and
thus represents a more accurate model of acoustic wave propagation than Kuznetsov’s equation. The equation as given by Söderholm
[10,11] is as follows

c2
0φxx − φtt + ν(γ )φtxx = (

(φx)
2)

t + 1

2
φx

(
(φx)

2)
x + (γ − 1)

[
φt + 1

2
(φx)

2
]
φxx (5)

where, for gases, γ and β are related by β = γ +1
2 . We note that this equation is a generalization of the relation for lossless gases given by

Eq. (3.26) in [9], the difference being the dissipative term ν(γ )φtxx . Also, as with Kuznetsov’s equation, this equation includes the linear
wave equation as a special case.

Although it is clear that the two wave equations, (4) and (5), reduce to the linear wave equation (2) when nonlinear and dissipative
effects are neglected, the various physical constants make the relative magnitudes of the terms difficult to interpret. Hence, we show
here how all three can be written in a nondimensional form, thus facilitating their comparison and analysis. The dimensional analysis
procedure follows one that was originally given by Wojcik [13], and was followed on by Jordan [4]. Defining a characteristic flow speed V
and characteristic length scale L, we can define a nondimensional velocity potential as Φ = φ

V L . We also define the nondimensional time
T = c0t

L , and nondimensional position X = x
L . Then, the following relations can be derived between the first time and spatial derivatives

φt = V c0ΦT , φx = V ΦX . (6)

Using these relations, we can also derive the following relations for the higher derivatives and nonlinear terms

φxx = V

L
ΦX X , φtt = V c2

0

L
ΦT T ,

(
(φx)

2)
t = V 2c0

L

(
(ΦX )2)

T ,
(
(φt)

2)
t = V 2c3

0

L

(
(ΦT )2)

T , φxxt = V c0

L2
ΦX X T . (7)

Substituting Eqs. (6) and (7) into the original wave equations (2), (4), and (5), we obtain the following nondimensional equations

ΦT T − ΦX X = 0, (8)

ΦX X − ΦT T + 1

Re
ΦX X T = ε

∂

∂T

[
(ΦX )2 + (β − 1)(ΦT )2], (9)

ΦX X − ΦT T + 1

Re
ΦX X T = ε

[(
(ΦX )2)

T + (γ − 1)ΦT ΦX X
] + ε2

[
(ΦX )2ΦX X + (γ − 1)

2
(ΦX )2ΦX X

]
, (10)

where ε = V
c0

is the acoustic Mach number, and Re = c0 L
ν(γ )

is the Reynold’s number.
Eqs. (8), (9), and (10) represent the nondimensional forms of the linear, Kuznetsov, and HOAWE wave equation, respectively. Derivations

of the Kuznetsov and HOAWE equations from fundamental principles can be found in Refs. [9–11,14]. We note that the linear wave
equation neglects all nonlinear effects, the Kuznetsov equation represents nonlinear effects to the first power in ε , and the HOAWE
includes both linear and quadratic terms in ε .

A recent study [4] focused on searching for traveling wave solutions to the Kuznetsov equation. Although traveling wave solutions were
shown to exist, the wave speed depended on the acoustic Mach number, and in fact had a bifurcation depending on the physical constants.
No traveling wave solutions were possible above a certain critical acoustic Mach number. However, since the Kuznetsov equation itself is
restricted to small values of the acoustic Mach number, it was not clear if the critical Mach number obtained in [4] exceeded its inherent
limitations. For example, Makarov and Ochmann [14] suggest that the Kuznetsov equation is only applicable for ε < 0.1.

In our approach, we will search for traveling wave solutions to the HOAWE equation. Since this equation is valid for larger values of
the acoustic Mach number, it will allow for traveling wave solutions with a wider range of wave speeds than was obtained in [4]. In the
limit of small Mach numbers, we will show that the traveling wave speeds determined from the HOAWE equation are identical to those
obtained in [4] for the Kuznetsov equation. This makes sense, since the two equations model the same physics for small ε .
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2. Existence of traveling waves solutions for HOAWE

In this section we show the existence of traveling wave solutions to the HOAWE, Eq. (10). Our results depend on the value of γ which
is in the range of 1.1 to 1.7 for most monoatomic and polyatomic gases.

We seek traveling wave solutions to Eq. (10), which take the form

Φ(X, T ) = Φ(X − vT ) = Φ(ξ) (11)

where ξ = X − vT , and v > 0 is the speed of the wave. At this point, v is unknown, since it is not known a priori what the speed of the
traveling waves will be. Substituting Eq. (11) into (10), we obtain

Φ ′′ − v2Φ ′′ − v

Re
Φ ′′′ = ε

[−2vΦ ′Φ ′′ − (γ − 1)vΦ ′Φ ′′] + ε2
[
(Φ ′)2Φ ′′ + (γ − 1)

2
(Φ ′)2Φ ′′

]
. (12)

The following relations

Φ ′Φ ′′ = 1

2

d

dξ
(Φ ′)2, (Φ ′)2Φ ′′ = 1

3

d

dξ
(Φ ′)3

lead to the equation

(
1 − v2)Φ ′′ − v

Re
Φ ′′′ + ε

[
(γ + 1)v

2

∂

∂ξ
(Φ ′)2

]
− ε2

[
(γ + 1)

6

∂

∂ξ
(Φ ′)3

]
= 0. (13)

Also, we note that an integration in (13) can be performed in ξ , with

ξ∫
0

Φ ′ dξ = Φ(ξ) − Φ(0), (14)

and similarly for Φ ′′ and Φ ′′′ . Collecting all integration constants in the constant c on the right-hand side of (13) we obtain

(
1 − v2)Φ ′ − v

Re
Φ ′′ + εv(γ + 1)

2
(Φ ′)2 − ε2(γ + 1)

6
(Φ ′)3 = c. (15)

If we make the substitution w = Φ ′ , and multiply through by − Re
v , we obtain

w ′ − Re(1 − v2)

v
w − ε Re(γ + 1)

2
w2 + ε2Re(γ + 1)

6v
w3 = c. (16)

Eq. (16) is an Abel equation of the first kind [15]. It is a generalization of the Ricatti equation (see (41) in the next section) which appears
when searching for traveling wave solutions of Kuznetsov’s equation. In this case, the w3 term is a direct consequence of the terms of the
type (Φ)3 in Eq. (13). These terms are not present in Kuznetsov’s equation.

By denoting

a1 := Re(1 − v2)

v
, a2 := ε Re(γ + 1)

2
> 0, a3 := −ε2Re(γ + 1)

6v
< 0, (17)

Eq. (16) becomes

w ′ = a1 w + a2 w2 + a3 w3 + c = p(w). (18)

In order to show the existence of solutions to Abel’s equation (16) we denote one of the three roots of the cubic polynomial p(w) as w1.
Given w1, we define hγ ,ε(v, w1) as

hγ ,ε(v, w1) := (3γ − 5)v2 + 2ε(γ + 1)w1 v + 8 − ε2(γ + 1)w2
1. (19)

The following theorem then holds.

Theorem 2.1. Let ε > 0 be the Mach number and γ > 1. If v, w1 are such that hγ ,ε(v, w1) > 0 then there are one or two bounded traveling wave
solutions of (16) with v denoting the speed of the traveling wave. In particular, this is true for any v > 0 and

1

ε

(
v −

√
4v2(γ − 1) + 8

γ + 1

)
< w1 <

1

ε

(
v +

√
4v2(γ − 1) + 8

γ + 1

)
. (20)

Proof. Let w be the solution of (16) which approaches to w1 at ∞ (or −∞). We compute

c = −a1 w1 − a2 w2
1 − a3 w3

1,

and hence (18) becomes

w ′ = a1(w − w1) + a2
(

w2 − w2
1

) + a3
(

w3 − w3
1

) = (w − w1)
[
a1 + a2(w + w1) + a3

(
w2 + w w1 + w2

1

)] = (w − w1)g(w),

where

g(w) = a3 w2 + (a3 w1 + a2)w + a1 + a2 w1 + a3 w2
1. (21)
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If the discriminant of this quadratic form, Δ, is positive where

Δ := (a3 w1 + a2)
2 − 4a3

(
a1 + a2 w1 + a3 w2

1

) = a2
3 w2

1 + 2a2a3 w1 − 4a3
(
a1 + a2 w1 + a3 w2

1

) + a2
2 = −a3

[
4a1 + 2a2 w1 + 3a3 w2

1

] + a2
2,

it follows that

w ′ = a3(w − w1)(w − w2)(w − w3) = p(w), (22)

where w2 �= w3 are the real roots of (21). Thus, the cubic polynomial p(w) can have three or two different real roots. In the first case,
there exist two different bounded solutions of (18) and in the second case, w2 = w1 or w3 = w1 meaning that w1 is also a root of g(w),
there is only one bounded solution w .

In the first case, by relabeling the roots if necessary, we can write w2 < w1 < w3. Since the constant functions w1, w2 and w3 solve
the equation w ′ = p(w), the theory of ODE [16] implies that there exist two different bounded solutions w and w̃ of (18). Since a3 < 0,
we have w ′ = p(w) < 0 if w2 < w < w1 and hence

lim
ξ→−∞ w(ξ) = w1 and lim

ξ→+∞ w(ξ) = w2.

Also, w ′ = p(w) > 0 if w1 < w < w3 which yields

lim
ξ→−∞ w̃(ξ) = w1 and lim

ξ→+∞ w̃(ξ) = w3.

In the second case, by relabeling the roots if necessary, we can write w2 < w1. If w ′ = a3(w − w1)
2(w − w2) then w ′ < 0 for

w2 < w < w1 and the only bounded solution w satisfies limξ→−∞ w(ξ) = w1 and limξ→+∞ w(ξ) = w2. If w ′ = a3(w − w1)(w − w2)
2

then w ′ > 0 for w2 < w < w1 and w satisfies limξ→−∞ w(ξ) = w2 and limξ→+∞ w(ξ) = w1.
If Δ = 0 then the cubic polynomial p(w) can have three equal roots or only two different real roots. In the first case there is no

bounded solution to (18) while in the second case we have again only one bounded solution w .
We now proceed to characterize the condition Δ > 0. Since

Δ

Re2
= ε2(γ + 1)

6v

[
4(1 − v2)

v
+ ε(γ + 1)w1 − w2

1
ε2(γ + 1)

2v

]
+ ε2(γ + 1)2

4
,

we have

6v2

Re2
Δ = ε2(γ + 1)

[
4
(
1 − v2) + ε(γ + 1)w1 v − ε2(γ + 1)

2
w2

1

]
+ 3

2
ε2 v2(γ + 1)2

= ε2(γ + 1)

[
3

2
v2(γ + 1) + 4

(
1 − v2) + ε(γ + 1)w1 v − w2

1ε
2 (γ + 1)

2

]

= ε2(γ + 1)

[
4 − 5

2
v2 + 3

2
v2γ + ε(γ + 1)w1 v − w2

1ε
2 (γ + 1)

2

]
.

Hence

12v2

Re2
Δ = ε2(γ + 1)

[
8 − 5v2 + 3γ v2 + 2ε(γ + 1)w1 v − ε2(γ + 1)w2

1

]
= ε2(γ + 1)

[
(3γ − 5)v2 + 2ε(γ + 1)w1 v + 8 − ε2(γ + 1)w2

1

]
= ε2(γ + 1)hγ ,ε(v, w1). (23)

From (23) it follows that Δ > 0 if

hγ ,ε(v, w1) = (3γ − 5)v2 + 2ε(γ + 1)w1 v + 8 − ε2(γ + 1)w2
1 > 0;

that is,

ε2 w2
1 − 2vεw1 − 8 + (3γ − 5)v2

γ + 1
< 0. (24)

If we define θ = εw1, then Δ > 0 is true if

θ1 < θ = εw1 < θ2,

where θ1,2 are the roots of

θ2 − 2vθ − 8 + (3γ − 5)v2

γ + 1
= 0.

Using that γ > 1, and writing θ1,2 explicitly we obtain

θ1,2 =
2v ±

√
4v2 + 4(8+(3γ −5)v2)

γ +1

2
= v ±

√
v2 + (8 + (3γ − 5)v2)

γ + 1
= v ±

√
4v2(γ − 1) + 8

γ + 1

which proves the theorem. �
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From the proof of Theorem 2.1 we see that it is also possible to prescribe two roots of the polynomial p(w), say w1 and w2, and solve
for the values v(w1, w2, ε). One can then test the existence of non-trivial traveling wave solutions with Theorem 2.1. We now describe
the procedure in detail.

Let w = Φ ′(x − vt) be a solution of (16) obtained in this way with

lim
ξ→−∞ w(ξ) = w1 and lim

ξ→∞ w(ξ) = w2. (25)

Thus, from (16) and (25) we obtain

−Re(1 − v2)

v
w1 − ε Re(γ + 1)

2
w2

1 + ε2Re(γ + 1)

6v
w3

1 = −Re(1 − v2)

v
w2 − ε Re(γ + 1)

2
w2

2 + ε2Re(γ + 1)

6v
w3

2. (26)

This expression can be simplified as follows

−1 − v2

v
(w1 − w2) − ε(γ + 1)

2

(
w2

1 − w2
2

) + ε2(γ + 1)

6v

(
w3

1 − w3
2

) = 0. (27)

Since w1 �= w2 (w1 = w2 implies constant solution), we can factor the term w1 − w2 out of the previous expression. Upon doing this,
and multiplying through by −v , we arrive at

(
1 − v2) + ε(γ + 1)

2
(w1 + w2)v − ε2

6
(γ + 1)

(
w2

1 + w1 w2 + w2
2

) = 0. (28)

Multiplying through by −1, we obtain

v2 − ε(γ + 1)

2
(w1 + w2)v + ε2

6
(γ + 1)

(
w2

1 + w1 w2 + w2
2

) − 1 = 0. (29)

Therefore we can compute v from the equation

v = ε(γ + 1)

4
(w1 + w2) ± 1

2

√
ε2(γ + 1)2

4
(w1 + w2)2 − 2

3
ε2(γ + 1)

(
w2

1 + w1 w2 + w2
2

) + 4. (30)

It is interesting to note that the solutions for v are independent of the acoustic Reynolds number, Re. Since the HOAWE is a generaliza-
tion of Kuznetsov’s equation, we should expect the traveling wave velocity v to reduce to the one obtained in [4] in the limit of small ε .
Indeed, using that

√
1 + x � 1 + 1

2 x for small x in the previous formula for v and choosing the positive sign we obtain:

v � 1 + ε(γ + 1)

4
(w1 + w2) + O

(
ε2), (31)

which shows that, when ε → 0, our wave speed v(w1, w2) agrees with the wave speed v(w1, w2) of Kuznetsov’s equation given in [4,
Eq. (23)] up to the order O (ε).

We consider the discriminant δ of the quadratic form under the square root in (30) as a function of the Mach number ε:

δ(ε) := aε2 + 4 (32)

where

a = (γ + 1)2

4
(w1 + w2)

2 − 2

3
(γ + 1)

(
w2

1 + w1 w2 + w2
2

) = (w1 + w2)
2(γ + 1)

[
(γ + 1)

4
− 2

3

(
w2

1 + w1 w2 + w2
2

(w1 + w2)2

)]
. (33)

When a > 0, there is always at least one positive solution v for any value of ε . When a < 0, there is a critical Mach number, εc , above
which there are no real-valued velocities v corresponding to traveling wave solutions to the HOAWE. This critical Mach number is given
by

δ(εc) = aε2
c + 4 = 0;

that is,

εc = 2√−a
. (34)

We note that if γ < 5
3 and w1 w2 < 0 then a < 0 because

w2
1+w1 w2+w2

2
(w1+w2)2 > 1 and a < (w1 + w2)

2(γ + 1)[ (γ +1)
4 − 2

3 ] < 0. Specifically, if

a < 0, which is the case when γ < 5
3 and w1 w2 < 0, there is no solution when ε > εc .

3. Traveling wave solutions of Kuznetsov’s equation

We also seek traveling wave solutions to Eq. (9), which take the form

Φ(X, T ) = Φ(X − vT ) = Φ(ξ). (35)

Proceeding as in Section 2, and letting w(ξ) = Φ ′(ξ), we obtain the equation

w ′ − b1 w − b2 w2 − c = 0, (36)

where c is the constant of integration as in (14) and (15), and



Author's personal copy

1042 M. Chen et al. / Physics Letters A 373 (2009) 1037–1043

b1 := Re
1 − v2

v
, (37)

b2 := ε Re
[
1 + v2(β − 1)

]
. (38)

If w is a solution of (36), by defining

w1 := lim
ξ→−∞ w(ξ) and w2 := lim

ξ→+∞ w(ξ), (39)

and assuming limξ→±∞ w ′ = 0, then from (36) it follows that

c = −b1 w1 − b2 w2
1 = −b1 w2 − b2 w2

2. (40)

Therefore, (36) becomes

w ′ − b1 w − b2 w2 + b1 w1 + b2 w2
1 = 0. (41)

For solutions of (41) of the form

w(ξ) = A + B tanh(λξ),

we have the following theorem.

Theorem 3.1. If the following equations hold

w1 + w2 = −b1

b2
, (42)

λ = b2

2
(w1 − w2), (43)

for some constants w1, w2 , λ, b1 and b2 , then

w(ξ) = − b1

2b2
− λ

b2
tanh(λξ) (44)

satisfies Eq. (41) and

w1 := lim
ξ→−∞ w(ξ) and w2 := lim

ξ→∞ w(ξ). (45)

Proof. We look for solutions of the form w = A + B tanh(λξ) and thus

w ′ = Bλ
[
1 − tanh2(λξ)

]
, (46)

w2 = A2 + 2AB tanh(λξ) + B2 tanh2(λξ). (47)

If we substitute (46) and (47) into (41) and use the notation y = tanh(λξ) we obtain

Bλ − Bλy2 − b1(A + B y) − b2
(

A2 + 2AB y + B2 y2) + b1 w1 + b2 w2
1 = 0.

From this and (40) we get the system of equations:

Bλ − b1 A − b2 A2 + b1 w1 + b2 w2
1 = 0, (48)

b1 w1 + b2 w2
1 = b1 w2 + b2 w2

2, (49)

−b1 B − 2b2 AB = 0, (50)

Bλ + b2 B2 = 0, (51)

and we add to the system the two equations

A = 1

2
(w1 + w2), (52)

B = −1

2
(w1 − w2). (53)

Since we want B �= 0 and λ �= 0, we must have w1 �= w2. Using (52) and (53), Eqs. (50) and (51) simplify to:

w1 + w2 = −b1

b2
, (54)

λ = b2

2
(w1 − w2). (55)

We note that Eq. (49) reduces to exactly Eq. (54), and thus it does not add any information.
Thus, since λ = −b2 B , A = − b1

2b2
and B = − b1

2b2
− w1 we only need to show that Eq. (48) is satisfied:
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Bλ − b1 A − b2 A2 + b1 w1 + b2 w2
1

= −b2 B2 − b1 A − b2 A2 + b1 w1 + b2 w2
1 = −b2

[
w2

1 + b1

b2
w1 + b2

1

4b2
2

]
+ b1

b1

2b2
− b2

b2
1

4b2
2

+ b1 w1 + b2 w2
1

= −b2 w2
1 − b1 w1 − b2

1

4b2
+ b2

1

2b2
− b2

1

4b2
+ b1 w1 + b2 w2

1 = 0,

which implies our desired result. �
Remark 3.1. From the conditions (42) and (43) we conclude that:

(i) There is a traveling wave solution for any prescribed values of (v, ε, γ ,λ), but once these parameters are prescribed they imply certain
w1 and w2.

(ii) If we look for a solution with prescribed behavior at −∞ (or +∞); that is, if we prescribe w1 (or w2) then there is a solution for
any (v, ε, γ ).

Remark 3.2. If we look for a solution with prescribed behavior both at −∞ and +∞; that is, if we prescribe both w1 and w2 then the
possible values of v and ε for which there is solution are restricted. This situation was analyzed in [4] where solutions to Kuznetsov’s
equation were shown to exist only for Mach numbers less than a critical value εc .

4. Conclusions

In this Letter, we presented an analysis of traveling wave solutions to a high-order acoustic wave equation. We showed that there exist
non-trivial traveling wave solutions for any wave speed v and any value of the acoustic Mach number. We also showed that if the values
of the solution at ±∞ are prescribed, then there is a critical Mach number above which there is no traveling wave solutions.

Although traveling wave solutions were shown to exist for Kuznetsov’s equation, waves with higher Mach number may not be accu-
rately modeled by this equation. Since the Kuznetsov equation itself is restricted to small values of the acoustic Mach number, the authors
invoked the high-order acoustic wave equation as a more accurate equation to model nonlinear acoustical waves.

We also showed that in the limit of small acoustic Mach number, the traveling wave speeds obtained here reduce to those obtained
in [4]. This makes sense, since the high-order wave equation is a generalization of the Kuznetsov equation considered in [4].
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