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Abstract. We present here a highly efficient and accurate numerical scheme
for initial and boundary value problems of a two-dimensional Boussinesq sys-
tem which describes three-dimensional water waves over a moving and uneven
bottom with surface pressure variation. The scheme is then used to study in
details the waves generated from rectangular sources and the two-dimensional
wave patterns.

1. Introduction. The understanding of nonlinear wave propagation plays an im-
portant role in many branches of science and technology such as oceanography,
meteorology, plasma physics and optics. Although considerable progress have been
made recently on the theory for full three-dimensional Euler equations [24, 19], the
numerical simulations of the three-dimensional water wave equations remain to be a
very challenging task, especially when the results are expected in a very short time,
such as within an hour or even shorter as in the cases of tsunami so proper warn-
ing can be issued. Furthermore, in many practical applications, engineers would
prefer a simpler model for water waves, since it has to be associated with other
equations, such as a porous media equation for the sediment transportation, or an
elastic equations for the sea bottom movement in the cases of tsunamis. Hence, it is
important to study in detail some suitable approximations of the three-dimensional
water wave equations.

In this paper, the attention is given to a multi-dimensional Boussinesq system
which describes approximately the propagation of small amplitude and long wave-
length surface waves in a three-dimensional wave tank filled with an irrotational,
incompressible and inviscid liquid under the influence of gravity, moving and/or
variable bottom and surface pressure. Denote the moving bottom topography

by h̃(x, y, t) and the surface pressure variation by P (x, y, t), the system reads (cf.
[5, 12, 6] for its derivation and validity),

ηt + ∇ · v + ∇ · (h + η)v − 1

6
∆ηt = F (h, P ),

vt + ∇η +
1

2
∇|v|2 − 1

6
∆vt = G(h, P ),

(1.1)
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where h(x, y, t) =
h̃ − h0

h0
with h0 being the average depth of the still water, F and

G are the forcing terms involving only derivatives of h and P . In system (1.1), the
length scale is taken to be h0, the average water depth, and the time scale is taken

to be
√

h0

g
, with g being the acceleration of gravity.

The dependent variable η(x, y, t) represents dimensionless deviation at the spatial
point (x, y) at time t of the water surface from its undisturbed position and is a
fundamental unknown of the problem. The system (1.1) is a two-space-dimensional
equation with v(x, y, t) ≡ (u, v) being the horizontal velocity field at water depth√

2
3h0, which is at z =

√
2
3 in the scaled variable. The three-dimensional velocity

field (u(x, y, z, t), w(x, y, z, t)) at any other location (x, y, z) in the field can be
recovered by, due to the small amplitude and long wave assumptions,

u(x, y, z, t) =
(
1 +

1

2
(
2

3
− z2)∆

)
v(x, y, t),

w(x, y, z, t) = −z(1 +
1

3
∆)∇ · v(x, y, t).

(1.2)

Some of the special properties of a Boussinesq system, in contrast to the Euler
equations, are (a) the system describes a two-space-dimensional (or a three-space-
dimensional) wave with an one-space-dimensional (or a two-space-dimensional) sys-
tem, which reduces the space dimension by one; (b) the dimension of velocity vector
consists only horizontal velocity v instead of (u, w); (c) more importantly, the sys-
tem transforms a free surface problem to a standard problem, namely equations are
posed on a fixed domain and are no longer a moving boundary problem. Advantages
of (1.1) in comparison with other Boussinesq systems (c.f. [7, 21, 20, 4, 5]) include
it contains a smoothing operator (I − 1

6∆)−1 in front of ηt and vt terms, its phase
velocity is bounded and its ease in setting up non-periodic boundary conditions [3].
These features make (1.1) an ideal candidate to use for numerical simulations on
many realistic problems.

Mathematical analysis on the system (1.1) has been carried in many aspect. For
example, theoretical justification has been provided for the passage from the Euler
equations to the Boussinesq systems in the cases that the wave tank has flat bottom
and the wave is only acted upon by gravity (see Bona and Colin and Lannes [6]),
where the equations read

Aη(η, v) ≡ ηt + ∇ · v + ∇ · ηv − 1

6
∆ηt = 0,

Au(η, v) ≡ vt + ∇η +
1

2
∇|v|2 − 1

6
∆vt = 0,

(1.3)

and in the cases with variable bottoms (see Chazel [9]). The results state

‖(u, w) − ueuler‖L∞(0,t;Hs) + ‖η − ηeuler‖L∞(0,t;Hs) = O(ǫ2t)

for 0 ≤ t ≤ O(ǫ), and for s sufficiently large, where ǫ is the ratio of typical wave
height over average water depth. (The assumptions on Euler equations used in
the proofs are rigorously verified in [2].) The wellposedness and regularity of (1.3)
are established in [4, 5]. The existence of line solitary waves, line cnoidal waves,
symmetric and asymmetric periodic wave patterns are proved in [11, 10, 13, 14].

System (1.1) can be modified to describe waves with surface tension effects,
for example by adding a term −τ∇∆η or τ∆vt on the left-hand side of the second
equation, where τ = Γ/ρgh2

0 is the Bond number, Γ is the surface tension coefficient
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and ρ is the density of water [15]. Theoretical and numerical investigations for
systems with surface tension are similar to that for (1.1) so the discussion in the
following sections are carried out for (1.1) for simplicity in notations.

2. Numerical scheme. Denoting the length of the wave tank as H and the width
as L (in the scale of h0), so the physical domain Ω = (0, L)× (0, H). At two ends of
the tank (y = 0 and y = H), the solution is required to satisfy prescribed boundary
conditions

η(x, 0, t) = h0(x, t), v(x, 0, t) = v0(x, t),

η(x, H, t) = hH(x, t), v(x, H, t) = vH(x, t).
(2.1)

The condition at y = 0 models wave motions generated by the wave maker or waves
coming from the deep ocean. It is worth to mention that obtaining (h0(x, t), v0(x, t))
accurately from an experimental set-up is not a trivial issue (e.g. see [18]). On
the other end of the tank, y = H , the solutions η and v can be set to zero in
many cases by taking H large enough, namely by assuming the wave is not yet
reaching the other end. (In laboratory experiments, it is more difficult to make
the tank as long as desired, so an energy absorbing end might be built to have a
similar effect.) Other types of boundary conditions at y = 0 and y = H , such as a
Robin boundary condition can be treated similarly. Across the tank, two types of
boundary conditions are considered. One (BC1) is to assume that the solution is
periodic across the tank, i.e.

∂m
x η(0, y, t) = ∂m

x η(L, y, t),

∂m
x v(0, y, t) = ∂m

x v(L, y, t),
for m = 0, 1, 2, · · · , (BC1)

which has been used in many theoretical and numerical studies for its simplicity.
Such treatment will be used in our computations whenever it is justified, simply
because a quasi-optimal efficient semi-implicit scheme, which will be described later,
can be developed. A physically more relevant set of boundary conditions is (BC2):

∂η

∂x
= 0, u = 0,

∂v

∂x
= 0 at x = 0 and L. (BC2)

It is noted that the boundary conditions at y = 0 and y = H should be consistent
with (BC1) or (BC2) at four corners of the domain Ω.

The first step of the numerical algorithm is to treat the non-homogeneous bound-
ary conditions at y = 0 and y = H . Let Q(x, y, t) and V (x, y, t) be the functions
satisfy the boundary conditions on all four sides of the domain (linear functions
in y are taken in our computations), which is possible because of the consistent
constraints. Introducing the new variables

η̄ = η − Q(x, y, t), v̄ = v − V (x, y, t),

the equations under the new variables (for simplicity, the same notations are used)
are

Aη(η, v) + ∇ · (ηV + Qv) = −Aη(Q, V ) + F (h, P ),

Av(η, v) + ∇(v · V ) = −Av(Q, V ) + G(h, P ),
in Ω, (2.2)

with
η(x, 0, t) = η(x, H, t) = 0, v(x, 0, t) = v(x, H, t) = 0, (2.3)

and the homogeneous boundary conditions (BC1) or (BC2) on the boundaries across
the tank, namely the x = 0 and x = L sides, and a consistent initial condition.
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We now describe our numerical scheme for (2.2) and start with the time dis-
cretization. Let ∆t be the time step size and set tn = tn−1 + ∆t with t0 = 0. Let
ηn and v

n be the numerical approximations of η(x, y, tn) and v(x, y, tn), with η0

and v
0 being the initial condition. The second-order semi-implicit Crank-Nicolson-

leap-frog scheme (with the first step computed by a semi-implicit backward-Euler
scheme) will be used. More precisely, let us denote

q0 =
η1 − η0

∆t
, w

0 =
v

1 − v
0

∆t
(2.4)

and

qn =
ηn+1 − ηn−1

2∆t
, w

n =
v

n+1 − v
n−1

2∆t
for n ≥ 1. (2.5)

Then the scheme is to solve hn and w
n for n = 0, 1, 2, · · · , from

qn − 1

6
∆qn = (F (h, P ) − Aη(Q, V ) −∇ · (ηV + Qv)

−∇ · v −∇ · ηv)n,

w
n − 1

6
∆w

n = (G(h, P ) − Av(Q, V ) −∇(v · V )

−∇η − 1

2
∇|v|2)n,

(2.6)

with homogeneous boundary conditions, where the superscripts on the right-hand
side mean that the expression is to be evaluated at tn. After obtaining (qn, wn),
(ηn+1, vn+1) are direct consequences of (2.4) or (2.5).

Consequently, at each time step, we only have to solve three Poisson type equa-
tions of the form

u − 1

6
∆u = f in Ω (2.7)

with different types of homogeneous boundary conditions as follows.
The boundary conditions for (2.7), in the case of (BC1), are

u(x, 0) = u(x, H) = 0, ∂m
x u(0, y) = ∂m

x u(L, y), (2.8)

with m = 0, 1, 2. · · · , for qn and the two components w
n
1 and w

n
2 of w

n.
The boundary conditions in the case of (BC2) are

u(x, 0) = u(x, H) = 0, u(0, y) = u(L, y) = 0, (2.9)

for w
n
1 and

u(x, 0) = u(x, H) = 0, ∂xu(0, y) = ∂xu(L, y) = 0, (2.10)

for η and w
n
2 .

There are existing numerical schemes for solving (2.7) with boundary conditions
(2.8), or (2.9) or (2.10). We are going to follow the spectral approximation developed
in (cf. [22, 23]) for its efficiency and accuracy. The algorithms will be described
in brief for solving a standard problem, namely a equation obtained after rescaling
(2.7), so the homogeneous boundary conditions are posed on a standard domain
which are independent of H and L.

Consider

û − 1

6
∆̂û = f̂ in Ω̂ (2.11)

where ∆̂ = a∂rr + b∂zz, with one of the three types of homogeneous boundary
conditions (BC):
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• case I: Dirichlet zero BC at z = ±1 and periodic BC across the tank at r = 0
and 2π;

• case II: Dirichlet zero BC at z = ±1 and Dirichlet zero BC across the tank at
r = ±1;

• case III: Dirichlet zero BC at z = ±1 and Neumann zero BC across the tank
at r = ±1.

One can check easily that a problem (2.7) with (2.8), or (2.9) or (2.10) belongs
to one of the cases after a change of variable from y to z and x to r.

Case I: Here, a Fourier-Chebyshev Galerkin method will be used. Namely, let N
be an even positive integer,

VNM =span
{
φl(r)ξj(z) :

l = −N

2
, · · · ,−1, 0, 1, · · · ,

N

2
; j = 0, 1, · · · , M − 2

}
,

where φl(r) = eilr, and ξj(z) = Tj(z) − Tj+2(z) where Tk(z) being the Chebyshev
polynomial of degree k. The method is to look for ûNM ∈ VNM such that for
|l| ≤ N

2 and 0 ≤ j ≤ M − 2,

(ûNM , φl(r)ξj(z)) − 1

6
(∆̂ûNM , φl(r)ξj(z)) = (f̂NM , φl(r)ξj(z)), (2.12)

where f̂NM is an interpolation of f̂ at the Fourier-Chebyshev collocation points.

Writing ûNM =
∑

|k|≤N
2

vk(z)φk(r), f̂NM =
∑

|k|≤N
2

fk(z)φk(r) and plugging these

into (2.12), we find that (2.12) is reduced to a sequence of one-dimensional problem:
find vl ∈ VM = span{ξj : j = 0, 1, · · · , M − 2} such that

(1 +
1

6
al2)(vl, ξj) −

1

6
b(∂zzvl, ξj) = (fl, ξj), j = 0, 1, · · · , M − 2. (2.13)

It is shown in [23] that for each l, (2.13) can be solved in O(M) operations. Since the
evaluation of the Fourier-Chebyshev expansion can be done using the Fast Fourier
Transform (FFT) in O(NM log(NM)) operations, the total cost of this algorithm
for obtaining ûNM is O(NM log(NM)) operations, which is quasi-optimal.

Case II and III: Here, we shall adopt a Legendre-Galerkin method. Namely, let

VNM =span{φl(r)ξj(z) :

l = 0, 1, · · · , N − 2; j = 0, 1, · · · , M − 2},
where φl(r) = Ll(r) − Ll+2(r), and ξj(z) = Lj(z) − Lj+2(z) in case II and ξj(z) =

Lj(z) − j(j+1)
(j+2)(j+3)Lj+2(z) in case III, where Lk(z) being the Legendre polynomial

of degree k. We recall that φl(±1) = 0, ξj(±1) = 0 in case II and ξ′j(±1) = 0 in

case III (cf. [22]). Hence, the Legendre-Galerkin method is to look for ûNM ∈ VNM

such that for 0 ≤ l ≤ N − 2 and 0 ≤ j ≤ M − 2,

(ûNM , φl(r)ξj(z)) − 1

6
(∆̂ûNM , φl(r)ξj(z)) = (f̂NM , φl(r)ξj(z)),

where f̂NM is an interpolation of f̂ at the Legendre-collocation points.
Unlike in the (BC1) case, this problem can not be reduced to a sequence of one-

dimension problems since (φ′′
k(r), φl(r)) 6= cδkl with c being a constant. However, we

shall use the very efficient algorithm developed in [22] whose numerical complexity
is roughly 4NM min(M, N) + O(NM).
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We recall that in both cases, the algorithms are spectrally accurate. More pre-
cisely, we have the following error estimates (cf. [8]):

‖û − ûNM‖
H1(Ω̂) . min(N, M)1−s‖û‖

Hs(Ω̂) + min(N, M)1−ρ‖f̂‖
Hρ(Ω̂).

In summary, for giving (ηn, vn), (Q, V )n coming from the boundary conditions
at y = 0 and y = H , and (h, P )n coming from the bottom topography and surface
pressure variation, the procedure for obtaining (ηn+1, vn+1) involves

• evaluate the right-hand-side of (2.6) in scaled coordinates (r, z) at points cor-
responding to the method which is used for solving (2.11). In specific, for case
I, they are the Fourier-Chebyshev points, and for case II and III, they are the
Legendre-Legendre points;

• solve (2.11) with appropriate boundary conditions;
• obtain (ηn+1, vn+1) with (2.4) or (2.5).

The scheme proposed here is believed to be (i) accurate: spectral accuracy is
expected, (ii) efficient: by denoting the number of collocation points as Q, for each
time step, O(Q log(Q)) operations are required in the case of (BC1) (quasi-optimal)

and O(Q
3

2 ) operations are required in the case of (BC2). This is extremely efficient
considering the facts that it is a semi-implicit spectral code, and (iii) relatively
stable: it is a semi-implicit scheme used on a regularized system.

The numerical testing and simulations performed in Sections 3-5 are for the
cases with P = h = 0 (system (1.3)) and (BC1), although the scheme is designed
for system (1.1) with (BC1) and (BC2). Simulations with nonzero forcing such as
a dynamic bottom will appear elsewhere.

3. Numerical testings of the scheme. In this section, an explicit solution

ηexact(x, t) =
15

4
(−2 + cosh(3

√
2

5
ξ))sech4(

3ξ√
10

),

uexact(x, t) =
15

2
sech2(

3√
10

ξ),

(3.1)

with ξ = x − 5
2 t − x0 of the one-dimensional Boussinesq system (1.3) (the solution

is independent of y) is used to check the convergence, accuracy and efficiency of the
algorithm. Solution (3.1) is taken because it is the only known non-trivial explicit
solution. Although the amplitude of this solutions is big and it travels fast, which
is outside the range of validity of system (1.1), it should be a good testing case for
the accuracy (worst case scenario) of the numerical code. It may not be a good
testing case for the stability of the scheme since we do not know the stability of this
particular solution.

We will only present the result for the scheme with (BC1), since it will be used
in the next section.

3.1. Efficiency and accuracy of x-discretization. We let the exact
y-independent line traveling wave solution (3.1) propagate in the x-direction from
time 0 to T and compare the resulting numerical solution with the exact solution
(ηexact(x, T ), uexact(x, T ), 0).

In specific, the computation is carried out in the domain [0, 22] × [0, 20] and for
T = 1 where the wave has traveled about half of the wave length. The reason for
choosing T = 1, which is not as big as one may expect, will be explained in Section
3.2.
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n CPU(s) E∞
η E∞

u E∞
v

32 0.16(s) 0.70 0.26 0.12
64 0.38(s) 1.8E-3 1.5E-3 3.0E-4
96 0.42(s) 2.4E-6 1.5E-6 5.8E-7
128 0.80(s) 1.73E-6 9.7E-7 5.8E-7
192 1.08(s) 1.77E-6 9.8E-7 5.8E-7

Table 1. CPU time used in one time step and errors in the nu-
merical solution at T = 1 when Ω = (0, 22) × (0, 20), ∆t = 0.0001
and using (n, 512) modes in x and y directions respectively.

The initial data is taken to be

(η(x, y, 0), u(x, y, 0), v(x, y, 0)) = (ηexact(x, 0), uexact(x, 0), 0)

with x0 = 10. The boundary conditions on the ends of the wave tank are

(η(x, 0, t), u(x, 0, t), v(x, 0, t)) = (ηexact(x, t), uexact(x, t), 0),

(η(x, H, t), u(x, H, t), v(x, H, t)) = (ηexact(x, t), uexact(x, t), 0),

while the periodic boundary conditions are used at x = 0 and x = 22. Clearly, the
problem to be solved is (1.3) with (BC1).

We isolate the x-discretization error by taking small time stepsize ∆t = 0.0001
and large number of modes in y-direction (m = 512), so the error from
x-discretization is dominating. The number of modes in x-direction, n, is taken
to be 32, 64, 96, 128, 196 and we record in Table 1 the CPU time used for one time
step (the last one) and the max-norms of the errors in η, u and v (E∞

η , E∞
u and

E∞
v ), for each n, where

E∞
(η,u,v) = max

1≤i≤n,0≤j≤m
|(η, u, v)N (xi, yj, T ) − (η, u, 0)exact(xi, T )|

with (xi, yj) being the Fourier-Legendre points and N∆t = T .
The structure of Table 1 is as follows. The first column corresponds to the

number of modes in x direction and the second column presents the CPU time
used to obtain the numerical solution for one time step. The third, fourth and fifth
columns show the maximum absolute errors at collocation points between the exact
solution and corresponding numerical approximation. We first note that the errors
in all three components decrease dramatically when n changes from 32 to 64 and
from 64 to 96. With 96 modes in x-direction, the numerical solution is very accurate
already. We also note that the accuracy of the numerical solutions do not improve
when n increases from 128 to 192, which indicates that at n = 128 and 192, the
time-discretization error becomes dominate.

3.2. Efficiency and accuracy of y-discretization. In a similar way, we analyze
the efficiency and accuracy of y-discretization by letting the line traveling wave,
independent of x, propagate in y direction. The Legendre, instead of Fourier, ap-
proximation is therefore tested. The initial data is taken to be

(η(x, y, 0), u(x, y, 0), v(x, y, 0)) = (ηexact(y, 0), 0, uexact(y, 0)) (3.2)

with boundary data at y = 0 and y = H being zero and the boundary condition at
x = 0 and x = L being periodic. This is again an equation (1.3) with (BC1), and
with homogeneous boundary conditions at y = 0 and y = H .
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m CPU(s) E∞
η E∞

u E∞
v

64 0.06(s) 0.12 0 0.14
96 0.17(s) 2.6E-3 0 2.0E-3
128 0.26(s) 3.2E-5 0 1.5E-5
192 0.46(s) 1.7E-6 0 9.5E-7
256 0.6(s) 1.7E-6 0 9.5E-7

Table 2. CPU time used in one time step and errors in the nu-
merical solution at T = 1 when Ω = (0, 20) × (0, 22), ∆t = 0.0001
and using (512, m) modes in x and y directions respectively.

The CPU time used in one time step (the last one) and errors in the numerical
solution at T = 1 when Ω = (0, 20)× (0, 22), ∆t = 0.0001 and using (512, m) modes
in x and y directions respectively are recorded in Table 2. We again note that the
error decreases dramatically when m changes from 64 to 96 and from 96 to 128. It
appears that 128 modes in y-direction is suffice for most of the calculations. Table
2 also indicates that at m = 192 and 256, the time-discretization error becomes
dominate.

We also carried out the computation for T = 10 on Ω = (0, 10) × (0, 45) with
various number of modes in x- and y-directions. The result for n = 64, m = 128
and ∆t = 0.001 is shown in Figure 1 along with the exact solution. We first

0 5 10 15 20 25 30 35 40 45

−3.5
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−2.5

−2

−1.5

−1

−0.5

0

0.5

1

(a) at T=10

y

η

33 33.5 34 34.5 35 35.5 36 36.5 37

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

(b) Zoom in of (a) for y ∈  [33, 37]

y

η

Figure 1. (a) Comparison of numerical solution, plotted using
spline, (solid line) and the exact explicit solution (dashed line) at
T = 10; (b) zoom in of (a) for y ∈ [33, 37].

notice that from Figure 1(a) that even with relatively small number of modes, 128
for an interval of length 45, the agreement between the exact solution and the
corresponding numerical approximation is very good (the two lines are almost not
distinguishable). One therefore expect that the errors E∞

η , E∞
v and E∞

u to be very
small. But this is not the case. In fact, E∞

η = 0.619, E∞
v = 0.421 and E∞

u = 0. By
zooming in the area of y from 33 to 37, it is noted that the error is mainly due to
a phase speed difference. It is for the purpose of limiting the effect of error caused
by the phase speed difference, we took T = 1 for the computations carried out for
Table 1 and 2 (cf. [1] for more on error from a phase shift).

A comparison between the spectral method and the method proposed in [3] which
is based on a numerical integration can be made here. Using ∆t = 0.001 and H = 40
as in [3], the error E∞

η is about 1.68E-4 with m = 256 modes in y direction. In
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comparison, according to Table 1 in [3], 40
0.253 = 2560 mesh points will provide the

approximate solution with error 4.5E-4, about 2.5 times of more error with about
10 times more mesh points (modes). Therefore, it is concluded, as expected, that
the spectral method is much more efficient. However, there is a big advantage
associated with the method proposed in [3], it is unconditional stable!

4. Simulation on waves generated by a rectangular source. In many real
physical situations, the wave is generated by a source which is not necessarily ax-
isymmetric. For example, in the 2004 Asian Tsunami, the waves were generated
by a fault line which is about 1200km long in a nearly north-south orientation. It
is observed that the greatest strength of the tsunami waves was in an east-west
direction [17].

This sequence of numerical simulations is designed to study the waves generated
from rectangular sources. We first study the phenomena with an initially raised
water level in a nearly rectangular area with aspect ratio 10. We then compare the
waves generated from sources with different aspect ratios. Finally, the effects of the
initial amplitude, the structure of initial water surface on the resulting waves are
investigated.

Let the domain of the integration be [0, 240]× [0, 240], x0 and y0 be 120, and the
initial data in this sequence of tests be based on

η(x, y, 0) = ησ(x, y) ≡ 5α2e−α2m(σm(x−x0)
2m+σ−m(y−y0)

2m),

u(x, y, 0) = 0,
(4.1)

where α = 0.1, m = 8. By taking m = 8, the initial wave profile is similar to having
water level raised in a localized area which is approximately 20/

√
σ times 20

√
σ

(aspect ratio σ) in the middle of the wave tank. The super Gaussian, instead of
a two-dimensional boxcar function, is used because its smoothness. It is worth to
note that with these initial data, the amplitude, max(ησ(x, y)), at t = 0 is 0.05

and the volume

∫ ∫
ησ(x, y)dxdy is 5

(∫
e−x2m

dx
)2

which are both independent

of the aspect ratio σ. In the simulations carried out in Section 4, 1024 modes are
taken in x and y directions and the time step size is taken to be 0.025. It is worth
to mention that in all figures, the scales used in the horizontal directions could be
very different from the scale in the vertical direction.

4.1. Start from raised water level and σ = 10. We first examine the resulting
waves started from a north-south oriented raised water level. The initial data is
(4.1) with σ = 10. The total CPU time used for this computation, with 1024×1024
modes and 3600 time steps (T = 90, ∆t = 0.025), is 21.8 hours with the use of a
Dell precision workstation 530 (2.0GHz).

In Figure 2, the initial wave profile η(x, y, 0) and its contour plot are presented to
give a view on the rectangular nature of the initial data. Similar plots are presented
in Figure 3 for t = 60. We observe from Figure 3 that the leading wave in the positive
and negative x-directions (east-west directions) are much bigger than that in the
north-south directions. In addition, there is a big trough, which might be partially
responsible to a water withdraw near beaches for the ocean waves, following the
leading wave in the east-west directions. The waves in the north-south directions
are very small. These observations are confirmed by graphs in Figure 4, which
shows the surface profile with respect to x at y = 120 and that with respect to y at
x = 120, both at t = 60.
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Figure 2. Start from raised water level with σ = 10: plots of
initial condition η(x, y, 0) with (a) surface profile; (b) contour plot.
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Figure 3. Start from raised water level with σ = 10: plots of
η(x, y, 60) with (a) surface profile; (b) contour plot.
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(a) at t=60 and y=120
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(b) at t=60 and x=120

Figure 4. Start from raised water level with σ = 10: plots of (a)
η(x, 120, 60) and (b) η(120, y, 60).
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We now analyze the locations and the heights of the leading waves. The wave
front can be observed easily from the contour plots, namely from Figures 2(b) and
3(b). At t = 60, it is in an ellipse shape. It is expected that as t increases, the wave
front will be getting more close to a circle by the fact that larger wave travels faster.
Quantitatively, let x∗(t) be the distance between the location of the x-directional
leading wave at y = y0 and the center (x0, y0) at time t, so η(120−x∗(t), 120, t) is the
first local maximum of the function η(x, 120, t) for x in [0, 240]. Similarly, let y∗(t)
be the distance between the location of y-directional leading wave at x = x0 and the
center (x0, y0). Figure 5(a) shows x∗(t) (solid line) and y∗(t) (dashed line) and figure
5(b) shows the heights of the leading waves, namely hx(t) ≡ η(120 − x∗(t), 120, t)
(solid line) and hy(t) ≡ η(120, 120−y∗(t), t) (dashed line). Another way to compare
the leading waves in x- and y-directions is by comparing them with respect to their
distances to the epicenter. Figure 6 is for that purpose which shows hx(x∗) and
hy(y∗) and the ratio between hx(x∗) and hy(y∗).
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(a) locations of the wave front
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(b) heights of the leading waves

Figure 5. Start from raised water level with σ = 10: (a) distances
between the epicenter (x0, y0) and the wave fronts of x- and y-
directional waves, x∗(t) (solid line) and y∗(t) (dashed line); (b)
heights of the x- and y-directional leading waves, hx(t) (solid line)
and hy(t) (dashed line).
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Figure 6. Start from raised water level: (a) hx(r) (solid line) and
hy(r) (dashed line); (b) hx(r)/hy(r), with r = x∗ = y∗.
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σ = 1 σ = 2 σ = 4 σ = 6 σ = 8 σ = 10
x∗(90) 95 92 90 90 89 89
hx(90) 8.8(−3) 1.2(−2) 1.6(−2) 1.8(−2) 1.8(−2) 1.9(−2)
y∗(90) 95 99 104 109 112 116
hy(90) 8.8(−3) 6.1(−3) 4.2(−3) 3.3(−3) 2.8(−3) 2.4(−3)

hx/hy(90) 1.0 2.0 3.9 5.4 6.6 7.6

Table 3. Start from raised water level and compare the locations,
the heights and the ratio between the heights of x- and y-directional
leading waves at T = 90 when aspect ratio σ = 1, 2, 4, 6, 8, 10.

The observations from Figures 2-6 are

• the height of the x-directional leading wave is much bigger than that of the y-
directional leading wave at any time t. As time evolves, the ratio ( hx(t)/hy(t))
is between 7 and 8 for t between 45 and 90 (c.f. Figures 3(a), 4, 5(b));

• the location of the leading wave form an “ellipse” shape (c.f. Figure 3(b)).
The leading waves in x- and y- directions move with about constant speeds.
With a least-square linear fitting on the data from t = 45 to t = 90 which is
chosen to avoid the immediate transition area, one finds that the semi-major
axes y∗(t) is approximately 0.97t + 28 (the approximation of the dashed line
in Figure 5(a)) and semi-minor axes x∗(t) is approximately 1.0t − 1.8 (the
approximation of the solid line in Figure 5(a)). The speed of the propagation
of semi-minor is larger than that of semi-major, so the location of the wave
fronts will form a more round shape as time evolves;

• after the leading waves have formed, namely when r-the distance from the epi-
center, larger than 40, the ratio between the heights of the x- and y-directional
leading waves is increasing with respect to r and between 6 and 8 for r between
40 and 85.

4.2. Start from raised water level with σ = 1, 2, 4, 6, 8, 10. The goal of this se-
quence of tests is to observe and analyze the effect of σ. Specifically, two-dimensional
super Gaussian functions (4.1) with σ = 1, 2, 4, 6, 8, 10, which have fixed amplitude
and volume but various aspect ratio, were used as initial water deviations. It is
observed, as reported in the cases of tsunamis, that when the longer sides of the
rectangle are on the north-south orientation, the waves in the east-west directions
are bigger. In fact, the bigger the aspect ratio between the longer sides and the
shorter sides, the bigger the waves in the east-west directions and the smaller the
waves in the north-south directions.

In Table 3, the locations of the x-leading wave at y = y0 = 120 and the y-
leading wave at x = x0 = 120 at t = 90, x∗(90) and y∗(90), the corresponding
heights, hx(90) and hy(90) and the ratio hx(90)/hy(90) are reported for each σ. It
is observed that,

• as σ increases, the heights of x-directional leading waves increase. As σ in-
creases from 1 to 10, the wave heights more than doubled (see row 3 of Table
3);

• as σ increases, the x-directional leading waves are closer to the epicenter
(x0, y0) (see row 2 of Table 3). This appears at odd at first sight until one
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realizes that it started at a different place, namely about 10 for σ = 1 and
about 3 for σ = 10 (approximately 10/

√
σ for any σ);

• as σ increases, the heights of y-directional leading waves decrease. As σ in-
creases from 1 to 10, the heights decrease from 0.0088 to about 27% of 0.0088
(see row 5 of Table 3);

• the combination of increasing heights in x-directional waves and decreasing
heights in y-directional waves, as σ increases, yields the heights’ ratio between
x-directional and y-directional waves increases. At σ = 10, the ratio is about
7.6 (see row 6 of Table 3).

It is worth to note again that these experiments are conducted with initial wave
profiles having identical volume and height, vary only with aspect ratio σ. It is then
concluded that a key factor in deciding the heights of the leading waves generated
from a rectangular source is the aspect ratio.

4.3. Start from raised water level with σ = 10, but 10 times higher than

that in Section 4.1. To test the effect of nonlinearity, an experiment with bigger
initial data, η(x, y, 0) = 10η10(x, y) is conducted. The contour plot of wave surface,
η(x, y, 60), and the wave profile with respect to x at y = 120 , η(x, 120, 60), at t = 60
are shown in Figure 7. The qualitative properties are the same as the case in Section
4.1. But quantitatively, by comparing Figure 7(b) with Figure 4(a), one sees that
the x-directional leading wave is more than 10 times bigger than the case with initial
data η10(x, y), which is a nonlinear effect. Furthermore, the x-directional leading
wave moves slightly faster than that in Section 4.1, approximately with x∗(t) =
1.13t + 0.99. The location of the y-directional leading wave satisfies approximately
y∗(t) = 0.99t + 29.
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(b) at t=60 and y=120

Figure 7. Start from higher initial water displacement: plots of
(a) η(x, y, 60); (b) η(x, 120, 60).

4.4. Start from lowered water level with σ = 10. To observe the effect of dif-
ferent types of initial water surface, this numerical simulation starts with η(x, y, 0) =
−η10(x, y), lowered water level in an approximately rectangular region. The wave
surface, η(x, y, 60), is shown in Figure 8(a) and the wave profile with respect to x
at y = 120 is shown in Figure 8(b). It is observed that the x-directional waves start
with a trough, which might be a contributing factor for the initial water withdraw
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Figure 8. Start from lowered water level with σ = 10: plots of
(a) η(x, y, 60); (b) η(x, 120, 60).

during a tsunami, and followed by a leading positive wave. The second wave is
almost well-developed at t = 60 which is very different from the case in Section 4.1.
By comparing 8(b) with Figure 4(a) in Section 4.1, it is noticed that the leading
positive wave is about the same size. Again, the y-directional leading wave is very
small when compared with the x-directional leading waves.

4.5. Start from raised and lowered water level with σ = 10. The last exper-
iment in this sequence is with the combination of raised and lowered initial water
level. It is designed to understand the effect of different types of eruptions along
the fault line, as it occurs in nature such as in the 2004 Tsunami. The initial wave
profile is given by

η(x, y, 0) = η10(x, y) tanh(10(y − y0)) (4.2)

which is, in an area of approximately 6.32 × 62.4, the northern half (y > 120) has
a raised water level and the southern half (y < 120) has a lowered water level. The
hyperbolic tangent function is used for its smoothness.
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Figure 9. Start from raised and lowered initial surface: plots of
(a) η(x, y, 60); (b) η(x, y, 90).
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Figure 10. Start from raised and lowered initial surface: plots of
wave profile at y = 95.88, 105.3, 134.0, 149.1 and at t = 90.
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Figure 11. Start from raised and lowered initial surface: plots of
(a) heights of x-directional waves and (b) locations of the peaks of
the x-directional waves.

The water profiles at t = 60 and t = 90 are plotted in Figure 9, one in the format
of surface profile and one in the format of contour plot. The resulting wave in the
northern half starts with an elevation and then a trough, and in the southern half, a
trough and then an elevation. The y-directional waves are significantly smaller than
the x-directional waves as in all the cases with large aspect ratios. The x-directional
waves at y = 95.88, 105.3, 134.0, 149.1 are plotted in Figure 10 to show in details



1184 MIN CHEN

the different structures of the waves when varying y. The second wave could be
bigger than the first wave depend on the time and the y-location. An example of
such case is at y = 134.0 where the x-directional wave starts with an elevation, then
a big trough and then followed by a bigger wave. Such phenomena were observed
during tsunamis.

In Figure 11(a), the heights of the x-directional positive waves in the northern
half (dashed line) and in the southern half (solid line) are plotted for time t after
the initial transition period. The southern half has larger waves, although it started
with a trough. In northern part, the first wave is bigger until t is about 69. From
that point, the second wave is bigger. By comparing Figure 11(a) with Figure 5(b),
it is observed that for t < 80, the maximum amplitude of x-directional wave (which
happens in the lower half) is bigger than that in the case with only raised water
level. The locations where the maximum wave heights occur in the northern and
southern halves are plotted in Figure 11(b).

5. Two-dimensional periodic wave patterns. In this section, two dimensional
wave patterns are generated by boundary conditions. It is designed to simulate the
waves generated by wave makers, exactly as in the laboratory experiments or in the
fields [18]. It is worth mentioning that no filters are used in our computation, as
compared to previous numerical simulations such as in [16], and zero initial data,
instead of an initial data which is close to the steady solution of a traveling wave,
is used.

There are three parameters, which are adjustable and called control parameters
in experiments, related to the input boundary conditions at the wave maker end
y = 0. We denote them by kx the x-directional wave number, kt the t-directional
wave number which corresponding to the frequency of the wave maker and ǫ the
amplitude of the wave at the wave maker which corresponding to the wave peddles’
amplitude. The boundary condition is given by




η(x, 0, t)
u(x, 0, t)
v(x, 0, t)


 =




ǫ sin(ktt) cos(kxx)

− ǫkx√
k2

x+k2
y

cos(ktt) sin(kxx)

ǫky√
k2

x+k2
y

sin(ktt) cos(kxx)


 (5.1)

where (kx, ky, kt) satisfies the linear dispersion relation, namely

(1 +
1

6
(k2

x + k2
y))2k2

t − (k2
x + k2

y) = 0. (5.2)

For any fixed kx and kt, ky which is positive is determined by (5.2). When more
than one choices are given, the smaller one will be used so the solution is in the
long wave range.

In this set of simulations, the computation domain is taken to be (0, 2π
kx

)×(0, 200).
The boundary condition at y = 200 is taken to be zero and the boundary conditions
across the wave tank are taken to be periodic. Several separate computations were
conducted with (BC2) and the results showed no difference with the computations
performed with (BC1). The solutions obtained with (BC1) actually satisfy the
boundary condition (BC2) (see also Figure 14).

With this set of initial and boundary conditions, the consistency conditions be-
tween the four sides of the boundaries are satisfied. But the consistency condition
between the initial condition and the boundary conditions at y = 0 is violated in u
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component. Since it did not generate any trouble during the computations, we did
not smooth it out artificially.

The computation is conducted with 256 modes in x-direction, 1024 modes in y-
direction, and time stepsize 0.04. When the functions or surfaces are plotted against
x, two or more x-periods are graphed for clarity.

5.1. Comparison with an explicit approximate solution of small ampli-

tude. Using a perturbation approach, it is shown in [13] that (1.3) admits two-
dimensional doubly periodic solutions. The corresponding traveling solution of lin-

earized equations with this set of boundary condition (when ǫ small) reads




η(x, y, t)
u(x, y, t)
v(x, y, t)



 =




−ǫ sin(kyy − ktt) cos(kxx)

− ǫkx√
k2

x+k2
y

cos(kyy − ktt) sin(kxx)

− ǫky√
k2

x+k2
y

sin(kyy − ktt) cos(kxx)


 (5.3)

which is the leading term of the full perturbation solution.
We now compare the numerical solution of the partial differential equations with

(5.3). The boundary data in the numerical simulation is taken to be (5.1) with
ǫ = 0.05, kt = 0.5 and kx = 0.13, which yields ky = 0.5064, and the computation
domain is [0, 48.33] × [0, 200]. The solution at t = 170 is plotted in Figure 12(a).
The pattern is moving in the y direction, downward. The crest is lighter and the
trough is darker. It is clear that a steady traveling two-dimensional doubly periodic
pattern is formed. Figure 12(a) demonstrates numerically the existence and stability
of two-dimensional doubly periodic waves of small amplitude. Figure (12)(b) shows
the corresponding leading term of the perturbation solution (5.3) with t = 170. By
comparing the two patterns, one sees that the wave numbers in x- and y- directions
and the traveling speed of the patterns are about the same, which confirms the
theoretical analysis in [13] and also validates again the numerical algorithm.

5.2. Wave patterns with various ǫ. The goal of this subsection is to investigate
the changes of wave patterns when the wave paddles’ amplitude changes. The same
set of parameters as in Section 5.1 are used, except in addition to ǫ = 0.05, we will
also study the cases with ǫ = 0.16, 0.3 and 0.5.

The wave patterns for ǫ = 0.16 and ǫ = 0.50 at t = 170 are shown in Figure 13.
Together with Figure 12(a), we can conclude that larger ǫ generates pattens with
bigger y-wave length. To be more precise, we compute four main parameters of the
resulting wave patterns and list them in Table 4 for each ǫ.

In Table 4, Fmax denotes peak value of the pattern, which is computed by aver-
aging three peak values, A denotes the amplitude of the pattern, A = Fmax −Fmin,
where Fmin is computed by averaging three trough values. Ly denotes the wave
number in y-direction and Lt denotes the wave number in t-direction. For ǫ small,
Fmax should be close to ǫ, A to 2ǫ, Lt to kt and Ly to ky. It is observed that Lx,
which is the wave number in x direction is the same as kx for the computations we
performed.

From Table 4, one sees that Fmax and A increase as ǫ increases, but A is less
than 2ǫ for ǫ = 0.16, 0.30 and 0.50. More precisely Fmax > ǫ and Fmin > −ǫ. Ly

is a decreasing function of ǫ, which is equivalent to say that y-wavelength is an
increasing function of ǫ. Lt is almost a constant, close to kt, for all ǫ. The speed
the pattern moves in y-direction is therefore increasing as ǫ increases, which can be
observed by investigating Figure 12(a) and Figure 13.
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Figure 12. (a) Numerical solution of (1.3) with boundary condi-
tion (5.1) where ǫ = 0.05, kx = 0.13, kt = 0.50, ky = 0.5064 and
t = 170; (b) (5.3) with the same parameters.

Figure 13. Surface profiles at t = 170 with (a) ǫ = 0.16 and (b)
ǫ = 0.5.
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ǫ Fmax A Ly Lt

0.05 0.057 0.102 0.51 0.499
0.16 0.20 0.31 0.49 0.499
0.30 0.41 0.54 0.45 0.495
0.50 0.65 0.78 0.38 0.497

Table 4. Specifications of wave patterns generated with various ǫ
when kx = 0.13, kt = 0.50 which yield ky = 0.5063.

To see more details of the wave profile, two slices of the wave in the case ǫ = 0.50
are plotted. In Figure 14(a), (η, u, v)(x, 118.3, 170) is plotted. We remark that at
x = 0 and x = L, u is zero, η and v are flat, which show that the solution satisfies
(BC2) at y = 118.3 and t = 170, which is a randomly chosen point. The wave
profile (η, u, v)(0, y, 170) against y is plotted in Figure 14(b). We observe now that
u is zero for all y. It is also observed that in the region where the pattern is formed,
y ∈ (100, 150) (see also Figure 13(b)), the crest is narrower and the trough is more
flat, which corresponds precisely what were observed in laboratory experiments.
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Figure 14. (a) Values of (η, u, v) at y = 118.3 and (b) at x = 0.
Both plots are at t = 170 and with ǫ = 0.5.

In order to shed some light on the stability of the code, additional calculations
are performed with various time step sizes in the case of ǫ = 0.5 with 256 × 1024
modes in the domain [0, 48.3] × [0, 200]. The code works perfectly for ∆t less or
equal than 0.3, but blows up for ∆t = 0.4.

5.3. Wave patterns with various kt and with various kx. Calculations for
various kt, with kx and ǫ fixed are also performed. Two samples of wave profiles
at t = 170 are shown in Figure 15, for kt = 0.40 in (a) and for kt = 0.60 in (b),
and both with ǫ = 0.16 and kx = 0.13. Together with Figure 13(a) which is for
kt = 0.50 with the same kx and ǫ, one observes that Ly increases as kt increases.
With a similar calculation as in Section 5.2, we also observe that Fmax and A
decreases as kt increases. Furthermore, the transition period is longer with smaller
kt.

Similar calculations are conducted for various kx with kt and ǫ fixed. Surface
profiles for kx = 0.20 and kx = 0.30 are shown in Figure 16 with kt = 0.50 and
ǫ = 0.16 and at t = 170. Three and four x-periods instead of two are shown, just
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Figure 15. Wave profiles for kt = 0.40 and kt = 0.65, and both
with ǫ = 0.16 and kx = 0.13.

for balancing the x and y coordinates. Together with Figure 13(a), we observe that
Ly decreases as kx increases and the change in A is small, if there is any. In all
cases in Section 5, it appears that Lx = kx, Lt is close to kt.

The goal of this section is to shed some light on the wave patterns generated with
only boundary data. Detailed analysis on the relationship between Fmax, A, Lx,
Lt and Ly (a “nonlinear” dispersion relation) and the comparison with laboratory
experiments and with other water wave equations will be carried out elsewhere.
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