Lesson 36 (7.8-7.7)

Section 7.8 (continued)

From last time, we were looking at the system:

$$\vec{x}^{\prime}=\begin{pmatrix}1&1\\ 0&1\end{pmatrix}\vec{x}$$

The matrix has repeated eigenvalues $\lambda=1, 1$. However, we were missing one eigenvector, as the only true eigenvector found was $\vec{v}=\begin{pmatrix}1\\ 0\end{pmatrix}$.

The first solution is:

$$\vec{x}^{(1)}=e^{\lambda t}\vec{v}=e^{t}\begin{pmatrix}1\\ 0\end{pmatrix}$$

Revisiting the scalar case for comparison, the equation $y^{\prime\prime}+2y^{\prime}+y=0$ has a characteristic equation $r^2+2r+1=0$ with repeated roots $r=-1, -1$. The general solution is $y=c_{1}e^{-t}+c_{2}te^{-t}$.

Attempting a similar approach for the system, let's try $\vec{x}^{(2)}=te^{t}\begin{pmatrix}1\\ 0\end{pmatrix}$. Substituting this into $\vec{x}^{\prime}=A\vec{x}$ gives:

$$\vec{x}^{\prime}=(te^{t}+e^{t})\begin{pmatrix}1\\ 0\end{pmatrix}=\begin{pmatrix}te^{t}+e^{t}\\ 0\end{pmatrix}$$ $$\mathbf{A}\vec{x}=\begin{pmatrix}1&1\\ 0&1\end{pmatrix}\begin{pmatrix}te^{t}\\ 0\end{pmatrix}=\begin{pmatrix}te^{t}\\ 0\end{pmatrix}$$

Since $\begin{pmatrix}te^{t}+e^{t}\\ 0\end{pmatrix} \ne \begin{pmatrix}te^{t}\\ 0\end{pmatrix}$, the trial solution $\vec{x}^{(2)}=t\vec{x}^{(1)}$ does not work.

Finding the Second Solution

To find the second linearly independent solution for $\vec{x}^{\prime}=A\vec{x}$ when there is a repeated eigenvalue but only one eigenvector $\vec{v}$, we seek a solution of the form:

$$\vec{x}^{(2)}=te^{\lambda t}\vec{v}+\vec{u}e^{\lambda t}$$

Plugging this into $\vec{x}^{\prime}=A\vec{x}$ and equating the coefficients of $te^{\lambda t}$ and $e^{\lambda t}$ yields two equations:

The vector $\vec{u}$ is called a **generalized eigenvector**. It gets mapped to the true eigenvector $\vec{v}$ by the matrix $(A-\lambda I)$.

Applying to the Example

Returning to $\vec{x}^{\prime}=\begin{pmatrix}1&1\\ 0&1\end{pmatrix}\vec{x}$, we have $\lambda=1$ and $\vec{v}=\begin{pmatrix}1\\ 0\end{pmatrix}$.

The first solution is $\vec{x}^{(1)}=e^{t}\begin{pmatrix}1\\ 0\end{pmatrix}$.

The second solution is $\vec{x}^{(2)}=te^{t}\begin{pmatrix}1\\ 0\end{pmatrix}+e^{t}\vec{u}$, where $\vec{u}$ satisfies $(A-\lambda I)\vec{u}=\vec{v}$.

Substituting the values:

$$\left(\begin{pmatrix}1&1\\ 0&1\end{pmatrix}-1\begin{pmatrix}1&0\\ 0&1\end{pmatrix}\right)\vec{u}=\begin{pmatrix}1\\ 0\end{pmatrix}$$ $$\begin{pmatrix}0&1\\ 0&0\end{pmatrix}\vec{u}=\begin{pmatrix}1\\ 0\end{pmatrix}$$

Let $\vec{u}=\begin{pmatrix}u_1\\ u_2\end{pmatrix}$. This system is $u_2=1$ and $0=0$. We can choose any value for $u_1$. Choosing $u_1=0$, we get the generalized eigenvector $\vec{u}=\begin{pmatrix}0\\ 1\end{pmatrix}$.

The second solution is then:

$$\vec{x}^{(2)}=te^{t}\begin{pmatrix}1\\ 0\end{pmatrix}+e^{t}\begin{pmatrix}0\\ 1\end{pmatrix}$$

The **general solution** is:

$$\vec{x}=c_{1}e^{t}\begin{pmatrix}1\\ 0\end{pmatrix}+c_{2}e^{t}\left(t\begin{pmatrix}1\\ 0\end{pmatrix}+\begin{pmatrix}0\\ 1\end{pmatrix}\right)$$

In component form, this is $\begin{pmatrix}x_{1}\\ x_{2}\end{pmatrix}=\begin{pmatrix}c_{1}e^{t}+c_{2}te^{t}\\ c_{2}e^{t}\end{pmatrix}$.

As $t\to\infty$, both $x_1$ and $x_2$ go to $\infty$ (except for the trivial solution $c_1=c_2=0$). Solutions go to $\infty$ without following any particular straight line. However, they approach the origin as $t\to-\infty$.

The ratio of the components as $t\to-\infty$ is:

$$\lim_{t\rightarrow-\infty}\frac{x_{2}}{x_{1}}=\lim_{t\rightarrow-\infty}\frac{c_{2}e^{t}}{c_{1}e^{t}+c_{2}te^{t}}=\lim_{t\rightarrow-\infty}\frac{c_{2}}{c_{1}+c_{2}t}=0$$

This shows that solutions approach the origin along the line $x_2=0$, which is the line corresponding to the true eigenvector. This true eigenvector is a line of zero slope. The phase portrait shows this behavior (solutions go to the origin along the true eigenvector, making the generalized eigenvector "invisible" in terms of direction).

The phase portrait shows solution curves moving to plus/minus infinities and all coming out of the origin along a line parallel to the true eigenvector


Section 7.7 Fundamental Matrix

Consider a system $\vec{x}^{\prime}=A\vec{x}$ whose two linearly independent solutions are $\vec{x}^{(1)}=e^{2t}\begin{pmatrix}2\\ 1\end{pmatrix}$ and $\vec{x}^{(2)}=e^{-t}\begin{pmatrix}1\\ 2\end{pmatrix}$ (for the matrix $A=\begin{pmatrix}3&-2\\ 2&-2\end{pmatrix}$).

The general solution is $\vec{x}=c_{1}\vec{x}^{(1)}+c_{2}\vec{x}^{(2)}$. This can be expressed in matrix form:

$$\vec{x}=\begin{pmatrix}2e^{2t}&e^{-t}\\ e^{2t}&2e^{-t}\end{pmatrix}\begin{pmatrix}c_{1}\\ c_{2}\end{pmatrix}$$

The matrix $\Psi(t)$, whose columns are the linearly independent solutions, is called the **fundamental matrix**:

$$\Psi(t)=\begin{pmatrix}2e^{2t}&e^{-t}\\ e^{2t}&2e^{-t}\end{pmatrix}$$

Thus, $\vec{x}=\Psi(t)\vec{c}$, where $\vec{c}=\begin{pmatrix}c_{1}\\ c_{2}\end{pmatrix}$.

Solving Initial Value Problems (IVPs)

The vector $\vec{c}$ is determined by the initial conditions $\vec{x}(t_0)=\vec{x}_{0}=\begin{pmatrix}x_{1}(t_{0})\\ x_{2}(t_{0})\end{pmatrix}$.

Substituting the initial condition into the general solution:

$$\vec{x}(t_{0})=\Psi(t_{0})\vec{c}$$

We can solve for $\vec{c}$:

$$\vec{c}=\Psi^{-1}(t_{0})\vec{x}(t_{0})$$

Note that $\Psi(t_0)$ is invertible because the solutions are linearly independent, meaning the determinant $\text{det}(\Psi(t))\ne 0$ for all $t$.

Substituting $\vec{c}$ back into the general solution gives the solution to the IVP:

$$\vec{x}(t)=\Psi(t)\Psi^{-1}(t_{0})\vec{x}(t_{0})$$

We define $\Phi(t)$ as the fundamental matrix that satisfies the initial condition $\Phi(t_0)=I$ (the identity matrix):

$$\Phi(t)=\Psi(t)\Psi^{-1}(t_{0})$$

The solution to the IVP can then be written as:

$$\vec{x}(t)=\Phi(t)\vec{x}(t_{0})$$

This $\Phi(t)$ is sometimes called the **state transition matrix**.

If we choose $t_{0}=0$, the solution to the IVP is $\vec{x}(t)=\Phi(t)\vec{x}(0)$.

Matrix Exponential

For the system $\vec{x}^{\prime}=A\vec{x}$, the matrix $\Phi(t)$ with the property $\Phi(0)=I$ is the **matrix exponential** $e^{At}$.

$$\Phi(t)=e^{At}$$

This is analogous to the scalar case for $y^{\prime}=ay$ with $y(0)=y_{0}$:

$$y(t)=Ce^{at}$$

Applying the initial condition $y_0=Ce^{a(0)} \implies C=y_0$. The solution is $y(t)=y_{0}e^{at}$, or $y(t)=e^{at}y_{0}$.