WARNING: INCOMPLETE

Vocab

								Maley		
٠	Dimonsion	of	Null space	# of free Vari	ables	R+ N= n	_ columns of given) Indana		
•	Dimension	of	Rank # pi	10t Columns		Obes Rank	+ NUII = 50m?			
•	Linearly	Lin	lependence							
	· det	, ≠0								
	· lin.	IDP	Columns Original	Mutrix Columns	of Columns w	nin pivots				
		<u>[</u>		• -;] → [°	· • • •]					
		1	DP alumns							
	· Lin. ·	IDP	Rows Eghelon	rows that how	e pivots					
		1, 3			3	P Rows				
	A	Fli) Columns and	rows						
		ŀ	s é] -> [s io] -> [3 6 10						
~										
· ŀ	Sasis Ve	Ctor's	: Originalis Ma	thix columns the	xt align with	the reduced f	Natilikes pivots			
	٨		Each veular regi	utres a pivot						
	Ashing	for	columns :	use original						
	Asking	tor	iows : U	se reduced						
. c	0.0.1	040	Callea has				. C Dec u	1100 1000		
-	yun u	nau	CONCINON	r vectors	which use	VNUTIPLES	or UUSIS	VELTORS		
L	nfinite s	olut	ions matax	nas free vo	mables					

Sub-space:

· closed under addition and scalar multiplication

					_																	
deter	minant	rules :										Ôſ	Ny S	quare	: Ma	trix :						
	det	(A ^{-'})=	det (A)										Ū	-1	nvert	able	-> i	nvas	c			
	det	(NA) =	h ^N det	(A)	N: # (ows in	matrix							- C	an fi	nd d	eer	inal	it			
	dat	(1 -	anti																			
	(ICC	(A) -	UEEL																			
	·Ma	trix of	<i>erati</i>	ons:																		
		_		Adding	y to	ſοω	dorsni	+ Cha	ange	det												
		_		- Multipi	ying (ω ο	r Colu	MU	by so	methic	י פ	Multip	y d	et								
		_		- Eacn	row t	iwi tel	n Mul	tiply	det	by (-1)											
	• Cet	[A]=	ø -	⇒ m can s	there	iS	0 र	210	ιοω													
		_			_																	
		_																				
Other	equatic	ins :																				
· dim(a	nn)+ dim	(nu11) =	dim (c	al)																		
· Room	(A ⁺) =	Ronk ((A)																			
		_																				
		_																				

esson 15-30 (3.4-6.1)	
3.4 Matrix Operations	
$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} a_{12} & a_{22} \\ a_{22} & a_{22} \end{bmatrix}$	
Scalor Multiplication:	· Vectors in Matrix
$A_{2}\left[\begin{smallmatrix} 1\\ 2\\ 3\\ 1\\ 3\\ 1\\ 3\\ 1\\ 3\\ 1\\ 3\\ 1\\ 3\\ 1\\ 3\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	Vector: i column or row of Metrix
• Subtaction $(1 + 3) = ($	ā. [1] 5. [1 2 347
A[54] - B[21] = A[34] + D(1)[21] = C + 3	$ = \frac{1}{2} = \frac$
· Matrices multiplication	3x, + 4xe + 0 = 3
Rew x column	
2.33-000 000-33-35 1 	
each column element :: Short with 1st A row then work through a	clumns of B Metrix, down each column then to next Column ext now of A and Wake through all B Columns again
$E_{X} \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} \times \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$	
$R_{\mu}(c, R_{\mu}\epsilon_{\nu})$	
Matrix Equation = Az = B	
Ex) [[]] [] []	
Lo 2 publis, 5 verables 3 free veriables	
# Variables - # Avois = # file_ Variables	
Xo=t Xu=5 Xs=r	
$X_{1} = -4X_{3} + 7X_{4} - 4X_{5} = -4f + 4S - 46$	
3.5 Tourse of Matrices	
Identity Matrix I = [;] Excepting Every and , and on man despinant	
If A is $\partial X = 2$ then $A^{-1} = \frac{1}{6d - Dc} \left[\frac{d}{c} - \frac{D}{c} \right]$ If $A^{-1} = x_{23}$ $det(A) \neq 0$	
~> Unit (det (A)) /	

۰Tíia	ngular	Matrix:	$\left[\right]$	upper to	ingic												
	5		[se]	lower to	музіс												
		<u>መደን \ - /፡፡</u>	10 (01)		-												
	Clet []	05)/-(0 1 2 3	Alon	a Column													
	A • (0 4 5 0 6)J	, de	:tA= ()	145	- 000	6) = 24		_							
																	_
(Tran	gular or di	agonal	Matrix :	detan	minant	is prod	uct of Ma	in Viagonal e	ekmants							
	bauss	sian elimin	ation f	Produces	triangul	ar Mutri	k			Example	٢,	-, , 7					
	۲ آ	Use climina	tion,							0 A=		6 4 2 4					
	2 3) produce the) Find det	angular	Matvix							[0]	-63]					
	,	Rules								<u>مورد (</u>	(A., R.)	2 5 4	de	ulerm, syn	crange		
		I) Exchange		المراجع	n Sian	of det	minent				Ľ,	q - 2 6 2 - 6 3	ل و				
		Ex)	.[.1]	 					6	2 (R. 56	1 24	1				
			[34] 	def	3=2					· (-1)8j +	K, [0	2 -6 -2	J				
											<u>(</u>) t	2) R. + R3	Γ! '	2 4 7			_
		2) Multiply(y one ro	v by ∦	(1≠0)	Meltipy	detominant	by same K			Ī	-2)R2+Ry		-12 -2			_
			A= [3 4]	del A =	3-3	\$						F		,		
			3= l	ن [^ب د	12+ D = -	2 = 10(d	kt A)				(5)	-1)Rs+R4		30			
	3) Multiply	one row	and a	adding	to anoth	er obesni	+ Change d	elsmoant				00	05-			
		٨÷	[3]	de+A=	-z								determina	* 15 (1)(1)[-	12)(5)=-60		
		(-3)	R1+R1	$\begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix}$	Trianguic	w, deter	ninant is	()1-2)= -:	2				ONC SLAP	ortier so	de+ A= - (·	60) - 60	
	Ta	05 005 0	2: 6		c		<i>6</i>										
	110	rispua		WINCH	COUM	n ang	(01.2) \/	JGFOR'S									
					27		Δ Τ (<u>ن</u> با با با						_			
	Ex	omple:	A =	67 4	, å J		A = [ل دُنْ هُ دَ									_
														_			_
	4.1	The Ve	ictor	Space	- R ³												
	4.1 Linea	The Ve	ictor	Space	- R ³	Witage 0	f the other										
	4.1 Linea	The Ve C Depende	ictor int: or	Space le vector a=D=6	- R ³	οū+nマ=	f the other										
	4.1 Linea Linex	The Ve Depende	ictor int: or it: Zf	Space Ne vector a = D = 6	- R ³ 5 500-1	mutaρε ο οũ+ bΫ =	f the other	33UHtep									
	4.1 Linea Linex	The Ve C Depende y noteende	ctor cot: a t: zf	Space ve vector a • D = 6 v = 5	- R ³ s sour j tren	ausae ause au au au = tu =	f the other © 15 only ∑-5 7										
	4.1 Linea Linex	The Ve Depende y noternoo	ctor ot: or t: zf	<u>Space</u> e vector a+D=0 V={	- R ³ = sour 1 = tren = -5 -1 -1	mutaae o 027+07 = W =	f the other © 13 only [-4]]	201U-1100									
	4.1 Linea Liner Excent	The Ve Depende y ndepende he ti = { Are ++	ictor ent: or +: zf [*] ney lin	Space e vector a×D=e V={ early ine	- R ³ 15 5000 - 1 1760 	nuiaΩe ο Ωū+D7 = ₩ = 17 ?	 if the other i0 is only 	2010-11:00									


```
4.4 Bases and Dimensions of Vector Space
```

For R° you need at least in vectors, but in vectors May not be enough

- *Exactly N if linearly independent
- . More than n if not linearly independent

Basis: linearly indp. Vectors

Example: Joluton space of x, -2x, -5x, = @ Joluton space: Contains All solutions $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ 2x, -3x, -13x, = @

Solve: $\begin{bmatrix} 1 & -2 & -5 & 0 \\ 2 & -3 & -13 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -2 & -5 & 0 \\ 0 & 11 & -3 & 0 \end{bmatrix}$ Row λ : $\chi_{1} - 3 \times_{3} = 0$ $\chi_{2} = 3 \times_{3} = 3r$

Column 3 no pivo+ : Xs=r (ree voriable) X,= 2 xz + 5×s = 6r+ 5r= lir

ROW 1: X, - ZX3-5 X3=0

50 $\vec{\mathbf{x}} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$

Solution space has basis [3] and is one-dimensional Choosing X, or Xz to be free gives alternative base

4.5 Row and Column spaces

To find boosts for Row(4), perform row op to get echelon Matrix, then plot rows

To find Dasis for Col(A), perform row operations and identify pivot columns in echelon form, then the collesponding columns in the original Matrix form a Dosis for Col(A)

 $E xample : A = \begin{bmatrix} 1 & 1 & -1 & 1 \\ 3 & 5 & -9 & 1 \\ 1 & 6 & -29 & -11 \end{bmatrix}$ Find Dasis for Row(A) and Col(A)

 $\frac{R_{022} \text{ op}}{\left[\begin{array}{c}1\\0\\0\\0\end{array}\right]} = \frac{1}{2} \frac{1}{2$

5.1	Intro	to	Linear	Second	Order	Equations	
-----	-------	----	--------	--------	-------	-----------	--

Wionskian : W= + 3 | if + 0 linearly indp

Characteristic polynomials

y'=r, y"=r², etc.

Example: y"+3y'+2y=0

haracteristic eq: (1+31+2=0	Solutions y,= e ^{rix} = e ^{-2x}	teneral Solution: U= Cie ^{-2*} + C.e ^{-*}
((+ 2)((+1)=0	yz = e ^{cz*} = e ^{-×}	
(1=) (1=)		

This is the case when it's are <u>real and distinct</u>

Example: Repeated Roots Case

4y'+ 4y'+ y = 0

Chalacteristic eq: 41 + 41 + 1 = 0 (if you dogot, just plug yoe" into equation the Characteristic eq. will result)

(2r+1)(2r+1)=0

fi= 2 fr=-2 repeated

Form y, as usual y.=er:x=e***

General Solution y= C,e=""* + C.x xe=""*

5.2 General Solutions of Linear Equations

 \mathbb{R}^{m} - order linear: $y^{(n)} + \underline{p}_{*}(x)y^{(n-1)} + \underline{p}_{*}(x)y^{(n-2)} + \dots + \underline{P}_{n-1}(x)y' + \underline{P}_{*}(x)y = F(x)$

Can't Contain y

Ex) y"+ x"y" + exy' + 3y = cos(x)

Principle of Superposition : The NT-arear homogeneous eq. has a linearly indip solutions

Jily=, y3,...,yn -The kneer combination of theme → general solution y= Ciy,+Ciye+Ciye

For higher number of functions, the Wranshian Works better

If $W\neq 0$ for an interval, then the functions are knownly independent. If W=0 for all x on an interval, then the functions are knownly dependent on this interval

For example: f. I, f. = x, f. = x

$$W = \begin{bmatrix} 1 & x & x \\ 0 & 1 & 2x \end{bmatrix}$$

 $\det W = 1 \begin{vmatrix} 1 & 2x \\ 0 & 2 \end{vmatrix} = 0 \begin{vmatrix} x & x^4 \\ 1 & 3 \end{vmatrix} = 0 \begin{vmatrix} x & x^2 \\ 1 & 2x \end{vmatrix} = 0 \neq 0 \text{ for Any } x$

50 f_1, f_2, f_3 or independent for all x's \rightarrow on $(-\infty, \infty)$

Reduction of Order liven y" + pexiy + q exiy =0 If we know (somenow) one solution -> y, The second solution can be founded by you V(x)y. Finding V(x) -> finding y2 Example: x'y' + xy' - 9y = @ (Evier's equation -> non constant coefficients) y,=x' food y, Assume y,= Vy,= Vx* plug into the equation j,' = 3vx+ v'x* y="= 6v×+ 6v'x+v*x= $\chi^{2}(6vx+6v'x^{2}+v'x^{3}) + \chi(3vx^{2}+v'x^{5}) - 9(vx^{3}) = 0$ 64x3+ 6v'x + v"x5+ 3xx3 + v'x"-9xx3 = 0 X^{\$}V"+7v'×=0 Revonte: V" = -7V'X' <u>(N)</u> - 7(v) Sepanable in v'and x V = ∫(x⁻³dx $V = \frac{-c}{6} x^{-6} + D$ choose ANY C D that is convenient (except those that lead to V=0) Choose C=-G . V= x⁻⁶ $S(y_{1} = Vy) = x^{-6}x^{3} = x^{-3}$ 5.3 Homogeneous Equations with Constant Coefficients As long as the coefficients of the linear equation are constant we can always assume

Solutions of the form y=erm

y"+ 5y'- 2y ≈ Ø }			_
y"" + 10y" - 5y'+ 17=0 { 4=e'* are	the solutions	Example : 23"-33"=0	
y ⁽¹⁾ - 100 u = 0		$dr^* - 3r = 0 \longrightarrow f(2r - 5) = 0 \longrightarrow f_1 = 3r = (destinct)$	
		Solutions · y, · C ^{r.a} 30 y, · i	
and order: au" thu' + Cu - a > Champion		y, e ^{en} 50 y, e ^{en .}	
no oldi ugʻogʻogʻogʻogʻogʻogʻogʻogʻogʻogʻogʻogʻog	the eq. (at + or + o	[Eased askinon: y. c. + C. 5 ^{New}]	
3rd order: ay"+by"+cy'+dy =0	→ ar*+br*+ cr+d=0	Example = "4" - 12y' + 9y = 0	
	Three Poots: C, Ce, Ce (nameted real, distinct real)	4r'-12r + 9 + 0	
ntD		(21-3)(21-3)=0 (1=3/2, (1=3/2 (repeated)	>

Nth order : N roots Solutions are y, = erix, y==erex, ..., y==erex

y,=e^{r,*}=e^{34*}

y₁ = Xe^r = Xe^r • xe^{***}

General Solution : y : C. e + Cz × e + Cz × e

Euler's Formula: C"= Cos x + 1 Sinx

e (bx) = (050x + i 5in bx

elarbi)x = e e e ilor) = e ar (cosbx + i Sinbx)

• If r= a+Di is a root of the Characteristic eq. then 50 is r= a+Di (complex roots always appear in conjugate pars)

(¹ + 100 = 0 → (¹ = -100 f₁ = 10; f₈ = -10;

4.= efx = e Note: e'x = Cosx + 15:0 x

 $\begin{array}{c} \underline{y} = \cos i \omega_{x+1} \sin (i \omega_{x}) \\ \underline{y}_{z} = e^{-i \omega_{x}} = e^{-i (-\omega_{x})} \\ \underline{y}_{z} = \cos(-i \omega_{x}) + i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) + i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_{x}) \\ \underline{y}_{z} = \cos(-i \omega_{x}) - i \sin(-i \omega_$

General solution: y= C, [cosx + isinx] + C. [cosx - isinx]

 $y = C_{1} \left(\log_{10} x_{1}^{1} + 15 \ln_{10} (10x_{1})^{1} + C_{2} \left((05 (10x_{1})^{-15 \ln_{10}} (10x_{1})^{1} \right) 6 \cos(10x_{1})^{1} \sin(10x_{1})^{1} \right) 6 \cos(10x_{1})^{1} \sin(10x_{1})^{1} = C_{1} \left(C_{1} + C_{2} \right) \cos(10x_{1})^{1} + C_{2} \left(C_{1} + C_{2} \right) \cos(10x_{1})^{1} = C_{1} \left(C_{1} + C_{2} \right) \cos(10x_{1})^{1} + C_{2} \left(C_{1} + C_{2} \right) \cos(10x_{1})^{1} = C_{1} \left(C_{1} + C_{2} \right) \cos(10x_{1})^{1} + C_{2} \left(C_{1}$

5.4 Mechanical Vibration · Mass - spring - damper spring wants to restore x to equilibrium m Ground (no faction) -provides force of FS = - KX Damper resists velocity Fa = - cx' MX"+Cx'+ Kx = 0 and order linear constant coefficient eq. M: Mass K: spring constant C: Damper / damping Example Mass Big, no damper. Spring such that force of 40N stretcnes it by 5cm. Solve for moss position if x(0) = 0, $x'(0) = 10^{m/s}$ _MX"+Cx'+Hx=0 M=8 C=0 K= to be found Hoolie's Law: F = Kx cauge from equilarian 40= K (0.5) Sur a m K= 800 → 8x"+800 x=0 (² + 100 = Ø (= ± 10; $x(t) = C_1 Cos(10t) + C_2 Sin(10t)$ X(0) = 0 , X'(0) = 10 $X^{i}(t=) = -10C, Sin(t=) + C_{2} los(10t=)$ $\chi(0) = 0 \longrightarrow 0 = C_1 \operatorname{cos(o)} + C_2 \operatorname{sin}(v) = C_1$ x'(0)=10 = -10C, sin (0)+10C2 cos (0) = 10C, ---> C2=1 X(t) = Sin(10t) x(=) Period ==== Circ. fing. : 10 rad Is 78 7 2 Amplitude: 1 Frequency: ported = 5 He (# gues per second)

