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Abstract. We study an inhomogeneous generalization of the classical corner
growth in which the weights are exponentially distributed with random param-
eters. Our interest is in the large deviation properties of the last passage times.
We obtain tractable variational representations of the right tail large deviation
rate functions in both the quenched and annealed settings and estimates for left
tail large deviations. We also compute expansions of the right tail rate functions
near the shape function, which are consistent with the expectation of KPZ type
fluctuations in an appropriate regime.
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1. Introduction

Let W = {W(i,j) : i,7 € N} be a collection of nonnegative real random
variables (weights) with joint distribution P. We consider a growing random
subset of N2, Initially, this subset is empty and the growth rule is as follows: at
time zero, we start a countdown of length W (1, 1); when this countdown ends,
we add (1,1) to the subset. This process then iterates: once the bottom and
left neighbors (if they exist) of a site (i,j) have been added, a countdown of
length W (i, 7) begins; when it ends, (i, ) joins the subset.

Our interest is in the last-passage times G = {G(3,j) : ¢,5 € N}, defined
recursively by

G(i,j) =Gl —1,5) vG(i,j — 1)+ W(i,j), G(:,0) =G(0,5) =0, (1.1)
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for 4,7 € N. These random variables encode the evolution of the set described
above in the sense that (i,j) € N* is added to the set at time ¢t = G(4,5). They
can also be viewed as describing a directed last-passage percolation model since
(1.1) is equivalent to

G(m,n) =  max Z W (i, j), (1.2)

mell(1,1),(m.n) (if)er

where I1(; 1) (m,n) is the set of all directed paths from (k,1) to (m,n). A directed
path m € I 1) (m,n) is a finite sequence (u;, v;)ie[p] in 7? such that (u1,v;) =
(k, 1), (up,vp) = (m,n) and (wi41 — w4, vit1 — v;) € {(1,0),(0,1)} for 1 < i < p.

The corner growth model also maps to a generalization of the totally asym-
metric exclusion process (TASEP) on Z started from step initial conditions. In
this interpretation, we begin with particles at the sites ¢ < 0 and holes at the
sites ¢ = 0. We label the particles with ¢ € N, counting from right to left and
holes with j € N from left to right. In the dynamics, particle ¢ and hole j inter-
change at time G(i, 7). If we denote the position of particle ¢ at time ¢ by o (i, t)
then we have

o(i,t) = —i + max{j e N: G(i,7) < t}. (1.3)

If the weights are i.i.d. with geometric or exponential marginals, this process is
the usual TASEP run in discrete or continuous time, respectively [25, p. 5].

These and related models have received substantial research attention in
the past two decades, partially in connection with KPZ universality. See the
surveys [5,18]. When P is ii.d. with geometric or exponential marginals, it
has been possible to compute various statistics of the last-passage times. For
example

i GllnsLLnt ]

n—o n

=m(s+1t)+20\st for st >0 P-as., (1.4)

where m and ¢? are the common mean and the variance of the weights. The
exponential case of (1.4) was first proved in [21] and the geometric case appeared
in [3,15,23]. Large deviation principles for the last-passage times were derived
in [14,22]. These papers identified the right-tail rate function and the correct
decay rate for both the right and left tails. It is also established in [14] that
the model exhibits KPZ statistics; the fluctuations around the limit in (1.4)
are of order n/? and appropriately rescaled last-passage times converge to the
Tracy — Widom GUE distribution.

This paper concerns an inhomogeneous generalization of the classical i.i.d.
exponential model. Given parameter sequences a = (ay)neny and b = (by,)nen
taking values in (0,00), we define a measure under which the weights are in-
dependent and W (i, j) is exponentially distributed with mean (a; + b;) ™. We
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state the assumptions of our model precisely in Section 2, but for the moment we
will outline our results in the case that a and b are independent i.i.d. sequences
which are bounded away from zero and have finite means. We refer to the model
where we condition on these random sequences as the quenched model. In the
framework of particle systems, the quenched model corresponds to an inhomo-
geneous continuous time TASEP with particlewise and holewise inhomogeneity.
The annealed measure is constructed by averaging the family of quenched mea-
sures over the joint distribution of (a,b). Weights in the quenched model are
independent, but not identically distributed in general; in the annealed model,
the weights are identically distributed but correlated along rows and columns.

For the models we consider, the almost sure limit of n='G(|ns|,|nt]) is
deterministic and can be characterized as the solution of a certain variational
problem, see [8]. With some choices of the marginal distributions of a and b,
this family of models has a feature not present in the previous exactly solvable
corner growth models: the presence of linear segments of the shape function.
This is of some interest because different fluctuation exponents are expected in
these different regions if the weights are weakly correlated. For a particle system
perspective on this phenomenon in the case where a is almost surely constant
and b is i.i.d. and bounded, see [27].

The present paper is devoted to the question of large deviations correspond-
ing (1.4). In the quenched setting, we are able to prove a large deviation prin-
ciple with rate n and a rate function given by the solution to a reasonably
tractable variational problem. With certain choices of the weights and in cer-
tain directions, we provide some explicit formulas for these rate functions.

In the annealed setting, we have a variational expression for the right tail rate
function which is similar to the variational expression in the quenched setting,
though we no longer have any non-trivial explicitly computable examples. De-
viations to the right of the shape function in the annealed model are connected
to deviations in the quenched model through a variational problem involving
relative entropy. Heuristically, these deviations should arise from perturbations
of (a,b) combined with deviations in the quenched model with these perturbed
parameters. There are rate n annealed large deviations to the left of the shape
function. This is in contrast to the i.i.d. models, where the rate is n? [14,22]. We
show that this occurs by using the fact that it is possible to see a finite entropy
deviation of the (order n many) parameters {ai}ZLZiJ and {b; }Eztlj which affect
the distribution of G(| ns |,| nt]) and makes the shape function smaller.

We identify the expansions of both the quenched and annealed rate functions
near the shape function. In the quenched model, for directions in which the
shape function is strictly concave, these expansions are heuristically consistent
with the expectation of Tracy —Widom GUE fluctuations. Fluctuation results
for an inhomogeneous version of the closely related Seppéldinen—Johansson
model (oriented digital boiling) were previously obtained in a series of papers
by Gravner, Tracy, and Widom [10-12]. The question of what happens at the
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interface of the linear and concave regions was left open in those papers. At the
interface of the linear and concave regions for the models we study, our results
suggest KPZ type fluctuations under a moment condition. We elaborate on this
connection in the next section.

To prove the variational formulas for the right tail rate functions, we follow
an approach introduced in [24] and applied in [9,13,22]. The key technical
condition making this scheme tractable is an analogue of Burke’s theorem from
queueing theory, which in this setting corresponds to the existence of a station-
ary version of the model, as discussed in Proposition 2.1. We expect that the
techniques employed in this paper could be used to obtain similar results in in-
homogeneous versions of other models with the Burke property, such as the log
gamma polymer [26], the strict-weak polymer [6] and the corner growth model
with geometric weights [8].

The principal contributions of this paper are as follows. To the best of our
knowledge, this is the first inhomogeneous model in the KPZ class for which
exact large deviation rate functions have been computed. The rate functions we
obtain in both the quenched and annealed settings are tractable. For general
choices of the distributions of the sequences (a,b), we identify the asymptotic
rate that the right tail rate function tends to zero near the shape function, sug-
gesting KPZ type fluctuations for the quenched model in appropriate directions.
In particular, our results suggest a partial answer to the problem of what type
of fluctuations to expect at the interface of the linear and concave regions. We
further connect our quenched and annealed rate functions through a natural
variational problem involving relative entropy.

The paper is organized as follows. In Section 2, we define the model precisely

and state our results. The remaining sections are devoted to proofs. In Section
3, we discuss the stationary model and compute the Lyapunov exponents of the
last passage times. In Section 4, we study the extremizers of the variational
problems for the rate functions and Lyapunov exponents. We then estimate the
probability of left tail large deviations in Section 5. In Section 6 we show that
the Legendre—Fenchel transform of the right tail rate function is given by the
previously computed Lyapunov exponents. These results are combined to prove
the large deviation principle for the quenched model. In Section 7, we note that
the extremizers for the annealed model are connected to the extremizers for a
quenched model with different parameters, which gives a variational connection
between the quenched and annealed rate functions. Understanding of the ex-
tremizers also allows us to prove the scaling estimates in Section 8. We include
the standard subadditivity arguments showing existence and regularity of the
Lyapunov exponents and right tail rate functions in Appendix A.
Notation. For real numbers a,b, we denote max(a,b) = a v b and min(a, b) =
a A'b. We take the convention that N={neZ:n >0} and Ry = {reR:z >
0}. For D c R, we denote by M;(D) the collection of probability measures on
D. For n € M;(D), we use the notation 1 = ess-inf{n} and 7 = ess-sup{n}.
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Given v, u € My(D), the relative entropy is defined by
H(v|p) = E” log(dv/dp)

if v is absolutely continuous with respect to p and oo otherwise. See for ex-
ample the discussions in [7] and [19] for basic properties of the relative en-
tropy. We denote absolute continuity of v with respect to u by v « u. For
probability measures v, with v « p, we write (dv/dp)(x) ~ f(z) if v(dz) =
[§ f(z)p(dz)]~" f(z)p(dz). For a probability measure o on Ry, define

M ={ve Mi(R;) : H(v|u) < oo} (1.5)

and note that for each u, M* is a convex set by convexity of H(v|u).

For f : R — (—00,00], f*(§) = sup,epi{z€ — f(z)} defines the Legendre—
Fenchel transform. We refer the reader to [20] for basic properties of this trans-
form.

2. Model and results

2.1. Model

Denote by W (i, j) the projection RT — R, onto the coordinate (i,j) for
i,7 € N. For any sequences a = (a1, az,...),b = (b,bs,...) taking values in
R, we define P, to be the product measure on le satisfying

Papr(W(i,j) 2 x) = e (@b for i jeN and 2 > 0.

We will draw the sequences (a, b) randomly from a distribution p on RI}TF X RIE.
For k € Z,, let 7 denote the shift (¢,)neny = (Cntk)nen. In all of the results
that follow, we make the following assumptions on (a,b). We assume that a
and b are stationary sequences under . We assume further that u is separately
ergodic with respect to 7, x 7y for k,1 € N. This means that if £,/ € N and
B c RY xRY is a Borel set with (1 x 7;)"*(B) = B then u(B) € {0,1}.

The annealed distribution P is given by P(B) = E [P, p(B)] for any Borel
set B C le, where E is the expectation under p. Let Eap and E denote
the expectations under P, 1, and P, respectively. We denote by a and 3 the
distributions of a; and b; and take the convention that a and b are random
variables with distributions a and g respectively. In all of the following results,
we will assume that E[a 4+ b] < 00 and a + > 0. Finally, all large deviation
results under P are limited to the case in which a and b are independent i.i.d.
sequences.

We will also consider a ‘stationary’ model defined on the extended sample

v/ . oo — .
space R, *. Each weight W (3, j) is now redefined as the projection onto coordi-
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nate (i,5) for i, € Z2. Introduce the last-passage times

G(m,n) = max Z W(i,j) form,neZ,. (2.1)

m€(0,0),(m.m) ;2

For sequences a and b in (0,0) and z € (—a, ), define the product measure

Z2
P;, on Ry by

) = exp(=(ai + bj)z), Pop(W(0,0)=0)=1, (2.2)

S (Wi g) >
> 2) = exp(—(ai +2)a),  PLy(W(0,5) > 2) = exp(~(b; - 2))

ab(W(i,0)

for i,j € Z4 and x > 0. We will use definition (2.2) for z = —a when a; > «
for i € N and for z = 8 when b; > 8 for j € N. The utility of these measures

is that the last-passage increments given by I(m,n) = C:’(m,n) - é(m —1,n)

form = 1,n = 0 and J(m,n) = G(m,n) — G(m,n — 1) for m > 0,n > 1 are
stationary in the following sense.

Proposition 2.1 (Proposition 4.1 in [8]). Let k,l € Z,. Under Py,
(a) I(i,1) has the same distribution as W (i,0) for ¢ € N.
(b) J(k,j) has the same distribution as W (0, j) for j € N.

(¢) The random variables {I(i,1) : i > k} v {J(k,j) : j > [} are jointly inde-
pendent.

2
For admissible z, define the measure P* on ]R_Z: by P*(B) = E[P} ,,(B)] for
any Borel set B. Let Eg ;, and E* denote the expectations under P }, and P*,
respectively.

2.2. Results

We begin by briefly summarizing the results from [8]. The ergodicity as-
sumptions on p and the superadditivity of the last-passage times imply that
lim, ,,n 1G(|ns|,[nt]) = g(s,t) for s, > 0 P-a.s. and P, p-a.s. for p-a.e.
(a, b) for some deterministic function g known as the shape function. g admits
the variational representation

] + tE[L]} for s,¢ > 0. (2.3)

g(s,t) = inf ]{SE[ s

z€[—a,B a—+z

The infimum above is actually a minimum with a unique minimizer and the
function g. given by g.(s,t) = sE[(a+2)"'] + tE[(b—2)"'] is the shape
function in the stationary version of the model. At times we will also view
g(s,t) as a function of (o, B) € M;(R;)?. In these cases, we will use the notation
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s/t =¢cy

s/t = eo

g <1

0

Figure 1: An illustration of the sublevel set g < 1 and the rays s/t = ¢; and
s/t = co when 0 < ¢ < ¢g < 00.

(o, B) = g(8,t) = ga,8(s,t) to highlight the dependence on these measures. This
map will be considered for any («, 3) € M1 (R )2

Set ) )
E{(b+a)” E{(b—-08)"
(G 7[( Q)_2] Cy = 7[( @) 2] . (24)
Ef(a—a)7?] E(a+8)72]
Then 0 < ¢; < ¢ < 0, and ¢; = 0 and ¢y = o0 if and only if E[(a — a)7%] =
and E[(b — 3)72] = o, respectively. It can be seen from (2.3) that g is strictly
concave for ¢; < s/t < co and is linear for s/t < ¢1 or s/t = ¢, see Figure 1.
We show in Proposition A.2 of the appendix that for s,¢, A\ > 0, we may
define the quenched and annealed Lyapunov exponents by

1
L. :(A) = lim flogE&b[e/\G(l”SJ’["tJ)] [-a.s.,

’ n—o n

1
Los(A) = lim = log E[e*(LnsllntD],

n—w N,
Our first result is an exact computation of these exponents.
Theorem 2.1. For s,t,A> 0, if0 <A< a+ f,

)= () (L

iFA> o+ 8, Loy(\) =0, IF0 < A< a+ 8,

(a—i—i—i—)\)

+tlogE(b_b;7i)\)}; (2.6)

Lsi(A) = ze[—i(?%—A]{SlogE

ifA>a+ 8, Lei(N) = 0.
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Having proven Theorem 2.1, a proof similar to the proof of Theorem 2.1
allows us to compute the Lyapunov exponents in the stationary version of the
model.

Theorem 2.2. For z € (—q, 8), almost surely for all s,t > 0 and X € (0, (o +
z) A (B—2))

L; ;(A) := lim nt logEZ’b[e’\é(l"SJ’[”tJ)]

n—%0
= {smfios 7] oo )
a+z+ A

v {sBflos 2] vl ;22 ]

Similarly, we show in Proposition A.1 that for s,¢ > 0 and r € R, we may
define right tail rate functions by

1
lim —ElogP&b(G([nsJ, [nt]) =nr)=Js.(r) p-as.,

n—xL

lim — 2 log P(G(| ns |, | nt ) = nr) = I, ,(r)

n—L n
Using Theorem 2.1, we show that
Theorem 2.3. For s,t > 0,
a+z+A b—z
B = s sElo(CEEEN) rmiog(-LE )
() sup rA = sElog ——— og(; = (2.7)

Ae(0,a44]
z€[—a,f-A]

for r = g(s,t), and J, (r) = 0 for r < g(s,t).

Js4(r) = )\e(%uogrm {7")\ - slogE[%] - tlogE[b_bgii)\]} (2.8)
zel-af-Al

for r = g(s,t), and J; 4(r) = 0 for r < g(s,1).

The preceding result also describes left tail large deviations for a tagged
particle in an inhomogeneous TASEP with step initial condition. This TASEP
can be obtained from the corner growth by defining the position of particle i € N
at time ¢ > 0 as in (1.3). By monotonicity of G, the particles remain ordered
ie. o(i,t) > o(i+1,t) for i € N and ¢t > 0. Initially, o(i,0) = —i for 4 € N and
particles move on Z over time according to the following rule. If particle ¢ is at
site —i + 7 — 1, as soon as site —i + j is vacant, particle ¢ moves to site —i + j
after W (i, j) amount of time. Since {o(i,t) > j} = {G(i,7 + j) < t} as events,
Theorem 2.3 implies the next corollary.
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Corollary 2.1. For z,y,t > 0,

lim —llog Pap(o(|nz|,nt) > |ny|) =Jzzty(t) as,
n

o 1
Jim ——log P(o(| na |, nt) > [ny ) = Jz04y (2)-

As with the shape function, we will at times consider the maps (o, ) —
Joa(r) = 327 (r) and (o, B) = J,4(r) = I27 (1)

Note that the Lyapunov exponents and the right tail rate functions depend
on pu only through the marginal distributions « and . The variational problem
in (2.7) can be solved exactly for certain choices of «, 8, s and t. We note that
if r > g(s,t) and there exists A, € (0, + ) and z, € (—a, B — A,) such that

O=SE[a+Zi+)\* B a—}-z,,] +tE[b—zi—/\* B b—lz*]7
1
"= SE[a+Z*+)\*] +tE[b—z*—)\*]’
then
Joi(r) = Aer — sElog(HL:)\*) +tElog(b_bZ_7Z_*/\>. (2.9)

Example 2.1. If o = 3 = 6,5 for ¢ > 0, then for r > g(s,t) = ¢7' (/s + V/1)?,

s—t+ecr t—s+cr
Js =4/(s+t—cr)? —4St—25COSh_1<7> —275(;os,h_1(7)7
eslr) = 7 2 esr NG
(2.10)

which recovers [22, Theorem 4.4].

Example 2.2. If a = 8 = pd. + ¢qdq for p,q,c,d >0 with p+¢g=1and s = t,
then for r > g(s,s) = 2s (pc™! +qd '),

Jss(r) =1 —splog(%) _ tqlog(%)

1 (d—i—z*—i—)\*) tol ( d — 7y )
—sqlog| —— ) —tqlog| ————
908 d + 2, 1708 d— 74 — Ay
where
2ep + 2dq + Pr + d*r — A i 2cp + 2dq + Ar + d?r + A
Zyx = 5 Zx * = 5
2r 2r

A = (2ep + 2dg + r + d*r)? + 4r(2ed®p + 2c2dq — Ad°r).

More complicated exact formulas in this model are available in all directions

(s,t).
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Example 2.3. If a and § are uniform on [¢/2,¢/2 + ] for ¢, > 0 and s = t,
then

c/24+1
2s T+ 2w + A 2s 21
= == i > - =2 =
Jss(r) =7 7 J log( prarp )dx for r = g(s, s) 7 log<1+ c)’
c/2
where
2 _ o20rl/s 2 _ p2prlfs
g — — (¢/2+1)2 —c?e /4’ b\ = (¢/2+1)2 — c?e /4.
1—erl/s 1 —erl/s

Left tail large deviations in the quenched model have rate strictly larger than
n. We expect that under mild hypotheses the correct rate should be n?, as is
the case in the homogeneous model where oo = 8 = 6./, [14,22].

1
Lemma 2.1. lim ——logPa,p (G(|ns], |[nt]) <nr) = © for s,t > 0 and r <
n

n—oC

g(s,t) p-a.s.

Combining our results for the right and left tail deviations, we can prove a full
quenched LDP at rate n. The rate function is given by

_ Js,t(r) r Z g(Svt)v
Ii(r) = {Oo r < gls.0) (2.11)

As before, we will at times use the notation («, 5) — I (1) = I?_”f(r).

Theorem 2.4. p-a.s, for any s,t > 0, the distribution of n=*G(| ns|,|nt])
under P, 3y, satisfies a large deviation principle with rate n and convex, good
rate function I, ;.

Although our proof of the large deviation principle goes through the Lyapunov
exponents, we do not apply the Gartner — Ellis theorem. The steepness condition
in this model is E[(a—a) '] = E[(b— 3)~'] = o0, which would rule out having
linear segments of the shape function and so is too restrictive.

In contrast to the quenched case, there are non-trivial annealed large devi-
ations at rate n. The following bound gives a mechanism for these deviations.

Lemma 2.2. For any z < y,

1
limsup —— log P(n "G (| ns |, | nt]) € (z,y))
n—o n
< inf {sH(v1]|a) + t H(=|B)}.
11 EM® voeMP
Guy o (8,8)E(2,y)
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The other bound needed to show that n is the correct rate for certain left tail
large deviations follows from essentially the same argument used to show that
the quenched rate is strictly larger than n. This is discussed briefly after the
proof of Lemma 2.1. To show that there are rate n annealed left tail large
deviations it suffices to show that there exist v; € M® and v € M” with
G2 (8,1) < ga,p(s,t). We give a simple proof that under mild conditions this
is the case in Lemma 5.1. We expect that this mechanism is not sharp.

Example 2.4. Suppose that a = §;/2 + 02/2 and 8 = §;, and recall that
M ={pd1+(1—p)da: 0<p<1} For 0 <p<1,call o =pdy + (1 —p)da.
Then {ga,,5(1,9) : 0 < p < 1} = {5.3}U(5.5,8]. The reason for the discontinuity
in this example is that if p > 0, then the functional in (2.3) is minimized on the
set (—1,1), but if p = 0, the minimization occurs on (—2,1). We have chosen
s =1,t = 9 so that the minimizer for the p = 0 case occurs in (—2,—1). The
bound one obtains from Lemma 2.2 in this example is infinite when applied
to the interval (5.4,5.5). The finite relative entropy perturbation of the a;
parameters switching the distribution to ds turns this into a right tail large
deviation.

The next theorem connects quenched rate function and annealed right tail
rate function through a variational problem. We expect that this result means
that large deviations above the shape function in the annealed model with

marginals o and 8 can be viewed as a large deviation in the parameters {ai}llﬁj

and {bj}jlztlJ which affect the distribution of G(|ns|,|nt]), followed by a de-
viation in the quenched model with these perturbed parameters. Our proof is
purely analytic and does not show this interpretation directly. A similar, but
stronger, connection was shown for random walk in a random environment by
Comets, Gantert and Zeitouni in [4].

Theorem 2.5. For any s,t > 0 and r > g(s,1),

I3 = inf {L7 () + sHnla) + tHsl9)}

A minimizing pair (v1,ve) exists and the equality
ISP (r) = 147 (r) + s H(n o) + tH(va|5)
holds if and only if

dl/l( ) a+Z*+)\* dl/Q(b) b_Z*
Sl o 2T A G2y~ DT
da a+z, dB b—7¢— M
where z, and A, are the unique z,,\. with A\ € [0, + (],2. € [—a, f—AJ]
satisfying
a o a—+ Zx + )\* b — Zx
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It is natural to conjecture that this variational connection describes all rate n
annealed large deviations, rather than just annealed right tail large deviations.
We have been unable to prove this result.

The next result concerns the regularity of our rate functions. Our rate
functions are convex and differentiable to the right of g(s,t), but we note that
for certain choices of o and [ they can have linear segments; see Lemma 4.4
and the comments preceding it.

Theorem 2.6. For any s,t > 0, both Js; and J,, are continuously differen-
tiable on [g(s,t), +0).

Finally, we describe the leading order asymptotics of J,(r) and J ,(r) as
r | g(s,t) and comment on the implications for the fluctuations of the last-
passage times. Let ¢ denote the unique minimizer of (2.3).

Theorem 2.7. For any s,t >0, ase | 0,

( —1

(—sE[ﬁ] + tE[ﬁ]) e2 + o(e?)

jfs/t <cy,

1/2
2] < ol e o

(b +
if s/t = ¢; and E[(a —a)™?] < o,

v
Jst(g(s, 1) + )_<§(SE[(G+1§)3]+75E[ D 23/2+0 £3/2)

ifeg < S/t < Cg,

[4pt]§ (s E[ﬁ] + tE[ﬁD gy o(e%/?)
if s/t = ¢y and E[(b— B)~%] <,

(SE[(a—fﬂ)Q] — tE[ﬁD_lg + o(g?)

if s/t > co. )

\

We do not have an intuitive explanation for the presence of an extra factor
of 1/2 in the boundary cases s/t = c1, ca.

The results of Theorem 2.7 in the concave region S and the boundary lines
s/t = ¢1 or cg are heuristically consistent with the expectation of KPZ type
fluctuations. For example, to see this set

C= sE[ﬁ] +tE[ﬁ] = %0392(8%”2:4
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and assume that our asymptotic result in the concave region hold for finite n.
Then for (s,t) € S and large r, we expect to see

Papn(G(Ins],|nt]) —ng(s,t) = n1/3C’1/3r) ~ exp{—%C*I/Q(Cl/?’n*z/sr):;/zn}

_ 674/:37“3/27

which agrees the leading order large r asymptotics of the Tracy - Widom GUE
distribution [1, Exercise 3.8.3]. Note that the choice of normalizing constant C
in this argument is not arbitrary. Taking C = (1/2)0%g(s,t)|.=¢ is consistent
with the normalizing constants needed to see Tracy — Widom GUE limits in, for
example, [14, Theorem 1.6] (this is the case o, 3 ~ d1/3) and in [2, Theorem 1.3].
In the latter case, this was shown to be the constant arising from the KPZ scaling
theory in [29]. We also remark that the centering in this argument is likely not
correct. As in [12, Theorem 3], we expect that the correct centering should be n
times the shape function with o and 8 given by the empirical distribution of the
parameters {ai}ZLZ‘;J and {b; }gztlj rather than ng(s,t). This new shape function
is not random with respect to P,p and converges to g(s,t) for almost every
realization of the environment. Continuity of the rate function then explains
why this difference does not appear at the level of right tail large deviations.
The same heuristic suggests that when E[(a — @) 3] < o0 or E[(b— 8)7?] <
00, we should expect KPZ type fluctuations in the critical directions s/t = ¢;
or s/t = ca, though we do not conjecture the precise limiting distribution in
these cases. We also do not address the cases when E[(a — a)72] < o but
El(a—a)™3] = o or E[(b—3)"%] < 0 but E[(b— )] = o0, though these are
interesting questions.

Theorem 2.8. Suppose that o and 3 are not both degenerate. For any s,t > 0,
ase | 0,

( 1.2
S_S/E[aig]z—i_tvar[b—}l-g]+tE[(b+1g)2]) 1%""0(62)
if s/t < ¢y,

1.2
To(g(s, t)4e) = 4 (sVar[aiC] +tVar[bi<D 1% +o(e?)

if c; < s/t < co,

(sVar[aig]—l—sE[(a:ﬂ)z]—tE[biﬁr)1€2+0(52)

if s/t > ca. ) )

We do not have any explicitly computable examples for which the regions
s/t < ¢1 and s/t > co are non-trivial, but we illustrate the results of the last
two theorems with a numerical example.
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Figure 2: The level set {(s,t)
s/t = 1/8 (dashed).
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Figure 3: Plot of J, ,(g(s,t) +¢) and Jg;(g(s,t) + ¢) (solid) and their ¢ | 0

asymptotics (dashed) with s = 1.
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(f) Annealed concave t = 1
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Example 2.5. Choose o = 4(a — 1)*1j1 5)(a)da and 8 = 6;. We note that a =
B = 1. Explicit computation shows that E[(a —1)72| =2, E[(b—1)7?] = o0,
and E [(b+ 1)72] = 1/4. The linear region is then s/t < 1/8. This is illustrated
in Figure 2.

In Figure 3, we plot numerical approximations of the rate functions against
the small € asymptotics in Theorems 2.7 and 2.8. For example, frame (e) plots
J11(g(1,1) 4 ¢) against (4/3)(E(a + )3 + E(b—¢)~3)~1/23/2, where ( is the
minimizer in (2.3).

3. Variational formulas for the Lyapunov exponents

Note from (2.2) that the probabilities under P ;, and P* of events generated
by {W(i,0) : i € N} make sense for any z > —q. Therefore, we permit ourselves
to use notation P, and P* (and the corresponding expectations) for z > j
and, similarly, for z < —a when we work only with {W(i,0) : i € N} and
{W(0,4) : j € N}, respectively.

Lemma 3.1. Let A € R. Suppose that z > —« in (3.1), (3.3), and z <  in
(3.2) and (3.4) below.

(a) p-a.s., for any t > 0,

[nt]
.1 2 .
nh_r)n/v ﬁlogEa)b [exp(/\ Z W(z,O))]

i=1

a+z
tE[l ( )] if A < :
= Blatz-n ! a+e (3.1)
o0 otherwise.
1 [nt]
nh_r)n/v - log EZ }, [exp (/\ ;1 W(O,z))]
b—z
-~ ; < A3 _
_ tE[log(b—z—,\>] fr<f-2 (3.2)
0 otherwise.
(b) For any t > 0,
_ [ nt] _ a+z .
1 HogB[ 2| ifA<atz,
lim —logE* exp<)\ Z W(i,O)) = BElarz-al ! arz
noen L i=1 . ve) otherwise.
(3.3)
- [ nt] . b—=z .
1 tlogE|——= | ifA<pB—z,
lim —logE” exp<)\ Z W(O,i)) = o8 [b— z— )\] ! bz
noen L i=1 . 0 otherwise.

(3.4)
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Proof. Using (2.2), we compute
RS [ﬁj “UFE A< min a+
EZy [GXP{/\ Z W(Zao)}] =3 i7 @atz—A ! 1§?%1[r’lﬂtJaz = (3.5)
0

=1 .
g otherwise.

If A < a+ z then the first equality in (3.5) holds for all n € N p-a.s and we have
a+z
Bjos (=) <= (3.6)
Hence, by the ergodicity of a,
| nt] | nt]
1 1 a; +z
lim =~ log EZ W, 0) 4 = 1im = ST (7)
Jlim ~ log a,b[exp{ ; (i )}] Jim ; ]
a+z
—tBlog(-—— ) yras. (3
gl ) Has (3.7

Moreover, it follows from (3.5) that

| nt]
lim llogEz[exp{)\ Z W(Z,O)}] = lim Lnt] logE[ atz ]
=1

n—n N n—x N a+z—A

a+z
R
i +z—A
Next, consider the case A = a + z. If (3.6) is in force, then both (3.7) and (3.8)
still hold. Suppose now that (3.6) fails. By monotonicity,

(3.8)

[nt]
.1 . ) a+z
hnnl};lfﬁl()gEa,b [exp{)\ ;1 W(z,O)}] > tElog(m) [-a.S.,
1 [nt]
lim inf — log E* A
iminf —log [exp{ ;

n—o0 .
=1

. a+z
W(“”}] > tlog B - |

for any M < A. Letting A’ 1 A and monotone convergence yield

| nt] | nt]
1 1
lim 1ogEZb[exp{)\ E W(i,O)}] = lim — logE* [exp{)\ W(i,O)}]
n—xL n ’ = n—9 1 i=1

= o0. (3.9)

Finally, consider the case A > a + z. Then, by the ergodicity of a, there exists

i € N such that A > a; +z and the second equality in (3.5) holds for large enough
n € N p-a.s. Hence, (3.9).

We have verified (3.1) and (3.3). The proofs of (3.2) and (3.4) are similar.

O
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Recall the basic properties of the Lyapunov exponents stated in Proposition
A.2. For s,t > 0 and \ € R, define

L =limL L =limL
5,0()‘) tlf(r)l s,t()‘)7 O,t()‘) 51?01 s,t()‘)7

where the limits exist by monotonicity. Define L o(A) and Lo () similarly.
Also, for k,l € Zy4, let 65, denote the shift given by w(i,j) — w(i + k,j + 1)
for i,j € N and w € RY. We next obtain a variational formula involving the
Lyapunov exponents.

Lemma 3.2. Let z € (—a, ) and A€ (0,3 — z]. Then

Elog(%) + Elog(%) (3.10)
_ Oiggl{max{Ltyl()\) +(1—1t)Elog (“Zi?) ,
Li:(A\) + (1—1) Elog(%)}}.
Also,
= gp {mc{Lea(3) + (1= ) 1og [al_i?]
Ly(\) +(1—1) logE[ ]}} (3.11)

Proof of (3.10). We may assume that the left-hand side of (3.10) is finite. (This
assumption fails only when A = § — z and Elog(b — §) = —o0 in which case
(3.10) clearly holds).

It follows from (1.2) and (2.1) that

G(n,n) = 1r<nka§n{max{G(n —k+1,n)o0k_1,0+ G(k,0),

Gn,n—k+1)ob 1+ G(O, k)}},
which leads to

Z J(n,j) = 1rgnka£<n{max{G(n —k+1,n)00k 10— Z W (i,0),
1<j<n k<ign

G(n,n—k+1)oby,_1— Z W (i, 0) + Z WOJ}}

1<ign 1<j<k

(3.12)
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Also, note the identity

1 i A ;
@i 2+ = E:{’)‘ [eAW(“O)] for A >0 and z > —qa.

EZ,[eWEO] T ai+2

(3.13)
Using the independence of weights under Py ,,, Proposition 2.1, (3.12) and
(3.13), we obtain

Ef;b’\[exp{/\ Z W(i,O)}]-E;b[exp{/\ Z W(O,j)}]

1<ign 1<j<n

> max{E,k_l(a)’b[ekc("_kﬂ’")] -E:{)}‘ [exp{)\ Z W(i,O)}],

1<i<gk

Ear (b [exp{)\G(n, n—k+ 1)}] ‘Egp [exp{)\ Z W(O,j)}] }
1sj<k
(3.14)
Set k = [n(1 —1t)]+1 for some ¢ € (0,1), apply logarithms to both sides and
divide through by n in (3.14). It follows from Proposition A.2 that

1 — n

n log Ekal(a),b[e/\G(n A )] - Lt,l(/\),
1 _

n IOgEa,rk,l(b) [ekG(n’n ]Hl)] — Ly (N

as n — oo along suitable subsequences because (a,b) is stationary and L is
deterministic. Hence, also using Lemma 3.1, we obtain
a+z+A b—=z
Elog(“"="2) + Elog (;——— )
o8 a+z +Rlog b—z—A\
a+z+A b—z
> Loi(\)+(1—¢)El ( ),L A +(1 =1 El ( )}
mase{ Lo (V) +(1 = ) Elog("""2), Liy(A)+(1 - ) Elog (57—

(3.15)
In particular, L is finite. By continuity, (3.15) holds with ¢ = 0 and ¢t = 1 as
well.
For the opposite inequality, introduce L € N and let n > L such that [(I +
1)n/L] > [In/L] for 0 < I < L. Then, by (3.12) and nonnegativity of the
weights,

> J(n,4)

1<j<n

< max fmax{ G((L = On/L],n) 0 Opyrio— >, W0,

1<l<L
[(I+1)n/L]<isn

Gl [(L=Un/L]) o boiy = 3, WG+ > WO}

1<i<n 1<j<[(1+1)n/L |
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which implies that

Eg;ﬁ[exp{A 3 W(i,O)}]-E;b[exp{A 3 W(o,j)}]

1<ign 1<j<n
[(1+1)n/L]
< Bl oS w0
0<i<L i=1
[(l+1)n/L]
+ By [V B fexp A wo.5)}]

Jj=1

(3.16)
Taking logarithms leads to

1ogEng*[exp{A 3 W(z‘,O)}]HogE;b[exp{A 3 W(o,j)}]
1<i<n 1<j<n

AG(|[(L=U)n/L |,n
<orglaiXLmaX{IOgEmn/u(a)»b[e (=it lm]

[(t+1)n/L]
+log EZ 1 [exp{)\ W (i, 0)}],
i=1
[ACLE—Dn/LD)]

log EavT[ln/L 1(b)

[(I+1)n/L]
+logEg 4, [exp{)\ 2 W(O,j)}] } + log(2L).
j=1

Dividing through by n and letting n — o0 along a suitable subsequential limit
yield

Blog(* ) + Bl (2 55)

[+1 a+z+ A
El

L og( a+z )’

[+1

L EIOg(bE;iA)}

a—i—z—i—)\)
a+z

< L, _ A
Orgﬁmeax{ 1-/0,1(A) +

Ly—yn(A) +

< sup maX{Ltﬁl()\) +(1—1) Elog(

0<t<1

Li:(N) +(1-1) Elog(b_b;%)\)}

+ %(Elog(aZizA> +Elog(bfgi ,\))

Letting L — o0 completes the proof. O
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Proof of (3.11). Some details will be skipped. We may assume that the left-
hand side of (3.11) is finite.
Using independence, we can rewrite (3.14) as

B [em{n Y WG.0}| Eip[exn{r 3 w(.)}]
k<isn lgy<sn

> E‘rk_l(a),b [eAG(n—k+1,n)] )

E:{)A[exp{)\ Z W(i,O)}:I'E;)bI:GXp{/\ Z W(O,j)}]

1<ign k<j<n

[eAG(n,nkarl)] )

(3.17)

= Ear_ (b

The factors on the right-hand side are independent. Applying E yields

Ez"”\[exp{)\ 3 W(z’,())}] B [exp{A 3 W(o,j)}] (3.18)
1<ign 1<j<n
> max{E[exp{AG(n —k+1,n)}] -Ez+’\[exp{)\ 3 W(z‘,())}],
1<i<k
E[exp{AG(n,n — k + 1)}] - E? [exp{)\ 3 W(o,j)}]},
1<j<k
where we rearranged terms using that {W(4,0) : i € N} and {W(0,75) : j € N}
are both i.i.d. under P*** and P*. Then, (3.18) leads to > half of (3.11) via
Proposition A.2 and Lemma 3.1.
For the < half of (3.11), suppose that A < § — z for the moment. Note the
inequalities
_ a;+z+ A < a+z+ A
N a; +z = a+z

. b<—z ﬂ*Z
E? AW (0,5)71 — J < —= )
anle ] bi—z—X S B—z—A\

E;JL)\ [€AW(i,O)]

It follows from these and (3.16) that

E:{:‘[exp{A Z W(Z,O)}] ;b[exp{)\ 2 W(O,J)}]
1<j<n

1<ign

a+z+ A\t /L In
< ) (7) E, o peCAE0ME L]

osi<L s @TZ
foofr 3 w0
x EZ4 M expi A W (i,0)
" i=1
B—z n/L+1 (L —D)n
+ (5 o A) a,7) 1n/21(b) [eAG( D /LJ)]
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/L]
><E;b[exp{A 3 W(o,j)}]. (3.19)

j=1

The point of (3.19) is that the terms on the right-hand side are products of
independent factors, which is not the case in (3.16). Applying log E, we obtain

logEZ+>‘[exp{)\ Z W(i,O)}]—i—logEz[exp{)\ Z W(O,j)}]

1<ign YA

< Jnax max{(n/L +1) log(%) + log E|exp{AG(|[(L — l)n/L ], n)}]
[1n/L]
— log E*** [exp{)\ Z W (4, O)}],
(n/L +1) 1og([£:A) +1log E[exp{AG(n, |(L — Dn/L )}]

In/L

+log E* [exp{)\[ Z ]W(O,j)}]}
+ log(2L). J

Divide through by n and let n — oo. If we then send L — oo, the result is

a+z+ A b—z
o[22 e 2
8 a+z +log b—z—\
a+z+A
< Li1(A) +(1—=t)logE| ———|,
sup {max{Loa () + (1= 0 log B[ = =

Lia(A) + (1 —1) logE[b_b;%A]}}

for all A < B — z. The case A = 8 — z also follows because the right-hand side
is nondecreasing in A and the left-hand side, due to monotone convergence, is
continuous in A on (0,8 — z]. O

Lemma 3.3. For A > 0,

a+p b+a ,
L1,0(>\) = Elog(m), LO,I()\) = E10g<m>7 lf)\ $ o -+ /,8’
Li,0(A) = Lg1(\) = oo otherwise. (3.20)
a+p b+a ,
]Ll 0(}\) IOgE[m], ]14071()\) =10gE[m], if A < Q[+§,

Ll 0()\) = H—‘O,l(A) = o0 otherwise. (321)
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Proof. Let € > 0. On the event by < 8 +¢, which has positive u-probability, we
have for n > 1/e

1 1
~10g Ea [0 1)) > Zlog Eap[exp{X ) W(i 1)}
n n 1<ign
17 a; + by . .
_ Eigliari-ln—)\ 1f)\<121¢1£nai+b1’
0 otherwise
1n a+B+e¢ ) )
> Eiglaz—‘l_@—‘l_g_)\ 1f/\<121i1£na¢+§+6,
0 otherwise
1
= —log ng [exp{)\ Z W(Z,O)}]
n ' 1<igsn
Then, by Lemma 3.1,
a+p+e
E[lo (%)] ifA<a+pB+e,
AEVE b P 0
0 otherwise.

By monotone convergence, letting ¢ | 0 yields

B .
Lio() > E[log(L:;;A)] ifA<a+p,

0 otherwise.

To complete the proof of (3.20), we need

Lio(\) < E[log((zi—gé)\)] (3.22)

for X € (0,a + 3]. When A = a + 3, we may assume that the right-hand side
is finite. Then, a; > « for ¢ € N a.s. and the argument in the paragraph of
inequality (3.14) goes through with z = —a as well. Hence,

box (1) |+ flon (5= 5)] > by + (-0 Blloe (255

(3.23)
for t € [0,1], z € [, B) and A € (0, B — 2], which simplifies to
a+z+A b—z
_— >
E[log( — )]—}—tE[log(b_Z_)\)] > Lio(\). (3.24)

Setting t = 0 and z = 3 — X in (3.24) gives (3.22). The remaining cases are
treated similarly. O
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Corollary 3.1. For s,t > 0,

Ls,t(g+@)=sElog(Z+?) +tElog(z 5)
Lei(a+B) = slogE[;H_B] +tlogE[2+ﬂ]

Proof. By concavity and homogeneity,

L, (a+B) =2 sLio(a+B)+tLoi(a+B)

= sBflog(S0) ]+ eEflog(359)] wa2n)

When the right-hand side is finite, the opposite inequality comes from (3.23).
Ls (o + B) is computed similarly. O

We will use the next lemma to recover the Lyapunov exponents from the
variational formulas in Lemma 3.2.

Lemma 3.4. Let ag < by, A : (ag,bp) — R be continuous and decreasing,
B : (ag,bp) — R be continuous and increasing. Let L : [0,00)? — R be non-
decreasing (in each variable), homogeneous, concave and continuous. Assume
that

A(z) + B(x) = Osiigl{max{L(t, D+ 1 —-t)A(z), L(1,t) + (1 —t)B(z)}}
(3.26)

for ay < x < by, limgp, A(x) = limy o L(1,¢) and limy |, B(z) = limgso L(s, 1).
Then

L(s,t) = inf {sA(z)+tB(z)} fors,t>0.

a0<a:<b0

Proof. The argument is the same as in [8, Section 5] to prove Theorem 2.1.
Assumption (3.26) corresponds to Proposition 4.4 there, and A(z) = E[(a +
z)7'] and B(z) = E[(b — x)~!] for z € (—a, B). O

Proof of Theorem 2.1. It follows from Lemma 3.3 that Lg¢(\) = o for A >
a+ (. Fix Ae (0, + 3) and define

a+z+A

A(z) = E[log(

B(z) = E[log(

)] for z > —a,

b—bz%))] for z < B — A
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Lemma 3.2 states that

A(z)+ B(z) = supl{max{Lt’l()\) + (1 —1t)A(2),L1+(N) + (1 —t)B(2)}}

o<t

for z € (—a, 86— A). Note that A and B are continuous, A is decreasing and B is
increasing. Moreover, by Lemma 3.3, A(f—\) = L 0()\) and B(—a) = L1 ().
Also, Lg () is finite and, by Proposition A.2, is nondecreasing, homogeneous,
concave and continuous. Thus, by Lemma 3.4, L, ;(A\) = inf_,,<5_»{sA(z) +
tB(z)}. The endpoints can be included in the infimum, by monotone conver-

gence. The proof of (2.6) is similar. O

We close this section with a proof of Theorem 2.2, which is similar to the
arguments above.

Proof of Theorem 2.2. We begin with the coupling

G(lns],|nt]) = max {G([nsj —k+1,[nt])obh 10+ é(k,o)}

1<k<| ns|

v max {G([nsj, |t |~k + 1) 08051 + G0, k)} .

1<k nt]

Arguing with lim sup and lim inf and coarse graining as above, this leads to the
variational problem

L3+(A) = max {LS,M()\) + TE[log %]}

0<r<s zZ— A

vV max {Ls7t_u(>\) + uE[log b_b;ii/\] }

O<u<t

Substituting in the variational expression for L (), this leads to

120 = guas i o —ryflon S5+ eeflon 2525 )
+r E[log a-?—z%]}

v olgsgt{ee[—rgi,g—x]{SE[lOg - :i_g )\] +(t-v) E[log b f ;ﬁ )\]}

orfi 255 )

Applying a minimax theorem (for example [28]), we obtain
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(a+2) (a+0) ]}

(@+z—=A)(a+0+X)

v ee[?ii}%—n{SE[lOg a:i;A] +tE[IOg b—bgﬁ,\]
(b—2) (b—G—A)]}.

b—2-N) (b—0)

+ max rE[log

0<r<s

+ max uE[log

o<u<t
Write (a + 2z = A)(a+ 0+ ) = (a+2)(a+0)+ Az — 60— ) to see that the
inner maximum of the first term occurs at r = s if 2z — X < 6 and r = 0 if
2z — X\ = 6. Similarly, 6 — (1 —A(b—60)"1) is a decreasing function, so the inner
maximum of the second term occurs at u =t for # < z and at © = 0 for 0 > z.
Breaking the first minimum over [—q, 8 — A] into a minimum over [—q, z — A]

and a minimum over [z — A, 5] and the second into a minimum over [—q, z] and
a minimum over [z, § — A], we obtain

iy foEllon S5+ ool 55

(a+2) (a+0)
[log(a+er—/\)(a+J0r+/\)]}

- {sE[log “7“] + tE[log w]}

a+z—A b—z
e [T |

and similarly, for the remaining term we have

+ max rE
0<r<s

A min {sE[log
Oe[—a,z—A]

a+60+ X b—0 ]

+0 b—60—\
(b—2) (b—e—)\)]}
b—2z-X) (b—0)
= {SE[loga:izA] “E[logbfgix]}
a+0+ A

e oo ]+ Eon 25 5]

min \ {s E[log

96[791437 ]

] +tE[log

+ max uE[log

o<u<t

The function VY L g
a _
9.—>5E[10g7a+9 ]+tE[log7b_9_)\]

is strictly convex with a unique minimizer. Note that the first terms in each of
these minima are the values of this function evaluated at 6 = z — XA and 0 = z.

The result follows from strict convexity by considering whether the minimizer
lies in [—a, 2], [2,2 — A], or [z — X\, B = A]. O
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4. Extremizers of the variational problems

In this section, we derive some regularity properties of L, L, J and J by study-
ing the extremizers of their variational representations. The next two lemmas
describe the minimizers of (2.5) and (2.6). See Figure 4 for an illustration.

Lemma 4.1. Fix s,t > 0 and define F = F(z,\) for 0 < A < a + f and
—a<z<[-Aby

F(z,\) = sElog(M)

b—=z
mos(25)
+tElog(;——— (4.1)
For each A € (0,a + [3), there exists a unique z, = z.(\) € [—a, f — ] such that
L (\) = F(z«, A). We have z, = —q if and only if

1
Ty Rt Ky oy

and z, = B — X if and only if

—SE[

1 1
(a+@)(a+§—/\)]+tE[(b_§)(b_@+)\)]<0. (4.3)

_SE[

Define A\; = inf{\ € (0,a+/) : (4.2) holds.} A(a+/3) and Ay = inf{\ € (0,a+p3) :
(4.3) holds.} A(a+3). Then z, = —a if and only if \ > A1, and z, = f—\ if and
only if A = Ay. For 0 < A < Ag = A1 A A\a, we have 0,F (z«,\) = 0. Moreover, z,
is continuous on (0, a + ) and continuously differentiable on (0, + 8) ~ {Ao}.
We have —1 <z, <0 for 0 < A < Ao, limy o2z« = ((s,t) and limypq44 2« = —q.

Lemma 4.2. Lemma 4.1 holds verbatim if Ly, (4.1), (4.2) and (4.3) are re-
placed with L 4,

F(z,\) = slogE[@] +t10gE[b_b;7j>\], (4.4)
Hlazerl  Eloramyy)
—s (i_QQ PR Sl SENY (4.5)
e R Pt
1 1
s Elo=g o 0o

-5 3 +t =B+ X
E[a—?—;—)\] E[b—;]

respectively. Here, the left-hand sides of (4.5) and (4.6) are interpreted as —o0
and o0 when E[(a — a)™'] = o and E[(b — 8) '] = 0, respectively.
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lies)
[1~ny

—

Figure 4: Sketches of the graph of the minimizers in (2.5) and (2.6) assuming
(4.2) and (4.5), respectively (left) and assuming (4.3) and (4.6), respectively
(right).

Proof of Lemma 4.1. Since 0*F > 0, the existence and the uniqueness of z,
follows. Also, z, = —a if and only if 0,F(—a, \) = 0, which is (4.2). We note
that 0,F(—a, \) = —o0 if E[(a — @)™!] = o0 and, otherwise, A™10, F(—a, \) is
a continuous, increasing function of X € (0, + ). Therefore, z, = —q if and
only if X > X;. We similarly observe (4.3) and the equivalence of z, =  — A
and A > \y. (Because 0, F is increasing in z, we cannot have A\; and A2 both
less than a + f3).
When A < Ag, the minimizer is the unique z. € (—a, f — A) satisfying

0.F (2., \) = 0. (4.7)

By the implicit function theorem, z, is continuously differentiable for 0 < A < Ag
with derivative

| 20.F(2.,))

7' () = RN (4.8)
Observing that
ON0= (20, A) > _SE[(a + Z*)(i + 2, +)\)] * tE[(b - Z*)(bl— Zy —/\)]

= \10.F(z,,\) = 0,

O2F (24, A) = 020:F (2, )
= SE[(a +lz*)2] - tE[(b —12*)2]

1 1

~ SE[(a+Z*)(a+Z* +/\)] _tE[(b—Z*)(b—Z* —)\)] =0
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we conclude that —1 < z,/(A) < 0. In particular, z. is monotone and has limits
as A | 0 and A T A\g. We also have continuous differentiability of z, for A > Ag.
Now, supposing Ag € (0, + ), we show that z, is continuous at \g. Letting
AT Ao in (4.7), we obtain

0-F (lim 7.(A), Ao) = 0. (4.9)

TAo

Since the minimizer occurs at the boundary when A = Ao, we deduce from (4.9)
that hm/\TA1 Z*(/\) = —q and 1im)\T,\2 Z*()\) = @—)\2 when \g = A1 and \g = g,
respectively.

Since z.(A) € [—-a, — A], we have limypa152«(A) = —a. Set z.(0) =
limyyo z«(A). To calculate this limit, we consider several cases. If Ao > 0 then
we can let A | 0 in (4.7) and obtain

+tE[; = s, t

0 = 0. F(2.(0),0) = (b_z*(o))Q] 029, (0) (5, 1),

1
—sE| ——
’ [(a+z*<0)>2]
which implies z.(0) = ¢. If Ay = 0 then 0,F(—¢q,0) = 0,9_4(s,t) = 0 and if
A2 = 0 then 0. F(3,0) = 0.gs(s,t) < 0. Hence, we get ( = —a = z.(0) and
¢ = B = 2z.(0), respectively. O

We omit the proof of Lemma 4.2 which is similar to that of Lemma 4.1.

Lemma 4.3. For each s,t > 0, Ly ; is continuously differentiable on [0,a + [3)
and L ,(0) = g(s,t). Furthermore, L, , is continuously differentiable on (0, a +
B) ~{Xo} and L, > 0. The same statements also hold for L.

Proof. Let us write L for L, ; and F' = F(z, \) be given by (4.4). Using Lemma
4.1, we compute

, _ , B 1 1
L'(N) = 0.F (2, \) 2’ (A) + OrF (70, \) = sE[ia o H] + tE[ib — _A]

(4.10)
for 0 < A < Ag. Differentiating again, we obtain

L"(A\) = 0,0\F (24, \) 22/ (\) + 03 F (24, \)
_ 02F (24, \)O3F (24, N) — 0.0\F (24, \)? -
B 02F (74, \)

0,

where the inequality comes from 02F (74, \) > 0x0,F (z+,\) and 05 F = 0,0, F.
For A > A\q,

L'\ = sE[ﬁ] +tE[b+g%)\], (4.11)
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() = —sE[m] + tE[m] > 0. F(—a,\) > 0. (4.12)
Also, for A > Ao,

L'(\) = sE[M%)\] +tE[b_ﬂ%], (4.13)

L"(\) = sE[ﬁ] - tE[ﬁ] > —0.F(B—\A)>0. (4.14)

We have verified that L is continuously differentiable on (0, + ) \ {\o} and
L' is increasing.

We next note that L is also continuously differentiable at Ay when Ag €
(0,a + ), for which it suffices to check that the left and right limits of L’ at
Ao match. First, we consider the case A\; € (0,a + ). Then, as XA 1 Ay, (4.10)
tends to sE[(a —a + A1) 7]+t E[(b — @ — A1) 7], which equals the A | A; limit
of (4.11). Now, suppose that Ay € (0, + (). Then, as A T A, (4.10) tends to
sE[(a+ 8)"'] + tE[(b— B)~'], which is the same as

E[Wrﬁl_&] + tE[b_ﬂlm] +0.F(8 — A, Aa)

:sE[M]HE[b_ﬁlw],

the A | Ay limit of (4.13).

We next calculate L'(0) = limy o L'(A). If Ag > 0 then A | 0 limit of (4.10)
gives

1 1
10) — — | =
L(O)_SE[a+C]+tE[b—C] g(s,t).

In the cases A\; = 0 and )2 then ¢ = —a and ¢ = 3, respectively. Hence, letting
A} 0in (4.11) and (4.13), respectively, we still obtain L'(0) = g(s, t).

The asserted properties of I are proved similarly. O

!’

Since L ; increasing, L{ ,(A) has a limit (possibly 00) as A 1 a + 8, which we
denote by L} ,(a + ). Similarly, let us write L} ,(a + ) for limxyq4s L5 ,(A).
The precise values of these limits will be needed in the next section.

Corollary 4.1. Fix s,t > 0.

e P

L, ,(a+5) = ff‘SE[(a_Q)W]“E[(H )1(b—ﬂ)]<0’
SE[a—i-@] +tE[b—15] otherwise.
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g 3 1
) it
¥ a
oo Bl
gl ! g1
O e = i =
a— Qo b—@
! gl lte
SE[Z;g] ti [(21%)2] otherwise.
P ]

The next lemma establishes continuous differentiability of J, ;(r) and J ,(r) and
shows that these functions are linear in 7 for r > L, (a+p) and r > L{ ,(a+f),
respectively.

Lemma 4.4. Fix s,t > 0. For each r > g(s,t), there exists a unique A\ (r) €
[0, + ] such that Js4(t) = Aer — Lg(A). Moreover, J,, is continuously
differentiable and J', ;(r) = \(r) for v = g(s,t). If r > g(s,t), then A, > 0.
If r > L (a + f) then A\, = o + 3, while if 7 € [g(s,t),L, ,(a + §)) then
L} ,(\.) = r. The same statements hold if we replace J, ; and Ly ; with I, ; and
L, ¢, respectively.

Proof. We have J(r) = supg.y<q4s{A\r—L(\)}, where (L, J) pair refers to either
(Ls,t,Js,¢) or (Ls, ;). The A-derivative of the function inside the supremum
is r — L'(\). By Lemma 4.3, L' is continuous and increasing from ¢g(s,t) to
the limit L'(a + ) on (0,a + ). It follows that the unique maximizer .
is at o + B if r = L'(a + B) and at (L')"'(r), otherwise. In addition, A,
is increasing and continuous on [g(s,t), +0). Since L’ is differentiable and
has nonzero derivative for X € (0, + ) \ Ao, whenever r # L'(X\g), we have
J'(r) = M(r) + NS (r)r — L'(A) A\ (1) = Au(r). Then continuity of A, implies
that J is continuously differentiable for all r > g(s,¢) including L'(Ag) when
Ao € (0,0 + f). O

Proof of Theorem 2.6. This theorem is included in the preceding lemma. O
5. Left tail estimates
We now estimate the left tail in both the quenched and annealed settings.

The first result shows that in the quenched case, the rate n large deviation rate
function will be trivial for deviations to the left of the shape function g(s,t).
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:B*

I

BY Bf BY

Ji} By By BY

Figure 5: A path passing through the bottom-left and top-right vertices of Bg
for each j.

This proof is based on the proof of [22, Theorem 4.1], which was adapted from
an argument in [16].

Proof of Lemma 2.1. First, fix s,t,e > 0 and rational. Take m € N large enough
that m—'E G(|ms|,|mt|) = g(s,t) — /2. We coarse grain the lattice into pair-
wise disjoint translates of the set {1,...,|ms]|} x{1,...,|mt]}. Toward this end,
define

k.l i plmzl]|my]
Agp={1+a,...,a+k} x{1+0b,....0+b}, Bl = A\ il jmi)-

Take n large and let L = [n/m — |[\/n| —2]. For each such k < |\/n], define
a diagonal by Dy = UJ OBJ We observe that the passage time from the
bottom left corner of B! to the top-right corner of B!, G;; = G(|ms], |mt|) o
T(i+4)|ms],j|mt]> has the same distribution as G o under P. Moreover, if (i, j1) #
(i2,J2), then Bfll N ij = ¢ and consequently {G, ;}; j=o forms an independent
family under P 1.

Denote by IIj the collection of paths from (1,1) to (|ns|,|nt|) passing

through the bottom-left and top-right vertices of Bj for each j. See Figure
5. We have

G(lns}, Int)) > max e W (i, ) kr<n[?/)£j Z G.j-

i,j)ET
It follows that
L
1 < _ < -1 L < —
Pob (07 G(|ns), |nt]) < (g(s,t)—¢)) < Pap (kg%n ;)G;w <gls.0)—¢)
N

HPab(n’lzGM\ 5)
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Now, fix A > 0 sufficiently small that C' = Ame/2 — (A\*/2)EGF, > 0 and
AE Goo — (N*/2)EGF 5 < 1 and notice that

Eapb [exp{—AGj x}] = Ea b [exp{—AGo0}] © 7(j 1) [ms] k| me]-

The ergodic theorem then implies that the following limit holds p almost surely:

1
lim — Z log Eap [exp{—AGy ;}] = E[log Eap [exp{—AGoo}]].
Lox L =0

Jensen’s inequality gives E [log Ea b [exp{—AGo,0}]] < logE [exp{—AGo0}] <
—AEGoo + (\?/2) EG(Q),O. By the exponential Markov inequality and indepen-
dence under P, 1, we have

L
%log Pa,b(z G, <n(g(s,t) — 5))

=0

L
< %(Z log Ea b [exp{—AG, i}] + An(g(s,t) — 5))
=0

Recalling that L™'n — m as n — o0, and our assumption that EGoo >

m(g(s,t) —e/2), it follows that

L
/\2
limsup L~* logPa’b<Z Gr,j <n(g(s,t) — 8)) < —)\m% + ?EG%’O =-—C

Lo =0

almost surely. Therefore, for each k there exists a random Ny, so that for n > Ny

< C
Pab (jZ:O Gr,; <n(g(s,t) — 5)) < exp{—n%}.

For any fixed K and n > maxg<x Nk, we see that P almost surely we have

~ g Pay (07 Gllnsh nt]) < (9(s,1) — )

K L
1 -1
> Z - log Papb (n 2 Grj < g(s,t) — 5)
k=0 3=0
>k Y
2m

Sending n — oo and then K — oo gives the result for fixed s,¢,e > 0. For
the general result, we work on the p almost sure set where the result holds
simultaneously for all rational s,t,e > 0. Take s,t,6 > 0 and 51 < sand t; <t
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rational with the property that € — g(s,t) + g(s1,t1) > €1 > 0 for rational &;.
This is possible by continuity of g. The result follows from observing that

Pab (n_lG([nsJ, |nt]) <g(s,t)—5) <Pap (n_lG([nslj, |nt1]) <g(31,t1)—51) .
O

Corollary 5.1. lim, .. n ' log Ea p [exp {—AG(|ns|, |nt])}] = —Ag(s, t) p-a.s.
for s,t, A > 0.

Essentially the same argument as in Lemma, 2.1 restricted to a single diagonal
Dy (so that the last passage times on B are i.i.d. under P) shows that for
r € (0,9(s,t)), we have
| -1 <
hnnilgf n'logP (n 'G(|ns],|[nt]) <r) > 0.
To show that n is the correct rate for certain left tail large deviations, we need to
show that the corresponding limsup is finite for some r € (0, ¢g(s,t)). We begin

by considering the natural mechanism for these deviations, which we stated
previously in Section 2 as Lemma 2.2.

Proof of Lemma 2.2. We may assume without loss of generality that {1y €
M vy e MP 2 g, .(st) € (z,y)} # & since the right hand side is infinite
otherwise. Fix a pair v1, 15 from this set and introduce the notation

dvy dvy

Ay ={n'G(lns | [nt) € (2.}, Z—(a) = ¢(a), B

Since A,, is measurable with respect to o (W (i,7) : 1 <i < |ns], 1 <j < |nt]),
we see that

(b) = 9(b).

Lns) Lnt]
Paﬁ<An>::Eaﬁ[Pab<AnnzzEaﬂ[Pab<An)II A | uwwﬁ>04
i=1 j=1

[ms| | nt]
=&mﬁmmmﬂww*ﬂwmﬂ.
im1 =1

Taking logs and applying Jensen’s inequality shows that

1
— ZlogP, 5(A,
~log 5(An)

< _%IOgEm,yz [Pavb(An) | plai) " [To)™
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1

|ns| | nt]
< 7]31/ 1Z Pa An 1 (3 1
F ) [ b( )(Z1 og p(a;) Z og ¥(b; )]

1
— ﬁ log I[Dyl7l/2 (An).

Note that for any measures vq,vs, we have gy, .,(s,t) > 0, so we have not
divided by zero above. The last term tends to zero because Py, ,,(4,) — 1 as
n — 00. For the remaining term, we note that

Ev, v, [Pa,b(An)(LiJ log p(a;) + ij log ¥ (b; )]
- [(2 log ¢(a) g mgw(bj))]
—Eul,yz[ 10g<1_[ ¢(as) ﬁjw )]

= | ns|H(vi|a) + | nt | H(v2|5)

—Eaﬂ[ ﬁjwaz ﬁJ 1og<lﬁjg0az ll_t[J ))}

But zlogz > —1/e and P, p(AS) € [0, 1] so the last term is bounded above by
a constant. Dividing by n and taking limsup,,_,.,, then optimizing over vy, v
gives the result. O

To show that the annealed model has non-trivial rate n large deviations to
the left of the shape function, it suffices to show that there exists v, € M with
9u1,8(8,t) < ga,5(s,t). The next lemma gives mild conditions under which this
is the case.

Lemma 5.1. Suppose that « is not degenerate and E*[aloga] < oo. Then
there exists v with H(v1|a) < 00 and ¢, g(8,%) < ga,8(s,1).

Proof. Define 11 by (dv1/da)(a) ~ a. Note that H(v |a)) < o0 by hypothesis. Let
¢ € [~a, 8] be such that go g(s,t) = sE[(a+ )7 + tE[(b—¢)7']. Because
a # §. for any ¢, the Cauchy —Schwarz inequality gives

—B[Va+Vat+ ] <EBla+CE[(a+0)].

Rearranging implies that E[a(a +¢)™!| < E[a]E[(a +¢)™*]. It then follows
that

9uup(5,1) < sEla] *B| c] B[ : c]
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< sE[ﬁ] +tE[ﬁ] = ga,3(5,1).

O

We expect that the moment condition in the previous lemma is unnecessary.

6. Large deviation principle

We prove Theorem 2.3 by working with Legendre—Fenchel transforms and
appealing to convex duality.

Lemma 6.1. For all s,t > 0,

* Ls t()\) )\ Z 07 * Ls t()\) )‘ 2 07
J (M) = ’ A) = ’
e {oo A <0, Tea) {oo A< 0.

Proof. We give the proof of the result under P, 1. The proof under P is simi-
lar. Recall the regularity properties of J¢(-) proven in Proposition A.1 in the
appendix. The result for A < 0 follows from the observation that J, () = 0 for
r < g(s,t). For all A > 0, by the exponential Markov inequality we have

1 1
- log Pa b (G(|ns], [nt]) = nr) < - log Eap [e)‘G(L"SJ’L"tJ)] —Ar.

Sending n — oo gives Ar —J, (1) < Ly ;(\) and taking sup,.p implies J7 ,(A) <
L, :(\). For the reverse inequality, we next consider the case X € (0, + 3). Fix
M > 0 and let {x;}X , be a partition of [0, M]. We observe that

K
Ea)b[ez\G([nsJ,[ntJ)] _ Z Ea,b [GAG(LHSJ’LntJ)1(Zi_17ri](’n_lG([nSJ, lntJ))]

i=1
+ Eap [CUb D1 (07 G (s, )]

Consequently, we see that
L log Bap [0 Unshinth]
n

< max{ max {)\xi + %log P.b (n7'G(|ns], [nt]) = mi,l)},

0<i<K
1
= B[ (07 Gl [nt])]

K+1
+
n
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Take limsup,,_, .. then K — oo. Using continuity of r +— J; ;(r), we see that

L () < 032}&{)0“ —Jsi(r)}

1
v lim sup - logEa b [e)‘G(l"SJ’["tJ) L, (n 'G(|ns|, [”tj))] :

n—>a0

Let p,q > 1 be such that p~! + ¢! =1 and pA < a + B. Then
1
- log Ea,b[eAG(lnSJ’lmJ)l(M,m) (n~'G(|ns, |nt]))]
1 1
< —log B p [eMPCUnshntD] 1 —1og P, (n 1@ t] = M).
o 108 ble |+ n 8 b (7 G(|ns], nt] )
From this, we see that there exist deterministic constants C7, Cy such that

lim sup % log Ea,b[e’\G(L”SJ’l”tJ)l(MVI)(n_lG([nsJ, [ntJ))] < C1 —CaJs 1 (M).
n—w
Recall that Ar < L, (X) + J;4(r), so that as M — o, Js (M) — oo. Since
max, < {Ar — T ¢(r)} < I, (A), it follows that we have Ly () < J% (M)
Next, we turn to the case A = a + 3. We observe that as A T o + §,
L, (M) T L (o + B). Suppose that L ¢(r) < 00. Fix € > 0 and take A < o + 3
such that sup,ep{Ar — Js (1)} = Ls¢(\) = Ly (a + ) — 2¢. Then there exists
r > 0so that A\r —J,+(r) > L +(a+ 3) —e. Since (a+ S)r > Ar, it follows that
Jii(a+B) = Lg(a+ B) —e. The case Ly s(a + ) = o is similar.
Finally, we consider the case A > a + 3, where L, ;(\) = co. For each (4, j),
we eventually have G(|ns|,|nt]) = W(i,j). This implies that for all (4, j),
Js,t(r) < (a;+b;)rly=0y and therefore p almost surely, J; +(r) < (a+8)rlg=oy-
Taking Legendre - Fenchel transforms of this inequality shows that J7 ;(\) = 0.
O

Proof of Theorem 2.3. Proposition A.1 shows that r — J ;(r) and r — J ()
are real valued convex functions on R. The result follows from taking Legendre —
Fenchel transforms of the expressions in the previous lemma [20, Theorem 12.2].

O

Proof of Theorem 2.4. Fix an open set O ¢ R
1. If O € (—o0,g(s,t)) then there is nothing to prove by Lemma 2.1.

2. If g(s,t) € O, then
limsup —n~ " log Pap (n7'G(|ns], [nt]) € 0) = 0 = ing I (1)
re

n—>ao

3. If O n(g(s,t),0) # &, then O n (g(s,t),00) contains an interval (rg,r1).
Note that

P.yv (n_lG([nsJ7 [nt]) € O)
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WV

Pa,b (G([RSJ’ lntJ) €
Pab (G(|ns, |nt]) = ro) — Pap (G(|ns], nt]) = r1).

Lemma 4.4 shows that J, .(r) is strictly increasing for r > g(s,t), which implies
that

limsup —n 'log Pap (n 'G(|ns), [nt]) € O) < I 4(ro).
n—>ao
Let r, € O n (g(s,t),0) be a sequence with r, | 7, = inf{z : x € O n

(g(s,t),0)}. Then because J;(r) is continuous and non-decreasing, we see
that

limsup —n~ 'log Pap (n'G(|ns|, [nt]) € O)

n—xL

S Joulre) = reOm(i;l(E,t),oo) Lou(r) = rlgg Loo(r)-

The upper bound follows from the regularity of J;, Theorem 2.3 and Lemma

2.1. O

7. Relative entropy and the rate functions

We now turn to the proof of Theorem 2.5. Our argument proving this result
is purely convex analytic and does not show the probabilistic interpretation
mentioned before the statement of the theorem. We begin with a technical
lemma.

Lemma 7.1. For r > 0, the map («, ) — Ii’f(r) is convex on M1 (R4)2.

Proof. Using (2.3), one can check that («, 8) = gq (s, 1) is concave on M(R)2.
Thus, {(a, B) : ga.5(s,t) = r} is convex. Define for (o, ) € M1 (R )?

F(a,B) =  sup : {)\r — sE“ [10g<m>] —tE° [log(b_bgij/\)]}.

Ae(0,0+8 a+z
z€(—a,f—N)

Fix aq, az, 81,82 € M1 (Ry) and § € (0,1). Denote by a® = da; + (1 —6)a and
by 8% =681 + (1 — §)Ba. Note that a® = a3 A ag and 3° = B A B2. Then

F(a’,5%)

= o e e ()] - o e (5}

ze(—a’,B°—N)
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<5w&ﬁm{”ﬂ@“%dﬁffﬂ—mm%di;iﬂ}

z6(—a’,B°=N)
I T LT G| B IO
ze(*t_xaﬁé;)\)

<96 sup {/\T—sEal[log(m)]_tE51[10g<bb;Z)]}

Ae(0,a1+p1) a+z —Zz =\
z€(—a1,B1—)
+(1=6)  sup {/\r—sEo‘? [log(a:—j_—;)‘)] _EP [log(b:g)]}’
s

so that F is convex on M(R™)2. Then we see from (2.11) that («, 8) — Igf (r)
is convex on M(R™)2. O

Proof of Theorem 2.5. Theorem 2.3 and the variational characterization of rel-
ative entropy, [19, Theorem 5.4], imply that for r > g(s,t),

0= e, Pr s 55}

ze(—g,@—)\)

A
= sup inf {Ar —sE” [log<ﬂ)]
Ae(0,a+8) v EM® a—+z

B
ze(—a,8-2) V2EM

_ R [log(b_b;%/\)] + sH(n|a) + tH(VgW)}

A
inf sup {)\r — sE" [log<ﬂ)]
u1EMZ AE(0,0+8) a+z

VoEM 26(—a,8-A)

_tEY [log (

N

b—bgij)\)] + sH(v1|a) + tH(V2|B)}-

Note that if v; « o, it must be the case that 1 > o and similarly, v, > 8. It
follows that we may extend the region in the inner supremum to obtain

I8P (r) < inf {T0%"2(r) + sH(|o) + t H(1o|8)} .
Vi,V

Vi,V2

The map (v1,v2) = IJ}7(r) + sH(v1]a) + t H(v|B) is strictly convex on the
convex set M® x M? so at most one minimizing pair (1, ) exists. It therefore
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suffices to show that we have equality with the measures vy, 15 defined in the
statement of the theorem. We argue this by cases.

A maximizing pair A, z. satisfying A, € [0, a4 ], 2« € [—a, B — A,] exist for
the annealed right-tail rate function by Lemmas 4.2 and 4.4. (z, denotes z,(\4)
in the notation of Section 4. Also, by Corollary 3.1, z.(a + ) = —a). Note

that A, = 0 is impossible because Jg‘f (r) > 0 by Lemma 4.4. If A, € (0,a + f5)

and z, € (—a, f — \.), then v; € M* and vy € M” because their densities with
respect to @ and § are bounded. Taking derivatives in (2.12), we see that z.
and A, solve

0= SEVl[a—iz* B a+zi+/\*] +tEy2[b—Z* B b—zi—)\*]’ (7.1)
1 1 Vo 1
0=r—sE [m]—tE [m] (7.2)

These are precisely the first order conditions implying that

V1,V vy a+Z*+)\* v2 b_Z*
L) = Ay o B flog RS e los

The definition of relative entropy and a little algebra then show that

380 (r) = 72 (r) + sH(vi|a) + t H(ws|a).

s,t

The remaining cases are similar in that once we know that the extremizers
are the same for J?”f (r) and I."*(r), the result follows. The necessary and
sufficient conditions in Lemmas 4.1 and 4.2 show that v; and vy are well defined
and that this equality continues to hold if A\, < a+f and z, = —a or z, = 8—A,.
The only remaining case is A\« = a + 8 and z, = —a. A, = o + 3 is equivalent
tor = (L?”tﬁ)’(g + (). By Corollary 4.1, this condition implies that vy and v
are well defined and (L¢"?)'(a + ) = (Li’tﬁ)'(g + ). The result follows. [

8. Scaling estimates

In this section, we prove the scaling estimates for the quenched and the
annealed rate functions. See the discussion Section 4 for the notation below. If
c1 < s/t < ¢y we have 0.g¢(s,t) = 0 and, therefore,

9:(5,1) = g(s,1) + 029¢(s, 1) (2 = €)*/2 + o((2 = ¢)?). (8.1)
In fact, (8.1) holds for s/t = ¢; and s/t = co as well provided that
1 1

that is, assuming that 02g.(s,t) has limits at the endpoints —a and f3.
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Proof of Theorem 2.7. For € > 0 sufficiently small, we have

L) =A(r), L, (A(r) =r (8.3)

,t) + ¢ by Lemma 4.4. We begin with the case
c1 < s/t < ¢y. Then C € (—a, ). We recall A\; and Az defined in Lemma 4.1.
Because 0,F(—a,0) = 0,9_4(s,t) < 0 and 0,F(—a,0) = 0,9_4(s,t) > 0, we
conclude that Ay > 0 and Ay > 0. Hence,

N0 F (24, \)
O2F (24, )

SE[

whenever g(s,t) < r < g(s

7 (\) = —

o) lemae o)
(a4 z«)(a + 24 + )2 (b — 24)(b — 24 — )2
[ 2a + 27, +\ ] tE[ 20— 27, =) ]
(a + 2« +2)2(a + 74)2 (b — 2« —2)2(b — 74)2
for 0 < A < A1 A Ag. Letting A | 0 yields z,/(07) = —1/2. Tt follows that

ze(A) = (= A/2+ 0o(X\) as A | 0. We obtain L'SJ(/\) = g, a(s,t) = g(s,t) +
02g¢(s,)A2/8 + 0(A2) as A | 0. Then,

242
I (g(s,t) +e) = 24 12 | o(c1/2),
6294(37 )
and integrating gives
4\[53/2

I, s,t)+¢) = +o £3/2 -
,t(g( ) ) 829<(3 t) ( ) ( )

4 £3/2

+ 0(53/2)

3VgEha:<P]+tEhbfcﬂ]

as € | 0. Now, suppose that s/t < ¢;. Then E[(a — a) %] < o0, ( = —a and
z, = —a. Under condition (8.2), when ¢; = s/t, L ;(A) = g_a4x(s,t) = g(s,t)+
029_a(s,t)A?/2 + 0o(\?) and we reach (8.4) multiplied with 1/2. If ¢; > s/t then
0-9-a(s,t) > 0 and we have L] ,(X) = g_a4a(s,1) = g(s,1) +029-a (s, )A+0(N).
This leads to

52

Is’t(g(s,t) + 5) = m + 0(82)

1 2
= c + o(e?).

Q—SEhafaﬁ}+tEhbfgp]

Analysis of the case s/t = ¢y is similar. O
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Proof of Theorem 2.8. In the case ¢; < s/t < ¢, Holder’s inequality gives

, 050, F (24, )
1 */ - _ 9
i (N) = =i = e )

SE[(ajg)z] E[ﬁ] +2tE[(b—1<)3]_tE[(b—1§)2] E[biq]

(a+¢)? (b—¢)?
_SE[(aJrlgy] E[ai(] +tE[(b—1§)3]
R A = 1
Hence, z,(X) = ¢ + A + o(\), where ¢ < 0. We have
S e O e 5
el B ey
= go a(5,8) + A(sVar[a Jlr g] +tVar[b i C]) To(d)  (8.6)
=g(s,t)+)\(sVar[a+C] —i—tVar[biC]) +o()). (8.7)
Then, arguing as in the preceding proof, we obtain
Joi(g(s,t) +¢) = ésvar[a Jlr C]i e T C] +o(e). (8.8)

Now consider s/t < ¢;. Then ¢ = z, = —« and (8.5) still holds. If s/t = ¢;
subsequent arguments go through assuming (8.2). This condition is needed in
step (8.6), which relies on (8.1) with ( = —a. Hence, we have (8.8). If s/t < ¢;
then the coefficient of A in (8.7) has an additional term 0,9_,(s,¢) > 0, which
leads to

E2

]2 +tVar[

1
Js,t(g(svt) +€) = 5

_SE[ b—il-g

a—«Q

The case s/t > ¢y is analyzed similarly. O
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A. Right tail rate functions and Lyapunov exponents

Proposition A.1.

(a) p-a.s., for s,t > 0 and r € R, there exists (nonrandom) J ,(r) € [0, ) such
that

lim —flogPab(G([nsJ, [ nt]) =nr) =J,.(r). (A.1)

n—w

(b) For all s,t >0 and r € R, there exists J, 4(r) € [0,00) such that

lim ——log}P’( (Ins] | nt]) =nr) =, (r). (A.2)

n—ao

(¢) J and J are convex and homogeneous in (s, t,r), nonincreasing in (s,t) and
nondecreasing in 7.

Proof. Fix r € R and s,t € N. For integers 0 < m < n, define
Xm,n = - log P'rms (a),7mt(b) (G((n - m)87 (TL - m)t) = (n - m)r)

We verify that {X,, ,} satisfy the hypotheses of the subadditive ergodic theorem
n [17]. For subadditiviy, note that

Xon = —logPap(G(ns,nt) = nr)

—1og Pap(G(ms, mt) = mr)
—IOgPa,b( (( )3»( ) ) Oamé‘,mt = (n_m)r)
= XO,m + Xm,n-

For k € N, by the ergodicity assumptions on p, the sequence (X k4n)nen has
the same distribution as (Xo 5 )nen and the sequence (X(,—1)k,nk)nen is ergodic.
Moreover, X, = 0 and

EXon <E[-logPap(W(1,1) = nr)] = nmax{r,0} E[a + b] <. (A.3)

Hence, by the subadditive ergodic theorem, (A.1) holds p-a.s. (and in expecta-
tion under p) with

Joi(r) = nlgn/ 5 EXyn = hm —— ElogPab(G(ns,nt) = nr). (A.4)

We record some properties of J, 4(r) for s,t € N and r € R. It is clear from

(A.4) that J, (r) is nonincreasing in (s, t) and nondecreasing in r. In addition,

Jsi(r) = 0 for r < 0 as G is nonnegative, and J¢s (cr) = ¢J, (1) for ¢ € N.

By (A.3), J5:(r) < rE[a +b] < o0 for r > 0. Also, for si,s9,t1,t2 € N and
r1,72 € R, we have

ElogPab(G(n(s1 + s2),n(ty +t2)) = n(r1 +1r2))
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> Elog P, b(G(nsi,nt1) = nrq) - ElogPa p(G(nsa, nta) = nre)

for n € N, which gives Js, 15, ¢, 44, (11 +72) = Jg, 4, (r1) + T, 1,(r2). Then, for
0<r<r<r+1/n,

Jst(r') = Js4(r) < Js1(r 4+ 1/n) — Js4(r)

1
= Jninys,mrnye(nr +r+1+1/n) — Js4(r)

n—+1
- Josne(nr) Jst(r+2)
n+1

- J.
n+1 () +

. 2) — J, o +2
_ J ,t(T+ ) J 7,5(’1“) < r+ E[a—i—b], (A5)
n+1 n

which shows continuity of J, () in r.
There exists a p-a.s. event E on which (A.1) holds for all s,¢t € N and r € Q.
It follows from the monotonicity of log Pa v, (G(ns,nt) = nr) in r and continuity
of J; that (A.1) holds for all s,t € N and r € R on E. From now on, let us
work with (a,b) € E.
For ¢ > 0, § € (0,1) and large enough n € N, we have
—logPan(G(|nes |, | nct ) Zznr) < —logPan(G(| en | s, |en]t) = |en] r(146)),
—logPan(G(|nes |, | net|) = nr)=—logPap(G([cn]s, [en] t) =[cen] r(1-96)).
(A.6)
It follows from these inequalities and continuity of J; that (A.1) holds on E
with Jes ci(er) = ¢Js4(r). In particular, J,¢(r) exists for rational s,t > 0.
Moreover, by homogeneity, the properties of Js(r) noted in preceding para-
graph hold for rational s, > 0 as well.
For s,t, > 0, choose rational §',¢ such that s’/(1 +0) < s < ¢ and
t'/(1+96) <t <t Then

—logPap(G(|ns|,|nt]) =
—logPan(G(|ns |, nt]) =
< —logPab(G(| ns'/(1 +

It follows that

r) = —log Pan(G(| ns' |,|nt']) = nr),
") (A7)
) Int' /(1 +0)[) = nr).

n
n

liminf—l logPan(G(|ns |, | nt]) = nr) = Js p(r),
n

. 1
lim sup - logPan(G([ns ], [nt]) = nr) < Jgjave).e/0+5)(T)
n—o
=Jsg v ((L+0)r)/(1+9).
Using (A.5), we obtain

w ~Jow(r) S T ((L+8)r) = T (r) < % Ela +0].
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As § ] 0, we have s’ | s and ' | t. Hence, we conclude that Js,(r) exists and
equals the limit of Jo 4/(r), and also enjoys the properties of mentioned above.
Finally, it follows from subadditivity and homogeneity that J is convex. O

Proposition A.2.

(a) p-a.s., for any s,t > 0 and A € R, there exists L 4(\) € [0, 0] such that,

1
lim = log B, p[e*CUnsblntD] = 1, (\). (A.8)

n—L n
(b) For any s,t >0 and \ € R,

lim = log E[eACUnsllnt D] — 1 (). (A.9)

n—x N

(¢) Ls¢(A) and L+ (\) are nondecreasing and convex in .

(d) ALs+(A) and AL () are nondecreasing, homogeneous and concave in
(s,t).
Proof. Fix A € R and s,t € N. Define

Xm,n = -\ 10g ETms (a),7me (b) [eAG((n—m)s,(n—m)t)]

for integers 0 < m < n. Then {X,,, : 0 < m < n} are nonpositive and
subadditive, and the conditions of the subadditive ergodic theorem are in place
to claim the existence of Ly ¢(\) € [—00, 0] such that (A.8) holds u-a.s.

For A e R,s,t e N and ¢ > 0, we have

_AlogEa,b[eAG([nc]s,[nc]t)] < _/\log Ea,b [e)\G([nch,[nctJ)]
< —Mlog Ea,b [e)‘G(L”CJS,[ncJt)].

Also, for A € R, s,¢,¢,¢,6 > 0 such that s',¢' are rational, s'/(1 +J) < s < ¢
and t'/(14+90) <t <t

—Alog Ea’b[eAG(["SI J,lnt'J)] < —AlogEap [ex\G(lnSJ,lntJ)]

< —\log Ea,b[exp{AG([%J’ l%J) }]

Using these inequalities as in the preceding proof, we obtain (A.8) for all s,¢ > 0
p-a.s. and the claimed properties of the function (s,t) — ALs +(N).

Now fix s,t > 0. Note that Ls(\) is nondecreasing in A\. Let Ay =
supyerilis,t(A) < oo}. For A;,A2 € R and ¢1,¢2 € (0,1) with ¢1 + ¢c2 = 1,
by Holder’s inequality,

log Ea b[6(01/\1+02>\2)G([nsj,[ntj)]
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< 1 10g Bap [ MU LInD] 4 ¢y log B[220 s Int D],

which implies that L ;(c1 A1 + c2A2) < €1 Ls (A1) + c2 Ls ¢ (A2). Hence, L ¢ (\)
is continuous in A on (—o0, Ag). Using this and the monotonicity of last-passage
times, we deduce that (A.8) holds for all s,¢ > 0 and A € R p-a.s. ]
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