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Abstract. We study an inhomogeneous generalization of the classical corner
growth in which the weights are exponentially distributed with random param-
eters. Our interest is in the large deviation properties of the last passage times.
We obtain tractable variational representations of the right tail large deviation
rate functions in both the quenched and annealed settings and estimates for left
tail large deviations. We also compute expansions of the right tail rate functions
near the shape function, which are consistent with the expectation of KPZ type
fluctuations in an appropriate regime.
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1. Introduction

Let W � tW pi, jq : i, j P Nu be a collection of nonnegative real random
variables (weights) with joint distribution P . We consider a growing random
subset of N2. Initially, this subset is empty and the growth rule is as follows: at
time zero, we start a countdown of length W p1, 1q; when this countdown ends,
we add p1, 1q to the subset. This process then iterates: once the bottom and
left neighbors (if they exist) of a site pi, jq have been added, a countdown of
length W pi, jq begins; when it ends, pi, jq joins the subset.

Our interest is in the last-passage times G � tGpi, jq : i, j P Nu, defined
recursively by

Gpi, jq � Gpi� 1, jq _Gpi, j � 1q �W pi, jq, Gpi, 0q � Gp0, jq � 0, (1.1)
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for i, j P N. These random variables encode the evolution of the set described
above in the sense that pi, jq P N2 is added to the set at time t � Gpi, jq. They
can also be viewed as describing a directed last-passage percolation model since
(1.1) is equivalent to

Gpm,nq � max
πPΠp1,1q,pm,nq

¸
pi,jqPπ

W pi, jq, (1.2)

where Πpk,lq,pm,nq is the set of all directed paths from pk, lq to pm,nq. A directed

path π P Πpk,lq,pm,nq is a finite sequence pui, viqiPrps in Z2 such that pu1, v1q �
pk, lq, pup, vpq � pm,nq and pui�1 � ui, vi�1 � viq P tp1, 0q, p0, 1qu for 1 ¤ i   p.

The corner growth model also maps to a generalization of the totally asym-
metric exclusion process (TASEP) on Z started from step initial conditions. In
this interpretation, we begin with particles at the sites i   0 and holes at the
sites i ¥ 0. We label the particles with i P N, counting from right to left and
holes with j P N from left to right. In the dynamics, particle i and hole j inter-
change at time Gpi, jq. If we denote the position of particle i at time t by σpi, tq
then we have

σpi, tq � �i�maxtj P N : Gpi, jq ¤ tu. (1.3)

If the weights are i.i.d. with geometric or exponential marginals, this process is
the usual TASEP run in discrete or continuous time, respectively [25, p. 5].

These and related models have received substantial research attention in
the past two decades, partially in connection with KPZ universality. See the
surveys [5, 18]. When P is i.i.d. with geometric or exponential marginals, it
has been possible to compute various statistics of the last-passage times. For
example

lim
nÑ8

Gptns u, tnt uq
n

� mps� tq � 2σ
?
st for s, t ¡ 0 P -a.s., (1.4)

where m and σ2 are the common mean and the variance of the weights. The
exponential case of (1.4) was first proved in [21] and the geometric case appeared
in [3, 15, 23]. Large deviation principles for the last-passage times were derived
in [14, 22]. These papers identified the right-tail rate function and the correct
decay rate for both the right and left tails. It is also established in [14] that
the model exhibits KPZ statistics; the fluctuations around the limit in (1.4)
are of order n1{3 and appropriately rescaled last-passage times converge to the
Tracy – Widom GUE distribution.

This paper concerns an inhomogeneous generalization of the classical i.i.d.
exponential model. Given parameter sequences a � panqnPN and b � pbnqnPN
taking values in p0,8q, we define a measure under which the weights are in-
dependent and W pi, jq is exponentially distributed with mean pai � bjq�1. We
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state the assumptions of our model precisely in Section 2, but for the moment we
will outline our results in the case that a and b are independent i.i.d. sequences
which are bounded away from zero and have finite means. We refer to the model
where we condition on these random sequences as the quenched model. In the
framework of particle systems, the quenched model corresponds to an inhomo-
geneous continuous time TASEP with particlewise and holewise inhomogeneity.
The annealed measure is constructed by averaging the family of quenched mea-
sures over the joint distribution of pa,bq. Weights in the quenched model are
independent, but not identically distributed in general; in the annealed model,
the weights are identically distributed but correlated along rows and columns.

For the models we consider, the almost sure limit of n�1Gptns u, tnt uq is
deterministic and can be characterized as the solution of a certain variational
problem, see [8]. With some choices of the marginal distributions of a and b,
this family of models has a feature not present in the previous exactly solvable
corner growth models: the presence of linear segments of the shape function.
This is of some interest because different fluctuation exponents are expected in
these different regions if the weights are weakly correlated. For a particle system
perspective on this phenomenon in the case where a is almost surely constant
and b is i.i.d. and bounded, see [27].

The present paper is devoted to the question of large deviations correspond-
ing (1.4). In the quenched setting, we are able to prove a large deviation prin-
ciple with rate n and a rate function given by the solution to a reasonably
tractable variational problem. With certain choices of the weights and in cer-
tain directions, we provide some explicit formulas for these rate functions.

In the annealed setting, we have a variational expression for the right tail rate
function which is similar to the variational expression in the quenched setting,
though we no longer have any non-trivial explicitly computable examples. De-
viations to the right of the shape function in the annealed model are connected
to deviations in the quenched model through a variational problem involving
relative entropy. Heuristically, these deviations should arise from perturbations
of pa,bq combined with deviations in the quenched model with these perturbed
parameters. There are rate n annealed large deviations to the left of the shape
function. This is in contrast to the i.i.d. models, where the rate is n2 [14,22]. We
show that this occurs by using the fact that it is possible to see a finite entropy

deviation of the (order n many) parameters taiutns u
i�1 and tbjutnt uj�1 which affect

the distribution of Gptns u, tnt uq and makes the shape function smaller.
We identify the expansions of both the quenched and annealed rate functions

near the shape function. In the quenched model, for directions in which the
shape function is strictly concave, these expansions are heuristically consistent
with the expectation of Tracy – Widom GUE fluctuations. Fluctuation results
for an inhomogeneous version of the closely related Seppäläinen – Johansson
model (oriented digital boiling) were previously obtained in a series of papers
by Gravner, Tracy, and Widom [10–12]. The question of what happens at the
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interface of the linear and concave regions was left open in those papers. At the
interface of the linear and concave regions for the models we study, our results
suggest KPZ type fluctuations under a moment condition. We elaborate on this
connection in the next section.

To prove the variational formulas for the right tail rate functions, we follow
an approach introduced in [24] and applied in [9, 13, 22]. The key technical
condition making this scheme tractable is an analogue of Burke’s theorem from
queueing theory, which in this setting corresponds to the existence of a station-
ary version of the model, as discussed in Proposition 2.1. We expect that the
techniques employed in this paper could be used to obtain similar results in in-
homogeneous versions of other models with the Burke property, such as the log
gamma polymer [26], the strict-weak polymer [6] and the corner growth model
with geometric weights [8].

The principal contributions of this paper are as follows. To the best of our
knowledge, this is the first inhomogeneous model in the KPZ class for which
exact large deviation rate functions have been computed. The rate functions we
obtain in both the quenched and annealed settings are tractable. For general
choices of the distributions of the sequences pa,bq, we identify the asymptotic
rate that the right tail rate function tends to zero near the shape function, sug-
gesting KPZ type fluctuations for the quenched model in appropriate directions.
In particular, our results suggest a partial answer to the problem of what type
of fluctuations to expect at the interface of the linear and concave regions. We
further connect our quenched and annealed rate functions through a natural
variational problem involving relative entropy.

The paper is organized as follows. In Section 2, we define the model precisely
and state our results. The remaining sections are devoted to proofs. In Section
3, we discuss the stationary model and compute the Lyapunov exponents of the
last passage times. In Section 4, we study the extremizers of the variational
problems for the rate functions and Lyapunov exponents. We then estimate the
probability of left tail large deviations in Section 5. In Section 6 we show that
the Legendre – Fenchel transform of the right tail rate function is given by the
previously computed Lyapunov exponents. These results are combined to prove
the large deviation principle for the quenched model. In Section 7, we note that
the extremizers for the annealed model are connected to the extremizers for a
quenched model with different parameters, which gives a variational connection
between the quenched and annealed rate functions. Understanding of the ex-
tremizers also allows us to prove the scaling estimates in Section 8. We include
the standard subadditivity arguments showing existence and regularity of the
Lyapunov exponents and right tail rate functions in Appendix A.

Notation. For real numbers a, b, we denote maxpa, bq � a_ b and minpa, bq �
a^ b. We take the convention that N � tn P Z : n ¡ 0u and R� � tx P R : x ¡
0u. For D � R, we denote by M1pDq the collection of probability measures on
D. For η PM1pDq, we use the notation

¯
η � ess-inftηu and η̄ � ess-suptηu.
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Given ν, µ PM1pDq, the relative entropy is defined by

Hpν|µq � Eν logpdν{dµq

if ν is absolutely continuous with respect to µ and 8 otherwise. See for ex-
ample the discussions in [7] and [19] for basic properties of the relative en-
tropy. We denote absolute continuity of ν with respect to µ by ν ! µ. For
probability measures ν, µ with ν ! µ, we write pdν{dµqpxq � fpxq if νpdxq �
r³ fpxqµpdxqs�1fpxqµpdxq. For a probability measure µ on R�, define

Mµ � tν PM1pR�q : Hpν|µq   8u (1.5)

and note that for each µ, Mµ is a convex set by convexity of Hpν|µq.
For f : R Ñ p�8,8s, f�pξq � supxPRtxξ � fpxqu defines the Legendre –

Fenchel transform. We refer the reader to [20] for basic properties of this trans-
form.

2. Model and results

2.1. Model

Denote by W pi, jq the projection RN2

� Ñ R� onto the coordinate pi, jq for
i, j P N. For any sequences a � pa1, a2, . . .q,b � pb1, b2, . . .q taking values in

R�, we define Pa,b to be the product measure on RN2

� satisfying

Pa,bpW pi, jq ¥ xq � e�pai�bjqx for i, j P N and x ¥ 0.

We will draw the sequences pa,bq randomly from a distribution µ on RN
��RN

�.
For k P Z�, let τk denote the shift pcnqnPN ÞÑ pcn�kqnPN. In all of the results
that follow, we make the following assumptions on pa,bq. We assume that a
and b are stationary sequences under µ. We assume further that µ is separately
ergodic with respect to τk � τl for k, l P N. This means that if k, l P N and
B � RN

��RN
� is a Borel set with pτk � τlq�1pBq � B then µpBq P t0, 1u.

The annealed distribution P is given by PpBq � E rPa,bpBqs for any Borel

set B � RN2

� , where E is the expectation under µ. Let Ea,b and E denote
the expectations under Pa,b and P, respectively. We denote by α and β the
distributions of a1 and b1 and take the convention that a and b are random
variables with distributions α and β respectively. In all of the following results,
we will assume that Era � bs   8 and

¯
α �

¯
β ¡ 0. Finally, all large deviation

results under P are limited to the case in which a and b are independent i.i.d.
sequences.

We will also consider a ‘stationary’ model defined on the extended sample

space RZ2
�

� . Each weight W pi, jq is now redefined as the projection onto coordi-
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nate pi, jq for i, j P Z2
�. Introduce the last-passage times

pGpm,nq � max
πPΠp0,0q,pm,nq

¸
i,jPπ

W pi, jq for m,n P Z� . (2.1)

For sequences a and b in p0,8q and z P p�
¯
α,

¯
βq, define the product measure

Pza,b on RZ2
�

� by

Pza,bpW pi, jq ¥ xq � expp�pai � bjqxq, Pza,bpW p0, 0q � 0q � 1, (2.2)

Pza,bpW pi, 0q ¥ xq � expp�pai � zqxq, Pza,bpW p0, jq ¥ xq � expp�pbj � zqxq
for i, j P Z� and x ¥ 0. We will use definition (2.2) for z � �

¯
α when ai ¡

¯
α

for i P N and for z �
¯
β when bj ¡

¯
β for j P N. The utility of these measures

is that the last-passage increments given by Ipm,nq � pGpm,nq � pGpm � 1, nq
for m ¥ 1, n ¥ 0 and Jpm,nq � pGpm,nq � pGpm,n � 1q for m ¥ 0, n ¥ 1 are
stationary in the following sense.

Proposition 2.1 (Proposition 4.1 in [8]). Let k, l P Z�. Under Pza,b,

(a) Ipi, lq has the same distribution as W pi, 0q for i P N.

(b) Jpk, jq has the same distribution as W p0, jq for j P N.

(c) The random variables tIpi, lq : i ¡ ku Y tJpk, jq : j ¡ lu are jointly inde-
pendent.

For admissible z, define the measure Pz on RZ2
�

� by PzpBq � ErPza,bpBqs for
any Borel set B. Let Eza,b and Ez denote the expectations under Pza,b and Pz,
respectively.

2.2. Results

We begin by briefly summarizing the results from [8]. The ergodicity as-
sumptions on µ and the superadditivity of the last-passage times imply that
limnÑ8 n�1Gptns u, tnt uq � gps, tq for s, t ¡ 0 P-a.s. and Pa,b-a.s. for µ-a.e.
pa,bq for some deterministic function g known as the shape function. g admits
the variational representation

gps, tq � inf
zPr�

¯
α,

¯
βs

!
sE

� 1

a� z

�
� tE

� 1

b� z

�)
for s, t ¡ 0. (2.3)

The infimum above is actually a minimum with a unique minimizer and the
function gz given by gzps, tq � sE

�pa� zq�1
� � tE

�pb� zq�1
�

is the shape
function in the stationary version of the model. At times we will also view
gps, tq as a function of pα, βq PM1pR�q2. In these cases, we will use the notation
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Figure 1: An illustration of the sublevel set g ¤ 1 and the rays s{t � c1 and
s{t � c2 when 0   c1   c2   8.

pα, βq ÞÑ gps, tq � gα,βps, tq to highlight the dependence on these measures. This
map will be considered for any pα, βq PM1pR�q2.

Set

c1 �
E
�pb�

¯
αq�2

�
E rpa�

¯
αq�2s c2 �

E
�pb�

¯
βq�2

�
E
�pa�

¯
βq�2

� . (2.4)

Then 0 ¤ c1   c2 ¤ 8, and c1 � 0 and c2 � 8 if and only if Erpa�
¯
αq�2s � 8

and Erpb�
¯
βq�2s � 8, respectively. It can be seen from (2.3) that g is strictly

concave for c1   s{t   c2 and is linear for s{t ¤ c1 or s{t ¥ c2, see Figure 1.
We show in Proposition A.2 of the appendix that for s, t, λ ¡ 0, we may

define the quenched and annealed Lyapunov exponents by

Ls,tpλq � lim
nÑ8

1

n
logEa,b

�
eλGptns u,tnt uq� µ-a.s.,

Ls,tpλq � lim
nÑ8

1

n
logE

�
eλGptns u,tnt uq�.

Our first result is an exact computation of these exponents.

Theorem 2.1. For s, t, λ ¡ 0, if 0   λ ¤
¯
α�

¯
β,

Ls,tpλq � inf
zPr�

¯
α,

¯
β�λs

!
sE log

�a� z � λ

a� z

	
� tE log

� b� z

b� z � λ

	)
; (2.5)

if λ ¡
¯
α�

¯
β, Ls,tpλq � 8. If 0   λ ¤

¯
α�

¯
β,

Ls,tpλq � inf
zPr�

¯
α,

¯
β�λs

!
s log E

�a� z � λ

a� z

	
� t log E

� b� z

b� z � λ

	)
; (2.6)

if λ ¡
¯
α�

¯
β, Ls,tpλq � 8.
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Having proven Theorem 2.1, a proof similar to the proof of Theorem 2.1
allows us to compute the Lyapunov exponents in the stationary version of the
model.

Theorem 2.2. For z P p�
¯
α,

¯
βq, almost surely for all s, t ¡ 0 and λ P p0, p

¯
α �

zq ^ p
¯
β � zqq

Lzs,tpλq :� lim
nÑ8n

�1 logEz
a,b

�
eλĜptns u,tnt uq�

�
!
sE

�
log

a� z

a� z � λ

�
� tE

�
log

b� z � λ

b� z

�)
_
!
sE

�
log

a� z � λ

a� z

�
� tE

�
log

b� z

b� z � λ

�)
.

Similarly, we show in Proposition A.1 that for s, t ¡ 0 and r P R, we may
define right tail rate functions by

lim
nÑ8�

1

n
logPa,bpGptns u, tnt uq ¥ nrq � Js,tprq µ-a.s.,

lim
nÑ8�

1

n
logPpGptns u, tnt uq ¥ nrq � Js,tprq

Using Theorem 2.1, we show that

Theorem 2.3. For s, t ¡ 0,

Js,tprq � sup
λPp0,

¯
α�

¯
βs

zPr�
¯
α,

¯
β�λs

!
rλ� sE log

�a� z � λ

a� z

	
� tE log

� b� z

b� z � λ

	)
(2.7)

for r ¥ gps, tq, and Js,tprq � 0 for r   gps, tq.

Js,tprq � sup
λPp0,

¯
α�

¯
βs

zPr�
¯
α,

¯
β�λs

!
rλ� s log E

�a� z � λ

a� z

�
� t log E

� b� z

b� z � λ

�)
(2.8)

for r ¥ gps, tq, and Js,tprq � 0 for r   gps, tq.
The preceding result also describes left tail large deviations for a tagged

particle in an inhomogeneous TASEP with step initial condition. This TASEP
can be obtained from the corner growth by defining the position of particle i P N
at time t ¥ 0 as in (1.3). By monotonicity of G, the particles remain ordered
i.e. σpi, tq ¡ σpi� 1, tq for i P N and t ¥ 0. Initially, σpi, 0q � �i for i P N and
particles move on Z over time according to the following rule. If particle i is at
site �i� j � 1, as soon as site �i� j is vacant, particle i moves to site �i� j
after W pi, jq amount of time. Since tσpi, tq ¡ ju � tGpi, i � jq   tu as events,
Theorem 2.3 implies the next corollary.
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Corollary 2.1. For x, y, t ¡ 0,

lim
nÑ8�

1

n
logPa,bpσptnx u, ntq ¡ tny uq � Jx,x�yptq a.s.,

lim
nÑ8�

1

n
logPpσptnx u, ntq ¡ tny uq � Jx,x�yptq.

As with the shape function, we will at times consider the maps pα, βq ÞÑ
Js,tprq � Jα,βs,t prq and pα, βq ÞÑ Js,tprq � Jα,βs,t prq.

Note that the Lyapunov exponents and the right tail rate functions depend
on µ only through the marginal distributions α and β. The variational problem
in (2.7) can be solved exactly for certain choices of α, β, s and t. We note that
if r ¥ gps, tq and there exists λ� P p0,

¯
α�

¯
βq and z� P p�

¯
α,

¯
β � λ�q such that

0 � sE
� 1

a� z��λ� �
1

a� z�

�
� tE

� 1

b� z��λ� �
1

b� z�

�
,

r � sE
� 1

a� z��λ�
�
� tE

� 1

b� z��λ�
�
,

then

Js,tprq � λ� r � sE log
�a� z��λ�

a� z�

	
� tE log

� b� z�
b� z��λ�

	
. (2.9)

Example 2.1. If α � β � δc{2 for c ¡ 0, then for r ¥ gps, tq � c�1p?s�?
tq2,

Js,tprq�
a
ps� t� crq2 � 4st� 2s cosh�1

�s� t� cr

2
?
csr

	
� 2t cosh�1

� t� s� cr

2
?
ctr

	
,

(2.10)
which recovers [22, Theorem 4.4].

Example 2.2. If α � β � pδc � qδd for p, q, c, d ¡ 0 with p� q � 1 and s � t,
then for r ¥ gps, sq � 2s

�
pc�1 � qd�1

�
,

Js,sprq � r λ��sp log
�c� z��λ�

c� z�

	
� tq log

� c� z�
c� z��λ�

	
� sq log

�d� z��λ�
d� z�

	
� tq log

� d� z�
d� z��λ�

	
where

z� � 2cp� 2dq � c2r � d2r �?
∆

2r
, z��λ� � 2cp� 2dq � c2r � d2r �?

∆

2r
,

∆ � p2cp� 2dq � c2r � d2rq2 � 4rp2cd2p� 2c2dq � c2d2rq.
More complicated exact formulas in this model are available in all directions
ps, tq.
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Example 2.3. If α and β are uniform on rc{2, c{2 � ls for c, l ¡ 0 and s � t,
then

Js,sprq � r λ��2s

l

c{2�l»
c{2

log
�x� z��λ�

x� z�

	
dx for r ¥ gps, sq � 2s

l
log

�
1� 2l

c

	
,

where

z� � �
d
pc{2� lq2 � c2erl{s{4

1� erl{s
, z��λ� �

d
pc{2� lq2 � c2erl{s{4

1� erl{s
.

Left tail large deviations in the quenched model have rate strictly larger than
n. We expect that under mild hypotheses the correct rate should be n2, as is
the case in the homogeneous model where α � β � δc{2 [14, 22].

Lemma 2.1. lim
nÑ8�

1

n
logPa,b pGptnsu, tntuq ¤ nrq � 8 for s, t ¡ 0 and r  

gps, tq µ-a.s.

Combining our results for the right and left tail deviations, we can prove a full
quenched LDP at rate n. The rate function is given by

Is,tprq �
#
Js,tprq r ¥ gps, tq,
8 r   gps, tq. (2.11)

As before, we will at times use the notation pα, βq ÞÑ Is,tprq � Iα,βs,t prq.
Theorem 2.4. µ-a.s, for any s, t ¡ 0, the distribution of n�1Gptns u, tnt uq
under Pa,b satisfies a large deviation principle with rate n and convex, good
rate function Is,t.

Although our proof of the large deviation principle goes through the Lyapunov
exponents, we do not apply the Gärtner – Ellis theorem. The steepness condition
in this model is Erpa�

¯
αq�1s � Erpb�

¯
βq�1s � 8, which would rule out having

linear segments of the shape function and so is too restrictive.
In contrast to the quenched case, there are non-trivial annealed large devi-

ations at rate n. The following bound gives a mechanism for these deviations.

Lemma 2.2. For any x   y,

lim sup
nÑ8

� 1

n
logPpn�1Gptns u, tnt uq P px, yqq

¤ inf
ν1PMα,ν2PMβ

gν1,ν2 ps,tqPpx,yq

tsHpν1|αq � tHpν2|βqu.
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The other bound needed to show that n is the correct rate for certain left tail
large deviations follows from essentially the same argument used to show that
the quenched rate is strictly larger than n. This is discussed briefly after the
proof of Lemma 2.1. To show that there are rate n annealed left tail large
deviations it suffices to show that there exist ν1 P Mα and ν2 P Mβ with
gν1,ν2ps, tq   gα,βps, tq. We give a simple proof that under mild conditions this
is the case in Lemma 5.1. We expect that this mechanism is not sharp.

Example 2.4. Suppose that α � δ1{2 � δ2{2 and β � δ1, and recall that
Mα � tpδ1 � p1 � pqδ2 : 0 ¤ p ¤ 1u. For 0 ¤ p ¤ 1, call αp � pδ1 � p1 � pqδ2.
Then tgαp,βp1, 9q : 0 ¤ p ¤ 1u � t5.3̄uYp5.5, 8s. The reason for the discontinuity
in this example is that if p ¡ 0, then the functional in (2.3) is minimized on the
set p�1, 1q, but if p � 0, the minimization occurs on p�2, 1q. We have chosen
s � 1, t � 9 so that the minimizer for the p � 0 case occurs in p�2,�1q. The
bound one obtains from Lemma 2.2 in this example is infinite when applied
to the interval p5.4, 5.5q. The finite relative entropy perturbation of the ai
parameters switching the distribution to δ2 turns this into a right tail large
deviation.

The next theorem connects quenched rate function and annealed right tail
rate function through a variational problem. We expect that this result means
that large deviations above the shape function in the annealed model with

marginals α and β can be viewed as a large deviation in the parameters taiutns u
i�1

and tbjutnt uj�1 which affect the distribution of Gptns u, tnt uq, followed by a de-
viation in the quenched model with these perturbed parameters. Our proof is
purely analytic and does not show this interpretation directly. A similar, but
stronger, connection was shown for random walk in a random environment by
Comets, Gantert and Zeitouni in [4].

Theorem 2.5. For any s, t ¡ 0 and r ¡ gps, tq,
Jα,βs,t prq � inf

ν1PMα

ν2PMβ

 
Iν1,ν2s,t prq � sHpν1|αq � tHpν2|βq

(
.

A minimizing pair pν1, ν2q exists and the equality

Jα,βs,t prq � Iν1,ν2s,t prq � sHpν1|αq � tHpν2|βq
holds if and only if

dν1

dα
paq � a� z��λ�

a� z�
,

dν2

dβ
pbq � b� z�

b� z��λ�
where z� and λ� are the unique z�, λ� with λ� P r0,

¯
α �

¯
βs, z� P r�

¯
α,

¯
β�λ�s

satisfying

Jα,βs,t prq � r λ��s log Eα
�a� z��λ�

a� z�

�
� t log Eβ

� b� z�
b� z��λ�

�
. (2.12)
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It is natural to conjecture that this variational connection describes all rate n
annealed large deviations, rather than just annealed right tail large deviations.
We have been unable to prove this result.

The next result concerns the regularity of our rate functions. Our rate
functions are convex and differentiable to the right of gps, tq, but we note that
for certain choices of α and β they can have linear segments; see Lemma 4.4
and the comments preceding it.

Theorem 2.6. For any s, t ¡ 0, both Js,t and Js,t are continuously differen-
tiable on rgps, tq,�8q.

Finally, we describe the leading order asymptotics of Js,tprq and Js,tprq as
r Ó gps, tq and comment on the implications for the fluctuations of the last-
passage times. Let ζ denote the unique minimizer of (2.3).

Theorem 2.7. For any s, t ¡ 0, as ε Ó 0,

Js,tpgps, tq�εq �

$'''''''''''''''''''''''''''''&'''''''''''''''''''''''''''''%

�
�sE

� 2

pa�
¯
αq2

�
� tE

� 2

pb�
¯
αq2

�	�1

ε2 � opε2q
if s{t   c1,

2

3

�
sE

� 1

pa�
¯
αq3

�
� tE

� 1

pb�
¯
αq3

�	�1{2
ε3{2 � opε3{2q

if s{t � c1 and Erpa�
¯
αq�3s   8,

4

3

�
sE

� 1

pa� ζq3
�
� tE

� 1

pb� ζq3
�	�1{2

ε3{2 � opε3{2q
if c1   s{t   c2,

r4pts2
3

�
sE

� 1

pa�
¯
βq3

�
� tE

� 1

pb� βq3
�	�1{2

ε3{2 � opε3{2q
if s{t � c2 and Erpb�

¯
βq�3s   8,�

sE
� 2

pa�
¯
βq2

�
� tE

� 2

pb�
¯
βq2

�	�1

ε2 � opε2q
if s{t ¡ c2.

We do not have an intuitive explanation for the presence of an extra factor
of 1{2 in the boundary cases s{t � c1, c2.

The results of Theorem 2.7 in the concave region S and the boundary lines
s{t � c1 or c2 are heuristically consistent with the expectation of KPZ type
fluctuations. For example, to see this set

C � sE
� 1

pa� ζq3
�
� tE

� 1

pb� ζq3
�
� 1

2
B2
zgzps, tq

��
z�ζ
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and assume that our asymptotic result in the concave region hold for finite n.
Then for ps, tq P S and large r, we expect to see

Pa,b

�
Gptns u, tnt uq � ngps, tq ¥ n1{3C1{3r

� � exp
!
�4

3
C�1{2pC1{3n�2{3rq3{2n

)
� e�4{3r3{2,

which agrees the leading order large r asymptotics of the Tracy – Widom GUE
distribution [1, Exercise 3.8.3]. Note that the choice of normalizing constant C
in this argument is not arbitrary. Taking C � p1{2qB2

zgps, tq|z�ζ is consistent
with the normalizing constants needed to see Tracy – Widom GUE limits in, for
example, [14, Theorem 1.6] (this is the case α, β � δ1{2) and in [2, Theorem 1.3].
In the latter case, this was shown to be the constant arising from the KPZ scaling
theory in [29]. We also remark that the centering in this argument is likely not
correct. As in [12, Theorem 3], we expect that the correct centering should be n
times the shape function with α and β given by the empirical distribution of the

parameters taiutns u
i�1 and tbjutnt uj�1 rather than ngps, tq. This new shape function

is not random with respect to Pa,b and converges to gps, tq for almost every
realization of the environment. Continuity of the rate function then explains
why this difference does not appear at the level of right tail large deviations.
The same heuristic suggests that when Erpa �

¯
αq�3s   8 or Erpb �

¯
βq�3s  

8, we should expect KPZ type fluctuations in the critical directions s{t � c1
or s{t � c2, though we do not conjecture the precise limiting distribution in
these cases. We also do not address the cases when Erpa �

¯
αq�2s   8 but

Erpa�
¯
αq�3s � 8 or Erpb�

¯
βq�2s   8 but Erpb�

¯
βq�3s � 8, though these are

interesting questions.

Theorem 2.8. Suppose that α and β are not both degenerate. For any s, t ¡ 0,
as ε Ó 0,

Js,tpgps, tq�εq �

$''''''''''''''&''''''''''''''%

�
�sE

� 1

a�
¯
α

�2

�tVar
� 1

b�
¯
α

�
�tE

� 1

pb�
¯
αq2

�	�1 ε2

2
�opε2q

if s{t   c1,�
sVar

� 1

a� ζ

�
� tVar

� 1

b� ζ

�	�1 ε2

2
� opε2q

if c1 ¤ s{t ¤ c2,�
sVar

� 1

a�
¯
β

�
�sE

� 1

pa�
¯
βq2

�
�tE

� 1

b�
¯
β

�2	�1 ε2

2
�opε2q

if s{t ¡ c2.

We do not have any explicitly computable examples for which the regions
s{t ¤ c1 and s{t ¥ c2 are non-trivial, but we illustrate the results of the last
two theorems with a numerical example.
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Figure 2: The level set tps, tq : gps, tq � 1u (solid) and the boundary line
s{t � 1{8 (dashed).

(a) Quenched linear, t � 10 (b) Annealed linear, t � 10

(c) Quenched boundary, t � 8 (d) Annealed boundary, t � 8

(e) Quenched concave t � 1 (f) Annealed concave t � 1

Figure 3: Plot of Js,tpgps, tq � εq and Js,tpgps, tq � εq (solid) and their ε Ó 0
asymptotics (dashed) with s � 1.
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Example 2.5. Choose α � 4pa� 1q31r1,2spaqda and β � δ1. We note that
¯
α �

¯
β � 1. Explicit computation shows that E

�pa� 1q�2
� � 2, E

�pb� 1q�2
� � 8,

and E
�pb� 1q�2

� � 1{4. The linear region is then s{t   1{8. This is illustrated
in Figure 2.

In Figure 3, we plot numerical approximations of the rate functions against
the small ε asymptotics in Theorems 2.7 and 2.8. For example, frame (e) plots
J1,1pgp1, 1q � εq against p4{3qpEpa� ζq�3 � Epb� ζq�3q�1{2ε3{2, where ζ is the
minimizer in (2.3).

3. Variational formulas for the Lyapunov exponents

Note from (2.2) that the probabilities under Pza,b and Pz of events generated
by tW pi, 0q : i P Nu make sense for any z ¡ �

¯
α. Therefore, we permit ourselves

to use notation Pza,b and Pz (and the corresponding expectations) for z ¥
¯
β

and, similarly, for z ¤ �
¯
α when we work only with tW pi, 0q : i P Nu and

tW p0, jq : j P Nu, respectively.

Lemma 3.1. Let λ P R. Suppose that z ¡ �
¯
α in (3.1), (3.3), and z  

¯
β in

(3.2) and (3.4) below.

(a) µ-a.s., for any t ¡ 0,

lim
nÑ8

1

n
logEza,b

�
exp

�
λ

tnt u¸
i�1

W pi, 0q

�

�
$&%tE

�
log

� a� z

a� z � λ

	�
if λ ¤

¯
α� z,

8 otherwise.
(3.1)

lim
nÑ8

1

n
logEza,b

�
exp

�
λ

tnt u¸
i�1

W p0, iq

�

�
$&%tE

�
log

� b� z

b� z � λ

	�
if λ ¤

¯
β � z,

8 otherwise.
(3.2)

(b) For any t ¡ 0,

lim
nÑ8

1

n
logEz

�
exp

�
λ

tnt u¸
i�1

W pi, 0q

�

�
$&%t log E

� a� z

a� z � λ

�
if λ ¤

¯
α� z,

8 otherwise.

(3.3)

lim
nÑ8

1

n
logEz

�
exp

�
λ

tnt u¸
i�1

W p0, iq

�

�
$&%t log E

� b� z

b� z � λ

�
if λ ¤

¯
β � z,

8 otherwise.

(3.4)
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Proof. Using (2.2), we compute

Eza,b

�
exp

"
λ

tnt u¸
i�1

W pi, 0q
*�

�

$'&'%
tnt u¹
i�1

ai � z

ai � z � λ
if λ   min

1¤i¤tnt u
ai � z,

8 otherwise.

(3.5)

If λ  
¯
α� z then the first equality in (3.5) holds for all n P N µ-a.s and we have

E
���log

� a� z

a� z � λ

	���   8. (3.6)

Hence, by the ergodicity of a,

lim
nÑ8

1

n
logEza,b

�
exp

"
λ

tnt u¸
i�1

W pi, 0q
*�

� lim
nÑ8

1

n

tnt u¸
i�1

log
� ai � z

ai � z � λ

	
� tE log

� a� z

a� z � λ

	
µ-a.s. (3.7)

Moreover, it follows from (3.5) that

lim
nÑ8

1

n
logEz

�
exp

"
λ

tnt u¸
i�1

W pi, 0q
*�

� lim
nÑ8

tnt u

n
log E

� a� z

a� z � λ

�
Ñ t log E

� a� z

a� z � λ

�
. (3.8)

Next, consider the case λ �
¯
α� z. If (3.6) is in force, then both (3.7) and (3.8)

still hold. Suppose now that (3.6) fails. By monotonicity,

lim inf
nÑ8

1

n
logEza,b

�
exp

"
λ

tnt u¸
i�1

W pi, 0q
*�

¥ tE log
� a� z

a� z � λ1

	
µ-a.s.,

lim inf
nÑ8

1

n
logEz

�
exp

"
λ

tnt u¸
i�1

W pi, 0q
*�

¥ t log E
� a� z

a� z � λ1

�
for any λ1   λ. Letting λ1 Ò λ and monotone convergence yield

lim
nÑ8

1

n
logEza,b

�
exp

"
λ

tnt u¸
i�1

W pi, 0q
*�

� lim
nÑ8

1

n
logEz

�
exp

"
λ

tnt u¸
i�1

W pi, 0q
*�

� 8. (3.9)

Finally, consider the case λ ¡
¯
α � z. Then, by the ergodicity of a, there exists

i P N such that λ ¥ ai�z and the second equality in (3.5) holds for large enough
n P N µ-a.s. Hence, (3.9).

We have verified (3.1) and (3.3). The proofs of (3.2) and (3.4) are similar.
l
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Recall the basic properties of the Lyapunov exponents stated in Proposition
A.2. For s, t ¡ 0 and λ P R, define

Ls,0pλq � lim
tÓ0

Ls,tpλq, L0,tpλq � lim
sÓ0

Ls,tpλq,

where the limits exist by monotonicity. Define Ls,0pλq and L0,tpλq similarly.
Also, for k, l P Z�, let θk,l denote the shift given by ωpi, jq ÞÑ ωpi � k, j � lq
for i, j P N and ω P RN2

. We next obtain a variational formula involving the
Lyapunov exponents.

Lemma 3.2. Let z P p�
¯
α,

¯
βq and λ P p0,

¯
β � zs. Then

E log
�a� z � λ

a� z

	
� E log

� b� z

b� z � λ

	
(3.10)

� sup
0¤t¤1

!
max

!
Lt,1pλq � p1� tqE log

�
a� z � λ

a� z



,

L1,tpλq � p1� tqE log
� b� z

b� z � λ

	))
.

Also,

log E
�a� z � λ

a� z

�
� log E

� b� z

b� z � λ

�
� sup

0¤t¤1

!
max

!
Lt,1pλq � p1� tq log E

�a� z � λ

a� z

�
,

L1,tpλq � p1� tq log E
� b� z

b� z � λ

�))
. (3.11)

Proof of (3.10). We may assume that the left-hand side of (3.10) is finite. (This
assumption fails only when λ �

¯
β � z and E logpb �

¯
βq � �8 in which case

(3.10) clearly holds).
It follows from (1.2) and (2.1) that

pGpn, nq � max
1¤k¤n

 
maxtGpn� k � 1, nq � θk�1,0 � pGpk, 0q,

Gpn, n� k � 1q � θ0,k�1 � pGp0, kqu(,
which leads to¸

1¤j¤n
Jpn, jq � max

1¤k¤n

!
max

!
Gpn� k � 1, nq � θk�1,0 �

¸
k i¤n

W pi, 0q,

Gpn, n� k � 1q � θ0,k�1 �
¸

1¤i¤n
W pi, 0q �

¸
1¤j¤k

W p0, jq
))
.

(3.12)
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Also, note the identity

1

Eza,b
�
e�λW pi,0q� � ai � z � λ

ai � z
� Ez�λa,b

�
eλW pi,0q� for λ ¡ 0 and z ¡ �

¯
α.

(3.13)
Using the independence of weights under Pza,b, Proposition 2.1, (3.12) and
(3.13), we obtain

Ez�λa,b

�
exp

!
λ

¸
1¤i¤n

W pi, 0q
)�
�Eza,b

�
exp

!
λ

¸
1¤j¤n

W p0, jq
)�

¥ max
!
Eτk�1paq,b

�
eλGpn�k�1,nq� �Ez�λa,b

�
exp

!
λ

¸
1¤i¤k

W pi, 0q
)�
,

Ea,τk�1pbq
�
exptλGpn, n� k � 1qu� �Eza,b�exp

!
λ

¸
1¤j¤k

W p0, jq
)�)

.

(3.14)
Set k � rnp1 � tq s�1 for some t P p0, 1q, apply logarithms to both sides and
divide through by n in (3.14). It follows from Proposition A.2 that

1

n
logEτk�1paq,b

�
eλGpn�k�1,nq�Ñ Lt,1pλq,

1

n
logEa,τk�1pbq

�
eλGpn,n�k�1q�Ñ L1,tpλq

as n Ñ 8 along suitable subsequences because pa,bq is stationary and L is
deterministic. Hence, also using Lemma 3.1, we obtain

E log
�a� z � λ

a� z

	
� E log

� b� z

b� z � λ

	
¥ max

!
Lt,1pλq�p1� tqE log

�a�z�λ
a� z

	
,L1,tpλq�p1� tqE log

� b� z

b�z�λ
	)
.

(3.15)
In particular, L is finite. By continuity, (3.15) holds with t � 0 and t � 1 as
well.

For the opposite inequality, introduce L P N and let n ¡ L such that rpl �
1qn{L s ¡ r ln{L s for 0 ¤ l   L. Then, by (3.12) and nonnegativity of the
weights,¸

1¤j¤n
Jpn, jq

¤ max
1¤l L

!
max

!
GptpL� lqn{L u, nq � θr ln{L s,0 �

¸
rpl�1qn{L s i¤n

W pi, 0q,

Gpn, tpL� lqn{L uq � θ0,r ln{L s �
¸

1¤i¤n
W pi, 0q �

¸
1¤j¤rpl�1qn{L s

W p0, jq
))
,
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which implies that

Ez�λa,b

�
exp

!
λ

¸
1¤i¤n

W pi, 0q
)�
�Eza,b

�
exp

!
λ

¸
1¤j¤n

W p0, jq
)�

¤
¸

0¤l L
Eτr ln{L spaq,b

�
eλGptpL�lqn{L u,nq� �Ez�λa,b

�
exp

!
λ

rpl�1qn{L s¸
i�1

W pi, 0q
)�

�Ea,τr ln{L spbq
�
eλGpn,tpL�lqn{L uq� �Eza,b�exp

!
λ

rpl�1qn{L s¸
j�1

W p0, jq
)�
.

(3.16)
Taking logarithms leads to

logEz�λa,b

�
exp

!
λ

¸
1¤i¤n

W pi, 0q
)�
� logEza,b

�
exp

!
λ

¸
1¤j¤n

W p0, jq
)�

¤ max
0¤l L

max

"
logEτr ln{L spaq,b

�
eλGptpL�lqn{L u,nq�

� logEz�λa,b

�
exp

"
λ

rpl�1qn{L s¸
i�1

W pi, 0q
*�
,

logEa,τr ln{L spbq
�
eλGpn,tpL�lqn{L uq�

� logEza,b

�
exp

"
λ

rpl�1qn{L s¸
j�1

W p0, jq
*�*

� logp2Lq.

Dividing through by n and letting n Ñ 8 along a suitable subsequential limit
yield

E log
�a� z � λ

a� z

	
� E log

� b� z

b� z � λ

	
¤ max

0¤l L
max

!
L1�l{L,1pλq �

l � 1

L
E log

�a� z � λ

a� z

	
,

L1,1�l{Lpλq �
l � 1

L
E log

� b� z

b� z � λ

	)
¤ sup

0¤t¤1
max

!
Lt,1pλq � p1� tqE log

�a� z � λ

a� z

	
,

L1,tpλq � p1� tqE log
� b� z

b� z � λ

	)
� 1

L

�
E log

�a� z � λ

a� z

	
� E log

� b� z

b� z � λ

		
.

Letting LÑ8 completes the proof. l
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Proof of (3.11). Some details will be skipped. We may assume that the left-
hand side of (3.11) is finite.

Using independence, we can rewrite (3.14) as

Ez�λa,b

�
exp

!
λ

¸
k i¤n

W pi, 0q
)�
�Eza,b

�
exp

!
λ

¸
1¤j¤n

W p0, jq
)�

¥ Eτk�1paq,b
�
eλGpn�k�1,nq�.

Ez�λa,b

�
exp

!
λ

¸
1¤i¤n

W pi, 0q
)�
�Eza,b

�
exp

!
λ

¸
k j¤n

W p0, jq
)�

¥ Ea,τk�1pbq
�
eλGpn,n�k�1q�.

(3.17)

The factors on the right-hand side are independent. Applying E yields

Ez�λ
�
exp

!
λ

¸
1¤i¤n

W pi, 0q
)�
� Ez

�
exp

!
λ

¸
1¤j¤n

W p0, jq
)�

(3.18)

¥ max
!
E
�
exptλGpn� k � 1, nqu� � Ez�λ�exp

!
λ

¸
1¤i¤k

W pi, 0q
)�
,

E
�
exptλGpn, n� k � 1qu� � Ez�exp

!
λ

¸
1¤j¤k

W p0, jq
)�)

,

where we rearranged terms using that tW pi, 0q : i P Nu and tW p0, jq : j P Nu
are both i.i.d. under Pz�λ and Pz. Then, (3.18) leads to ¥ half of (3.11) via
Proposition A.2 and Lemma 3.1.

For the ¤ half of (3.11), suppose that λ  
¯
β � z for the moment. Note the

inequalities

Ez�λa,b reλW pi,0qs � ai � z � λ

ai � z
¤ ¯
α� z � λ

¯
α� z

,

Eza,breλW p0,jqs � bj � z

bj � z � λ
¤ ¯

β � z

¯
β � z � λ

.

It follows from these and (3.16) that

Ez�λa,b

�
exp

!
λ

¸
1¤i¤n

W pi, 0q
)�
�Eza,b

�
exp

!
λ

¸
1¤j¤n

W p0, jq
)�

¤
¸

0¤l L

�
¯
α� z � λ

¯
α� z

	n{L�1

Eτr ln{L spaq,b
�
eλGptpL�lqn{L u,nq�

� Ez�λa,b

�
exp

!
λ

r ln{L s¸
i�1

W pi, 0q
)�

�
�

¯
β � z

¯
β � z � λ

	n{L�1

Ea,τr ln{L spbq
�
eλGpn,tpL�lqn{L uq�
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�Eza,b

�
exp

!
λ

r ln{L s¸
j�1

W p0, jq
)�
. (3.19)

The point of (3.19) is that the terms on the right-hand side are products of
independent factors, which is not the case in (3.16). Applying log E, we obtain

logEz�λ
�
exp

!
λ

¸
1¤i¤n

W pi, 0q
)�
� logEz

�
exp

!
λ

¸
1¤j¤n

W p0, jq
)�

¤ max
0¤l L

max
!
pn{L� 1q log

�
¯
α� z � λ

¯
α� z

	
� logE

�
exptλGptpL� lqn{L u, nqu�

� logEz�λ
�
exp

!
λ

r ln{L s¸
i�1

W pi, 0q
)�
,

pn{L� 1q log
�

¯
β � z

¯
β � z � λ

	
� logE

�
exptλGpn, tpL� lqn{L uqu�

� logEz
�
exp

!
λ

r ln{L s¸
j�1

W p0, jq
)�)

� logp2Lq.

Divide through by n and let nÑ8. If we then send LÑ8, the result is

log E
�a� z � λ

a� z

�
� log E

� b� z

b� z � λ

�
¤ sup

0¤t¤1

!
max

!
Lt,1pλq � p1� tq log E

�a� z � λ

a� z

�
,

Lt,1pλq � p1� tq log E
� b� z

b� z � λ

�))
for all λ  

¯
β � z. The case λ �

¯
β � z also follows because the right-hand side

is nondecreasing in λ and the left-hand side, due to monotone convergence, is
continuous in λ on p0,

¯
β � zs. l

Lemma 3.3. For λ ¡ 0,

L1,0pλq � E log
� a�

¯
β

a�
¯
β � λ

	
, L0,1pλq � E log

� b�
¯
α

b�
¯
α� λ

	
, if λ ¤

¯
α�

¯
β,

L1,0pλq � L0,1pλq � 8 otherwise. (3.20)

L1,0pλq � log E
� a�

¯
β

a�
¯
β � λ

�
, L0,1pλq � log E

� b�
¯
α

b�
¯
α� λ

�
, if λ ¤

¯
α�

¯
β,

L1,0pλq � L0,1pλq � 8 otherwise. (3.21)
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Proof. Let ε ¡ 0. On the event b1 ¤
¯
β� ε, which has positive µ-probability, we

have for n ¥ 1{ε
1

n
logEa,breλGpn,tnε uqs ¥ 1

n
logEa,b

�
exp

!
λ

¸
1¤i¤n

W pi, 1q
)�

�
$&%

1

n

n°
i�1

ai � b1
ai � b1 � λ

if λ   min
1¤i¤n

ai � b1,

8 otherwise

¥
$&%

1

n

n°
i�1

ai �
¯
β � ε

ai �
¯
β � ε� λ

if λ   min
1¤i¤n

ai �
¯
β � ε,

8 otherwise

� 1

n
logE¯

β�ε
a,b

�
exp

!
λ

¸
1¤i¤n

W pi, 0q
)�
.

Then, by Lemma 3.1,

L1,εpλq ¥
$&%E

�
log

� a�
¯
β � ε

a�
¯
β � ε� λ

	�
, if λ ¤

¯
α�

¯
β � ε,

8 otherwise.

By monotone convergence, letting ε Ó 0 yields

L1,0pλq ¥
$&%E

�
log

� a�
¯
β

a�
¯
β � λ

	�
if λ ¤

¯
α�

¯
β,

8 otherwise.

To complete the proof of (3.20), we need

L1,0pλq ¤ E
�
log

� a�
¯
β

a�
¯
β � λ

	�
(3.22)

for λ P p0,
¯
α �

¯
βs. When λ �

¯
α �

¯
β, we may assume that the right-hand side

is finite. Then, ai ¡
¯
α for i P N a.s. and the argument in the paragraph of

inequality (3.14) goes through with z � �
¯
α as well. Hence,

E
�
log

�a� z � λ

a� z

	�
�E

�
log

� b� z

b� z � λ

	�
¥ L1,tpλq� p1� tqE

�
log

� b� z

b� z � λ

	�
(3.23)

for t P r0, 1s, z P r�
¯
α,

¯
βq and λ P p0,

¯
β � zs, which simplifies to

E
�
log

�a� z � λ

a� z

	�
� tE

�
log

� b� z

b� z � λ

	�
¥ L1,0pλq. (3.24)

Setting t � 0 and z �
¯
β � λ in (3.24) gives (3.22). The remaining cases are

treated similarly. l
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Corollary 3.1. For s, t ¡ 0,

Ls,tp
¯
α�

¯
βq � sE log

�a�
¯
β

a�
¯
α

	
� tE log

�b�
¯
α

b�
¯
β

	
.

Ls,tp
¯
α�

¯
βq � s log E

�a�
¯
β

a�
¯
α

�
� t log E

�b�
¯
α

b�
¯
β

�
.

Proof. By concavity and homogeneity,

Ls,tp
¯
α�

¯
βq ¥ sL1,0p

¯
α�

¯
βq � tL0,1p

¯
α�

¯
βq

� sE
�
log

�a�
¯
β

a�
¯
α

	�
� tE

�
log

�b�
¯
α

b�
¯
β

	�
. (3.25)

When the right-hand side is finite, the opposite inequality comes from (3.23).
Ls,tp

¯
α�

¯
βq is computed similarly. l

We will use the next lemma to recover the Lyapunov exponents from the
variational formulas in Lemma 3.2.

Lemma 3.4. Let a0   b0, A : pa0, b0q Ñ R be continuous and decreasing,
B : pa0, b0q Ñ R be continuous and increasing. Let L : r0,8q2 Ñ R be non-
decreasing (in each variable), homogeneous, concave and continuous. Assume
that

Apxq �Bpxq � sup
0¤t¤1

tmaxtLpt, 1q � p1� tqApxq, Lp1, tq � p1� tqBpxquu
(3.26)

for a0   x   b0, limxÒb0 Apxq � limtÓ0 Lp1, tq and limxÓa0 Bpxq � limsÓ0 Lps, 1q.
Then

Lps, tq � inf
a0 x b0

tsApxq � tBpxqu for s, t ¡ 0.

Proof. The argument is the same as in [8, Section 5] to prove Theorem 2.1.
Assumption (3.26) corresponds to Proposition 4.4 there, and Apxq � Erpa �
xq�1s and Bpxq � Erpb� xq�1s for x P p�

¯
α,

¯
βq. l

Proof of Theorem 2.1. It follows from Lemma 3.3 that Ls,tpλq � 8 for λ ¡
¯
α�

¯
β. Fix λ P p0,

¯
α�

¯
βq and define

Apzq � E
�
log

�a� z � λ

a� z

	�
for z ¡ �

¯
α,

Bpzq � E
�
log

� b� z

b� z � λ

	�
for z  

¯
β � λ.
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Lemma 3.2 states that

Apzq �Bpzq � sup
0¤t¤1

tmaxtLt,1pλq � p1� tqApzq,L1,tpλq � p1� tqBpzquu

for z P p�
¯
α,

¯
β�λq. Note that A and B are continuous, A is decreasing and B is

increasing. Moreover, by Lemma 3.3, Ap
¯
β�λq � L1,0pλq and Bp�

¯
αq � L0,1pλq.

Also, Ls,tpλq is finite and, by Proposition A.2, is nondecreasing, homogeneous,
concave and continuous. Thus, by Lemma 3.4, Ls,tpλq � inf�

¯
α z 

¯
β�λtsApzq �

tBpzqu. The endpoints can be included in the infimum, by monotone conver-
gence. The proof of (2.6) is similar. l

We close this section with a proof of Theorem 2.2, which is similar to the
arguments above.

Proof of Theorem 2.2. We begin with the coupling

Ĝptns u, tnt uq � max
1¤k¤tns u

!
Gptns u�k � 1, tnt uq � θk�1,0 � Ĝpk, 0q

)
_ max

1¤k¤tnt u

!
Gptns u, tnt u�k � 1q � θ0,k�1 � Ĝp0, kq

)
.

Arguing with lim sup and lim inf and coarse graining as above, this leads to the
variational problem

Lzs,tpλq � max
0¤r¤s

!
Ls�r,tpλq � rE

�
log

a� z

a� z � λ

�)
_ max

0¤u¤t

!
Ls,t�upλq � uE

�
log

b� z

b� z � λ

�)
.

Substituting in the variational expression for Ls,tpλq, this leads to

Lzs,tpλq � max
0¤r¤s

!
min

θPr�
¯
α,

¯
β�λs

!
ps� rqE

�
log

a� θ � λ

a� θ

�
� tE

�
log

b� θ

b� θ � λ

�)
� rE

�
log

a� z

a� z � λ

�)
_ max

0¤u¤t

!
min

θPr�
¯
α,

¯
β�λs

!
sE

�
log

a� θ � λ

a� θ

�
� pt� uqE

�
log

b� θ

b� θ � λ

�)
� uE

�
log

b� z

b� z � λ

�)
.

Applying a minimax theorem (for example [28]), we obtain

Lzs,tpλq � min
θPr�

¯
α,

¯
β�λs

!
sE

�
log

a� θ � λ

a� θ

�
� tE

�
log

b� θ

b� θ � λ

�
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� max
0¤r¤s

rE
�
log

pa� zq
pa� z � λq

pa� θq
pa� θ � λq

�)
_ min
θPr�

¯
α,

¯
β�λs

!
sE

�
log

a� θ � λ

a� θ

�
� tE

�
log

b� θ

b� θ � λ

�
� max

0¤u¤t
uE

�
log

pb� zq
pb� z � λq

pb� θ � λq
pb� θq

�)
.

Write pa � z � λqpa � θ � λq � pa � zqpa � θq � λpz � θ � λq to see that the
inner maximum of the first term occurs at r � s if z � λ ¤ θ and r � 0 if
z � λ ¥ θ. Similarly, θ ÞÑ p1� λpb� θq�1q is a decreasing function, so the inner
maximum of the second term occurs at u � t for θ ¤ z and at u � 0 for θ ¥ z.
Breaking the first minimum over r�

¯
α,

¯
β � λs into a minimum over r�

¯
α, z � λs

and a minimum over rz�λ,
¯
βs and the second into a minimum over r�

¯
α, zs and

a minimum over rz,
¯
β � λs, we obtain

min
θPr�

¯
α,

¯
β�λs

!
sE

�
log

a� θ � λ

a� θ

�
� tE

�
log

b� θ

b� θ � λ

�
� max

0¤r¤s
rE

�
log

pa� zq
pa� z � λq

pa� θq
pa� θ � λq

�)
�

!
sE

�
log

a� z

a� z � λ

�
� tE

�
log

b� z � λ

b� z

�)
^ min
θPr�

¯
α,z�λs

!
sE

�
log

a� θ � λ

a� θ

�
� tE

�
log

b� θ

b� θ � λ

�)
and similarly, for the remaining term we have

min
θPr�

¯
α,

¯
β�λs

!
sE

�
log

a� θ � λ

a� θ

�
� tE

�
log

b� θ

b� θ � λ

�
� max

0¤u¤t
uE

�
log

pb� zq
pb� z � λq

pb� θ � λq
pb� θq

�)
�

!
sE

�
log

a� z � λ

a� z

�
� tE

�
log

b� z

b� z � λ

�)
^ min
θPrz,

¯
β�λs

!
sE

�
log

a� θ � λ

a� θ

�
� tE

�
log

b� θ

b� θ � λ

�)
.

The function

θ ÞÑ sE
�
log

a� θ � λ

a� θ

�
� tE

�
log

b� θ

b� θ � λ

�
is strictly convex with a unique minimizer. Note that the first terms in each of
these minima are the values of this function evaluated at θ � z � λ and θ � z.
The result follows from strict convexity by considering whether the minimizer
lies in r�

¯
α, zs, rz, z � λs, or rz � λ,

¯
β � λs. l
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4. Extremizers of the variational problems

In this section, we derive some regularity properties of L,L,J and J by study-
ing the extremizers of their variational representations. The next two lemmas
describe the minimizers of (2.5) and (2.6). See Figure 4 for an illustration.

Lemma 4.1. Fix s, t ¡ 0 and define F � F pz, λq for 0   λ  
¯
α �

¯
β and

�
¯
α ¤ z ¤

¯
β � λ by

F pz, λq � sE log
�a� z � λ

a� z

	
� tE log

� b� z

b� z � λ

	
. (4.1)

For each λ P p0,
¯
α�

¯
βq, there exists a unique z� � z�pλq P r�

¯
α,

¯
β� λs such that

Ls,tpλq � F pz�, λq. We have z� � �
¯
α if and only if

�sE
� 1

pa�
¯
α� λqpa�

¯
αq

�
� tE

� 1

pb�
¯
α� λqpb�

¯
αq

�
¥ 0, (4.2)

and z� �
¯
β � λ if and only if

�sE
� 1

pa�
¯
βqpa�

¯
β � λq

�
� tE

� 1

pb�
¯
βqpb�

¯
β � λq

�
¤ 0. (4.3)

Define λ1 � inftλ P p0,
¯
α�

¯
βq : (4.2) holds.u^p

¯
α�

¯
βq and λ2 � inftλ P p0,

¯
α�

¯
βq :

(4.3) holds.u^p
¯
α�

¯
βq. Then z� � �

¯
α if and only if λ ¥ λ1, and z� �

¯
β�λ if and

only if λ ¥ λ2. For 0   λ   λ0 � λ1^λ2, we have BzF pz�, λq � 0. Moreover, z�
is continuous on p0,

¯
α�

¯
βq and continuously differentiable on p0,

¯
α�

¯
βqr tλ0u.

We have �1   z�1   0 for 0   λ   λ0, limλÓ0 z� � ζps, tq and limλÒ
¯
α�

¯
β z� � �

¯
α.

Lemma 4.2. Lemma 4.1 holds verbatim if Ls,t, (4.1), (4.2) and (4.3) are re-
placed with Ls,t,

F pz, λq � s log E
�a� z � λ

a� z

�
� t log E

� b� z

b� z � λ

�
, (4.4)

� s

E
� 1

pa�
¯
αq2

�
E
�a�

¯
α� λ

a�
¯
α

� � t

E
� 1

pb�
¯
α� λq2

�
E
� b�

¯
α

b�
¯
α� λ

� ¥ 0, (4.5)

� s

E
� 1

pa�
¯
β � λq2

�
E
� a�

¯
β

a�
¯
β � λ

� � t

E
� 1

pb�
¯
βq2

�
E
�b�

¯
β � λ

b�
¯
β

� ¤ 0, , (4.6)

respectively. Here, the left-hand sides of (4.5) and (4.6) are interpreted as �8
and 8 when Erpa�

¯
αq�1s � 8 and Erpb�

¯
βq�1s � 8, respectively.
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Figure 4: Sketches of the graph of the minimizers in (2.5) and (2.6) assuming
(4.2) and (4.5), respectively (left) and assuming (4.3) and (4.6), respectively
(right).

Proof of Lemma 4.1. Since B2
zF ¡ 0, the existence and the uniqueness of z�

follows. Also, z� � �
¯
α if and only if BzF p�

¯
α, λq ¥ 0, which is (4.2). We note

that BzF p�
¯
α, λq � �8 if Erpa �

¯
αq�1s � 8 and, otherwise, λ�1BzF p�

¯
α, λq is

a continuous, increasing function of λ P p0,
¯
α �

¯
βq. Therefore, z� � �

¯
α if and

only if λ ¥ λ1. We similarly observe (4.3) and the equivalence of z� �
¯
β � λ

and λ ¥ λ2. (Because BzF is increasing in z, we cannot have λ1 and λ2 both
less than

¯
α�

¯
β).

When λ   λ0, the minimizer is the unique z� P p�
¯
α,

¯
β � λq satisfying

BzF pz�, λq � 0. (4.7)

By the implicit function theorem, z� is continuously differentiable for 0   λ   λ0

with derivative

z�1pλq � �BλBzF pz�, λqB2
zF pz�, λq

. (4.8)

Observing that

BλBzF pz�, λq ¡ �sE
� 1

pa� z�qpa� z��λq
�
� tE

� 1

pb� z�qpb� z��λq
�

� λ�1BzF pz�, λq � 0,

B2
zF pz�, λq � BλBzF pz�, λq

� sE
� 1

pa� z�q2
�
� tE

� 1

pb� z�q2
�

¡ sE
� 1

pa� z�qpa� z��λq
�
� tE

� 1

pb� z�qpb� z��λq
�
� 0,
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we conclude that �1   z�1pλq   0. In particular, z� is monotone and has limits
as λ Ó 0 and λ Ò λ0. We also have continuous differentiability of z� for λ ¡ λ0.
Now, supposing λ0 P p0,

¯
α �

¯
βq, we show that z� is continuous at λ0. Letting

λ Ò λ0 in (4.7), we obtain

BzF p lim
λÒλ0

z�pλq, λ0q � 0. (4.9)

Since the minimizer occurs at the boundary when λ � λ0, we deduce from (4.9)
that limλÒλ1 z�pλq � �

¯
α and limλÒλ2 z�pλq �

¯
β�λ2 when λ0 � λ1 and λ0 � λ2,

respectively.
Since z�pλq P r�

¯
α,

¯
β � λs, we have limλÒ

¯
α�

¯
β z�pλq � �

¯
α. Set z�p0q �

limλÓ0 z�pλq. To calculate this limit, we consider several cases. If λ0 ¡ 0 then
we can let λ Ó 0 in (4.7) and obtain

0 � BzF pz�p0q, 0q � �sE
� 1

pa� z�p0qq2
�
� tE

� 1

pb� z�p0qq2
�
� Bzgz�p0qps, tq,

which implies z�p0q � ζ. If λ1 � 0 then BzF p�
¯
α, 0q � Bzg�

¯
αps, tq ¥ 0 and if

λ2 � 0 then BzF p
¯
β, 0q � Bzg

¯
βps, tq ¤ 0. Hence, we get ζ � �

¯
α � z�p0q and

ζ �
¯
β � z�p0q, respectively. l

We omit the proof of Lemma 4.2 which is similar to that of Lemma 4.1.

Lemma 4.3. For each s, t ¡ 0, Ls,t is continuously differentiable on r0,
¯
α�

¯
βq

and L1s,tp0q � gps, tq. Furthermore, L1s,t is continuously differentiable on p0,
¯
α�

¯
βqr tλ0u and L2s,t ¡ 0. The same statements also hold for Ls,t.

Proof. Let us write L for Ls,t and F � F pz, λq be given by (4.4). Using Lemma
4.1, we compute

L1pλq � BzF pz�, λq z�1pλq � BλF pz�, λq � sE
� 1

a� z��λ
�
� tE

� 1

b� z��λ
�

(4.10)

for 0   λ   λ0. Differentiating again, we obtain

L2pλq � BzBλF pz�, λq z�1pλq � B2
λF pz�, λq

� B2
zF pz�, λqB2

λF pz�, λq � BzBλF pz�, λq2
B2
zF pz�, λq

¡ 0,

where the inequality comes from B2
zF pz�, λq ¡ BλBzF pz�, λq and B2

λF � BλBzF .
For λ ¡ λ1,

L1pλq � sE
� 1

a�
¯
α� λ

�
� tE

� 1

b�
¯
α� λ

�
, (4.11)
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L2pλq � �sE
� 1

pa�
¯
α� λq2

�
� tE

� 1

pb�
¯
α� λq2

�
¡ BzF p�

¯
α, λq ¡ 0. (4.12)

Also, for λ ¡ λ2,

L1pλq � sE
� 1

a�
¯
β � λ

�
� tE

� 1

b�
¯
β � λ

�
, (4.13)

L2pλq � sE
� 1

pa�
¯
β � λq2

�
� tE

� 1

pb�
¯
β � λq2

�
¡ �BzF p

¯
β � λ, λq ¡ 0. (4.14)

We have verified that L is continuously differentiable on p0,
¯
α �

¯
βq r tλ0u and

L1 is increasing.
We next note that L is also continuously differentiable at λ0 when λ0 P

p0,
¯
α �

¯
βq, for which it suffices to check that the left and right limits of L1 at

λ0 match. First, we consider the case λ1 P p0,
¯
α �

¯
βq. Then, as λ Ò λ1, (4.10)

tends to sErpa�
¯
α�λ1q�1s � tErpb�

¯
α�λ1q�1s, which equals the λ Ó λ1 limit

of (4.11). Now, suppose that λ2 P p0,
¯
α �

¯
βq. Then, as λ Ò λ2, (4.10) tends to

sErpa�
¯
βq�1s � tErpb�

¯
βq�1s, which is the same as

sE
� 1

a�
¯
β � λ2

�
� tE

� 1

b�
¯
β � λ2

�
� BzF p

¯
β � λ2, λ2q

� sE
� 1

a�
¯
β � λ2

�
� tE

� 1

b�
¯
β � λ2

�
,

the λ Ó λ2 limit of (4.13).
We next calculate L1p0q � limλÓ0 L1pλq. If λ0 ¡ 0 then λ Ó 0 limit of (4.10)

gives

L1p0q � sE
� 1

a� ζ

�
� tE

� 1

b� ζ

�
� gps, tq.

In the cases λ1 � 0 and λ2 then ζ � �
¯
α and ζ �

¯
β, respectively. Hence, letting

λ Ó 0 in (4.11) and (4.13), respectively, we still obtain L1p0q � gps, tq.
The asserted properties of L are proved similarly. l

Since L1s,t increasing, L1s,tpλq has a limit (possibly 8) as λ Ò
¯
α �

¯
β, which we

denote by L1s,tp¯α � ¯
βq. Similarly, let us write L1s,tp¯α � ¯

βq for limλÒ
¯
α�

¯
β L1s,tpλq.

The precise values of these limits will be needed in the next section.

Corollary 4.1. Fix s, t ¡ 0.

L1s,tp¯α� ¯
βq �

$''''''&''''''%

sE
� 1

a�
¯
α

�
� tE

� 1

b�
¯
α

�
if � sE

� 1

pa�
¯
αqpa�

¯
βq

�
� tE

� 1

pb�
¯
αqpb�

¯
βq

�
¤ 0,

sE
� 1

a�
¯
β

�
� tE

� 1

b�
¯
β

�
otherwise.
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L1s,tp¯α� ¯
βq �

$'''''''''''''''''''&'''''''''''''''''''%

s

E
� a�

¯
β

pa�
¯
αq2

�
E
�a�

¯
β

a�
¯
α

� � t

E
� 1

b�
¯
β

�
E
�b�

¯
α

b�
¯
β

�

if � s

E
� 1

pa�
¯
αq2

�
E
�a�

¯
β

a�
¯
α

� � t

E
� 1

pb�
¯
βq2

�
E
�b�

¯
α

b�
¯
β

� ¤ 0,

s

E
� 1

a�
¯
α

�
E
�a�

¯
β

a�
¯
α

� � t

E
� b�

¯
α

pb�
¯
βq2

�
E
�b�

¯
α

b�
¯
β

� otherwise.

The next lemma establishes continuous differentiability of Js,tprq and Js,tprq and
shows that these functions are linear in r for r ¡ L1s,tp¯α�¯

βq and r ¡ L1s,tp¯α�¯
βq,

respectively.

Lemma 4.4. Fix s, t ¡ 0. For each r ¥ gps, tq, there exists a unique λ�prq P
r0,

¯
α �

¯
βs such that Js,tptq � λ� r � Ls,tpλ�q. Moreover, Js,t is continuously

differentiable and J1s,tprq � λ�prq for r ¥ gps, tq. If r ¡ gps, tq, then λ� ¡ 0.

If r ¥ L1s,tp¯α � ¯
βq then λ� �

¯
α �

¯
β, while if r P rgps, tq,L1s,tp¯α � ¯

βqq then

L1s,tpλ�q � r. The same statements hold if we replace Js,t and Ls,t with Js,t and
Ls,t, respectively.

Proof. We have Jprq � sup0 λ 
¯
α�

¯
βtλr�Lpλqu, where pL, Jq pair refers to either

pLs,t,Js,tq or pLs,t, Js,tq. The λ-derivative of the function inside the supremum
is r � L1pλq. By Lemma 4.3, L1 is continuous and increasing from gps, tq to
the limit L1p

¯
α �

¯
βq on p0,

¯
α �

¯
βq. It follows that the unique maximizer λ�

is at
¯
α �

¯
β if r ¥ L1p

¯
α �

¯
βq and at pL1q�1prq, otherwise. In addition, λ�

is increasing and continuous on rgps, tq,�8q. Since L1 is differentiable and
has nonzero derivative for λ P p0,

¯
α �

¯
βq r λ0, whenever r � L1pλ0q, we have

J 1prq � λ�prq � λ�1prqr � L1pλ�qλ�1prq � λ�prq. Then continuity of λ� implies
that J is continuously differentiable for all r ¥ gps, tq including L1pλ0q when
λ0 P p0,

¯
α�

¯
βq. l

Proof of Theorem 2.6. This theorem is included in the preceding lemma. l

5. Left tail estimates

We now estimate the left tail in both the quenched and annealed settings.
The first result shows that in the quenched case, the rate n large deviation rate
function will be trivial for deviations to the left of the shape function gps, tq.
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Figure 5: A path passing through the bottom-left and top-right vertices of Bj0
for each j.

This proof is based on the proof of [22, Theorem 4.1], which was adapted from
an argument in [16].

Proof of Lemma 2.1. First, fix s, t, ε ¡ 0 and rational. Take m P N large enough
that m�1E Gptmsu, tmtuq ¥ gps, tq � ε{2. We coarse grain the lattice into pair-
wise disjoint translates of the set t1, . . . , tmsuu�t1, . . . , tmtuu. Toward this end,
define

Ak,`a,b � t1� a, . . . , a� ku � t1� b, . . . , `� bu, Bji � A
tmxu,tmyu
pj�iqtmsu,jtmtu.

Take n large and let L � tn{m � t
?
nu � 2u. For each such k ¤ t

?
nu, define

a diagonal by Dk � �L
j�0B

j
k. We observe that the passage time from the

bottom left corner of Bji to the top-right corner of Bji , Gi,j � Gptmsu, tmtuq �
τpi�jqtmsu,jtmtu, has the same distribution as G0,0 under P. Moreover, if pi1, j1q �
pi2, j2q, then Bj1i1

�
Bj2i2 � H and consequently tGi,jui,j¥0 forms an independent

family under Pa,b.
Denote by Πk the collection of paths from p1, 1q to ptnsu, tntuq passing

through the bottom-left and top-right vertices of Bjk for each j. See Figure
5. We have

Gptnsu, tntuq ¥ max
k¤t

?
nu

max
πPΠk

¸
pi,jqPπ

W pi, jq ¥ max
k¤t

?
nu

¸
j¤L

Gk,j .

It follows that

Pa,b

�
n�1Gptnsu, tntuq¤pgps, tq�εq� ¤ Pa,b

�
max
k¤t

?
nu
n�1

Ļ

j�0

Gk,j ¤ gps, tq�ε
	

�
t
?
nu¹

k�0

Pa,b

�
n�1

Ļ

j�0

Gk,j ¤ gps, tq � ε
	
.
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Now, fix λ ¡ 0 sufficiently small that C � λmε{2 � pλ2{2qEG2
0,0 ¡ 0 and

λEG0,0 � pλ2{2qEG2
0,0   1 and notice that

Ea,b rexpt�λGj,kus � Ea,b rexpt�λG0,0us � τpj�kqtmsu,ktmtu.
The ergodic theorem then implies that the following limit holds µ almost surely:

lim
LÑ8

1

L

Ļ

j�0

logEa,b rexpt�λGk,jus � E rlogEa,b rexpt�λG0,0uss .

Jensen’s inequality gives E rlogEa,b rexpt�λG0,0uss ¤ logE rexpt�λG0,0us  
�λEG0,0 � pλ2{2qEG2

0,0. By the exponential Markov inequality and indepen-
dence under Pa,b, we have

1

L
logPa,b

� Ļ

j�0

Gk,j   npgps, tq � εq
	

¤ 1

L

� Ļ

j�0

logEa,b rexpt�λGj,kus � λnpgps, tq � εq
	
.

Recalling that L�1n Ñ m as n Ñ 8, and our assumption that EG0,0 ¡
mpgps, tq � ε{2q, it follows that

lim sup
LÑ8

L�1 logPa,b

� Ļ

j�0

Gk,j   npgps, tq � εq
	
¤ �λmε

2
� λ2

2
EG2

0,0 � �C

almost surely. Therefore, for each k there exists a random Nk so that for n ¥ Nk

Pa,b

� Ļ

j�0

Gk,j   npgps, tq � εq
	
¤ exp

!
�n C

2m

)
.

For any fixed K and n ¥ maxk¤K Nk, we see that P almost surely we have

� 1

n
logPa,b

�
n�1Gptnsu, tntuq ¤ pgps, tq � εq�

¥
Ķ

k�0

� 1

n
logPa,b

�
n�1

Ļ

j�0

Gk,j ¤ gps, tq � ε
	

¥ K
C

2m
.

Sending n Ñ 8 and then K Ñ 8 gives the result for fixed s, t, ε ¡ 0. For
the general result, we work on the µ almost sure set where the result holds
simultaneously for all rational s, t, ε ¡ 0. Take s, t, ε ¡ 0 and s1   s and t1   t
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rational with the property that ε � gps, tq � gps1, t1q ¡ ε1 ¡ 0 for rational ε1.
This is possible by continuity of g. The result follows from observing that

Pa,b

�
n�1Gptnsu, tntuq¤gps, tq�ε� ¤ Pa,b

�
n�1Gptns1u, tnt1uq¤gps1, t1q�ε1

�
.

l

Corollary 5.1. limnÑ8 n�1 logEa,b rexp t�λGptnsu, tntuqus � �λgps, tq µ-a.s.
for s, t, λ ¡ 0.

Essentially the same argument as in Lemma 2.1 restricted to a single diagonal
D0 (so that the last passage times on Bj0 are i.i.d. under P) shows that for
r P p0, gps, tqq, we have

lim inf
nÑ8 �n�1 logP

�
n�1Gptns u, tnt uq ¤ r

� ¡ 0.

To show that n is the correct rate for certain left tail large deviations, we need to
show that the corresponding limsup is finite for some r P p0, gps, tqq. We begin
by considering the natural mechanism for these deviations, which we stated
previously in Section 2 as Lemma 2.2.

Proof of Lemma 2.2. We may assume without loss of generality that tν1 P
Mα, ν2 P Mβ : gν1,ν2ps, tq P px, yqu � H since the right hand side is infinite
otherwise. Fix a pair ν1, ν2 from this set and introduce the notation

An � tn�1Gptns u, tnt uq P px, yqu, dν1

dα
paq � ϕpaq, dν2

dβ
pbq � ψpbq.

Since An is measurable with respect to σ pW pi, jq : 1 ¤ i ¤ tns u, 1 ¤ j ¤ tnt uq,
we see that

Pα,βpAnq � Eα,β rPa,bpAnqs ¥ Eα,β

�
Pa,bpAnq

tns u¹
i�1

1tϕpaiq¡0u
tnt u¹
j�1

1tψpbjq¡0u

�

� Eν1,ν2

�
Pa,bpAnq

tns u¹
i�1

ϕpaiq�1
tnt u¹
j�1

ψpbjq�1

�
.

Taking logs and applying Jensen’s inequality shows that

� 1

n
logPα,βpAnq

¤ � 1

n
log Eν1,ν2

�
Pa,bpAnq

tns u¹
i�1

ϕpaiq�1
tnt u¹
j�1

ψpbjq�1

�
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¤ 1

nPν1,ν2pAnq
Eν1,ν2

�
Pa,bpAnq

�tns u¸
i�1

logϕpaiq �
tnt u¸
j�1

logψpbjq

�

� 1

n
logPν1,ν2pAnq.

Note that for any measures ν1, ν2, we have gν1,ν2ps, tq ¡ 0, so we have not
divided by zero above. The last term tends to zero because Pν1,ν2pAnq Ñ 1 as
nÑ8. For the remaining term, we note that

Eν1,ν2

�
Pa,bpAnq

�tns u¸
i�1

logϕpaiq �
tnt u¸
j�1

logψpbjq

�

� Eν1,ν2

��tns u¸
i�1

logϕpaiq �
tnt u¸
j�1

logψpbjq

�

� Eν1,ν2

�
Pa,bpAcnq log

�tns u¹
i�1

ϕpaiq
tnt u¹
j�1

ψpbjq

�

� tns uHpν1|αq � tnt uHpν2|βq

� Eα,β

�
Pa,bpAcnq

tns u¹
i�1

ϕpaiq
tnt u¹
j�1

ψpbjq log

�tns u¹
i�1

ϕpaiq
tnt u¹
j�1

ψpbjq

�
.

But x log x ¥ �1{e and Pa,bpAcnq P r0, 1s so the last term is bounded above by
a constant. Dividing by n and taking lim supnÑ8, then optimizing over ν1, ν2

gives the result. l

To show that the annealed model has non-trivial rate n large deviations to
the left of the shape function, it suffices to show that there exists ν1 PMα with
gν1,βps, tq   gα,βps, tq. The next lemma gives mild conditions under which this
is the case.

Lemma 5.1. Suppose that α is not degenerate and Eαra log as   8. Then
there exists ν1 with Hpν1|αq   8 and gν1,βps, tq   gα,βps, tq.
Proof. Define ν1 by pdν1{dαqpaq � a. Note that Hpν1|αq   8 by hypothesis. Let
ζ P r�

¯
α,

¯
βs be such that gα,βps, tq � sE

�pa� ζq�1
� � tE

�pb� ζq�1
�
. Because

α � δc for any c, the Cauchy – Schwarz inequality gives

1 � E
�a

a� ζ
a
a� ζ

�1
�2

  Era� ζsE �pa� ζq�1
�
.

Rearranging implies that E
�
apa� ζq�1

�   ErasE �pa� ζq�1
�
. It then follows

that

gν1,βps, tq ¤ sEras�1 E
� a

a� ζ

�
� tE

� 1

b� ζ

�
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  sE
� 1

a� ζ

�
� tE

� 1

b� ζ

�
� gα,βps, tq.

l

We expect that the moment condition in the previous lemma is unnecessary.

6. Large deviation principle

We prove Theorem 2.3 by working with Legendre – Fenchel transforms and
appealing to convex duality.

Lemma 6.1. For all s, t ¡ 0,

J�s,tpλq �
#
Ls,tpλq λ ¥ 0,

8 λ   0,
J�s,tpλq �

#
Ls,tpλq λ ¥ 0,

8 λ   0.

Proof. We give the proof of the result under Pa,b. The proof under P is simi-
lar. Recall the regularity properties of Js,tp�q proven in Proposition A.1 in the
appendix. The result for λ   0 follows from the observation that Js,tprq � 0 for
r ¤ gps, tq. For all λ ¡ 0, by the exponential Markov inequality we have

1

n
logPa,b pGptnsu, tntuq ¥ nrq ¤ 1

n
logEa,b

�
eλGptnsu,tntuq

�� λr.

Sending nÑ8 gives λr�Js,tprq ¤ Ls,tpλq and taking suprPR implies J�s,tpλq ¤
Ls,tpλq. For the reverse inequality, we next consider the case λ P p0,

¯
α�

¯
βq. Fix

M ¡ 0 and let txiuKi�0 be a partition of r0,M s. We observe that

Ea,b

�
eλGptnsu,tntuq

� � Ķ

i�1

Ea,b

�
eλGptnsu,tntuq1pxi�1,xispn�1Gptnsu, tntuqq�

�Ea,b

�
eλGptnsu,tntuq1pM,8qpn�1Gptnsu, tntuqq�.

Consequently, we see that

1

n
logEa,b

�
eλGptnsu,tntuq

�
¤ max

!
max

0¤i¤K

!
λxi � 1

n
logPa,b

�
n�1Gptnsu, tntuq ¥ xi�1

�)
,

1

n
Ea,b

�
eλGptnsu,tntuq1pM,8qpn�1Gptnsu, tntuqq�)

� K � 1

n
.
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Take lim supnÑ8 then K Ñ8. Using continuity of r ÞÑ Js,tprq, we see that

Ls,tpλq ¤ max
0¤r¤M

tλr � Js,tprqu

_ lim sup
nÑ8

1

n
logEa,b

�
eλGptnsu,tntuq1pM,8qpn�1Gptnsu, tntuqq�.

Let p, q ¡ 1 be such that p�1 � q�1 � 1 and pλ  
¯
α�

¯
β. Then

1

n
logEa,b

�
eλGptnsu,tntuq1pM,8qpn�1Gptnsu, tntuqq�

¤ 1

pn
logEa,b

�
eλpGptnsu,tntuq

�� 1

qn
logPa,b

�
n�1Gptnsu, tntu ¥M

�
.

From this, we see that there exist deterministic constants C1, C2 such that

lim sup
nÑ8

1

n
logEa,b

�
eλGptnsu,tntuq1pM,8qpn�1Gptnsu, tntuqq� ¤ C1 � C2 Js,tpMq.

Recall that λr ¤ Ls,tpλq � Js,tprq, so that as M Ñ 8, Js,tpMq Ñ 8. Since
maxr¤Mtλr � Js,tprqu ¤ J�s,tpλq, it follows that we have Ls,tpλq ¤ J�s,tpλq.

Next, we turn to the case λ �
¯
α �

¯
β. We observe that as λ Ò

¯
α �

¯
β,

Ls,tpλq Ò Ls,tp
¯
α�

¯
βq. Suppose that Ls,tprq   8. Fix ε ¡ 0 and take λ  

¯
α�

¯
β

such that suprPRtλr � Js,tprqu � Ls,tpλq ¥ Ls,tp
¯
α�

¯
βq � 2ε. Then there exists

r ¡ 0 so that λr�Js,tprq ¥ Ls,tp
¯
α�

¯
βq� ε. Since p

¯
α�

¯
βqr ¡ λr, it follows that

J�s,tp¯α� ¯
βq ¥ Ls,tp

¯
α�

¯
βq � ε. The case Ls,tp

¯
α�

¯
βq � 8 is similar.

Finally, we consider the case λ ¡
¯
α�

¯
β, where Ls,tpλq � 8. For each pi, jq,

we eventually have Gptns u, tnt uq ¥ W pi, jq. This implies that for all pi, jq,
Js,tprq ¤ pai�bjqr1tr¥0u and therefore µ almost surely, Js,tprq ¤ p

¯
α�

¯
βqr1tr¥0u.

Taking Legendre – Fenchel transforms of this inequality shows that J�s,tpλq � 8.
l

Proof of Theorem 2.3. Proposition A.1 shows that r ÞÑ Js,tprq and r ÞÑ Js,tprq
are real valued convex functions on R. The result follows from taking Legendre –
Fenchel transforms of the expressions in the previous lemma [20, Theorem 12.2].

l

Proof of Theorem 2.4. Fix an open set O � R
1. If O � p�8, gps, tqq then there is nothing to prove by Lemma 2.1.

2. If gps, tq P O, then

lim sup
nÑ8

�n�1 logPa,b

�
n�1Gptnsu, tntuq P O� � 0 � inf

rPO
Is,tprq

3. If OX pgps, tq,8q � H, then OX pgps, tq,8q contains an interval pr0, r1q.
Note that

Pa,b

�
n�1Gptnsu, tntuq P O�
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¥ Pa,b pGptnsu, tntuq P pr0, r1qq
� Pa,b pGptnsu, tntuq ¥ r0q �Pa,b pGptnsu, tntuq ¥ r1q .

Lemma 4.4 shows that Js,tprq is strictly increasing for r ¡ gps, tq, which implies
that

lim sup
nÑ8

�n�1 logPa,b

�
n�1Gptnsu, tntuq P O� ¤ Js,tpr0q.

Let rn P O X pgps, tq,8q be a sequence with rn Ó r8 � inftx : x P O X
pgps, tq,8qu. Then because Js,tprq is continuous and non-decreasing, we see
that

lim sup
nÑ8

�n�1 logPa,b

�
n�1Gptnsu, tntuq P O�

¤ Js,tpr8q � inf
rPOXpgps,tq,8q

Is,tprq � inf
rPO

Is,tprq.

The upper bound follows from the regularity of Js,t, Theorem 2.3 and Lemma
2.1. l

7. Relative entropy and the rate functions

We now turn to the proof of Theorem 2.5. Our argument proving this result
is purely convex analytic and does not show the probabilistic interpretation
mentioned before the statement of the theorem. We begin with a technical
lemma.

Lemma 7.1. For r ¡ 0, the map pα, βq ÞÑ Iα,βs,t prq is convex on M1pR�q2.

Proof. Using (2.3), one can check that pα, βq ÞÑ gα,βps, tq is concave on MpR�q2.
Thus, tpα, βq : gα,βps, tq ¥ ru is convex. Define for pα, βq PM1pR�q2

F pα, βq � sup
λPp0,

¯
α�

¯
βq

zPp�
¯
α,

¯
β�λq

!
λr � sEα

�
log

�a� z � λ

a� z

	�
� tEβ

�
log

� b� z

b� z � λ

	�)
.

Fix α1, α2, β1, β2 PM1pR�q and δ P p0, 1q. Denote by αδ � δα1�p1� δqα2 and
by βδ � δβ1 � p1� δqβ2. Note that

¯
αδ �

¯
α1 ^

¯
α2 and

¯
βδ �

¯
β1 ^

¯
β2. Then

F pαδ, βδq
� sup

λPp0,
¯
αδ�

¯
βδq

zPp�
¯
αδ,

¯
βδ�λq

!
λr � sEα

δ
�
log

�a�z�λ
a� z

	�
� tEβ

δ
�
log

� b� z

b�z�λ
	�)
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¤ δ sup
λPp0,

¯
αδ�

¯
βδq

zPp�
¯
αδ,

¯
βδ�λq

!
λr�sEα1

�
log

�a�z�λ
a� z

	�
�tEβ1

�
log

� b� z

b�z�λ
	�)

� p1�δq sup
λPp0,

¯
αδ�

¯
βδq

zPp�
¯
αδ,

¯
βδ�λq

!
λr�sEα2

�
log

�a�z�λ
a� z

	�
� tEβ2

�
log

� b� z

b�z�λ
	�)

¤ δ sup
λPp0,

¯
α1�

¯
β1q

zPp�
¯
α1,

¯
β1�λq

!
λr � sEα1

�
log

�a� z � λ

a� z

	�
� tEβ1

�
log

� b� z

b� z � λ

	�)

� p1�δq sup
λPp0,

¯
α2�

¯
β2q

zPp�
¯
α2,

¯
β2�λq

!
λr�sEα2

�
log

�a�z�λ
a� z

	�
� tEβ2

�
log

� b� z

b�z�λ
	�)

,

so that F is convex on MpR�q2. Then we see from (2.11) that pα, βq ÞÑ Iα,βs,t prq
is convex on MpR�q2. l

Proof of Theorem 2.5. Theorem 2.3 and the variational characterization of rel-
ative entropy, [19, Theorem 5.4], imply that for r ¡ gps, tq,

Jα,βs,t prq � sup
λPp0,

¯
α�

¯
βq

zPp�
¯
α,

¯
β�λq

!
λr � s log Eα

�a� z � λ

a� z

�
� t log Eβ

� b� z

b� z � λ

�)

� sup
λPp0,

¯
α�

¯
βq

zPp�
¯
α,

¯
β�λq

inf
ν1PMα

ν2PMβ

"
λr � sEν1

�
log

�a� z � λ

a� z

	�

� tEν2
�
log

� b� z

b� z � λ

	�
� sHpν1|αq � tHpν2|βq

*
¤ inf
ν1PMα

ν2PMβ

sup
λPp0,

¯
α�

¯
βq

zPp�
¯
α,

¯
β�λq

"
λr � sEν1

�
log

�a� z � λ

a� z

	�

� tEν2
�
log

� b� z

b� z � λ

	�
� sHpν1|αq � tHpν2|βq

*
.

Note that if ν1 ! α, it must be the case that
¯
ν1 ¥

¯
α and similarly,

¯
ν2 ¥

¯
β. It

follows that we may extend the region in the inner supremum to obtain

Jα,βs,t prq ¤ inf
ν1,ν2

 
Iν1,ν2s,t prq � sHpν1|αq � tHpν2|βq

(
.

The map pν1, ν2q ÞÑ Iν1,ν2s,t prq � sHpν1|αq � tHpν2|βq is strictly convex on the

convex set Mα�Mβ so at most one minimizing pair pν1, ν2q exists. It therefore
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suffices to show that we have equality with the measures ν1, ν2 defined in the
statement of the theorem. We argue this by cases.

A maximizing pair λ�, z� satisfying λ� P r0,
¯
α�

¯
βs, z� P r�

¯
α,

¯
β�λ�s exist for

the annealed right-tail rate function by Lemmas 4.2 and 4.4. (z� denotes z�pλ�q
in the notation of Section 4. Also, by Corollary 3.1, z�p

¯
α �

¯
βq � �

¯
α). Note

that λ� � 0 is impossible because Jα,βs,t prq ¡ 0 by Lemma 4.4. If λ� P p0,
¯
α�

¯
βq

and z� P p�
¯
α,

¯
β � λ�q, then ν1 PMα and ν2 PMβ because their densities with

respect to α and β are bounded. Taking derivatives in (2.12), we see that z�
and λ� solve

0 � sEν1
� 1

a� z�
� 1

a� z��λ�
�
� tEν2

� 1

b� z�
� 1

b� z��λ�
�
, (7.1)

0 � r � sEν1
� 1

a� z��λ�
�
� tEν2

� 1

b� z��λ�
�
. (7.2)

These are precisely the first order conditions implying that

Iν1,ν2s,t prq � λ� r � sEν1
�
log

a� z��λ�
a� z�

�
� tEν2

�
log

b� z�
b� z��λ�

�
.

The definition of relative entropy and a little algebra then show that

Jα,βs,t prq � Iν1,ν2s,t prq � sHpν1|αq � tHpν2|αq.
The remaining cases are similar in that once we know that the extremizers
are the same for Jα,βs,t prq and Iν1,ν2s,t prq, the result follows. The necessary and
sufficient conditions in Lemmas 4.1 and 4.2 show that ν1 and ν2 are well defined
and that this equality continues to hold if λ�  

¯
α�

¯
β and z� � �

¯
α or z� �

¯
β�λ�.

The only remaining case is λ� �
¯
α �

¯
β and z� � �

¯
α. λ� �

¯
α �

¯
β is equivalent

to r ¥ pLα,βs,t q1p¯α � ¯
βq. By Corollary 4.1, this condition implies that ν1 and ν2

are well defined and pLν1,ν2s,t q1p
¯
α�

¯
βq � pLα,βs,t q1p¯α� ¯

βq. The result follows. l

8. Scaling estimates

In this section, we prove the scaling estimates for the quenched and the
annealed rate functions. See the discussion Section 4 for the notation below. If
c1   s{t   c2 we have Bzgζps, tq � 0 and, therefore,

gzps, tq � gps, tq � B2
zgζps, tqpz � ζq2{2� oppz � ζq2q. (8.1)

In fact, (8.1) holds for s{t � c1 and s{t � c2 as well provided that

E
� 1

pa�
¯
αq3

�
  8, E

� 1

pb�
¯
βq3

�
  8; (8.2)

that is, assuming that B2
zgzps, tq has limits at the endpoints �

¯
α and

¯
β.



306 E. Emrah and C. Janjigian

Proof of Theorem 2.7. For ε ¡ 0 sufficiently small, we have

I1s,tprq � λ�prq, L1s,tpλ�prqq � r (8.3)

whenever gps, tq ¤ r ¤ gps, tq � ε by Lemma 4.4. We begin with the case
c1   s{t   c2. Then ζ P p�

¯
α,

¯
βq. We recall λ1 and λ2 defined in Lemma 4.1.

Because BzF p�
¯
α, 0q � Bzg�

¯
αps, tq   0 and BzF p�

¯
α, 0q � Bzg�

¯
αps, tq ¡ 0, we

conclude that λ1 ¡ 0 and λ2 ¡ 0. Hence,

z�1pλq � �BλBzF pz�, λqB2
zF pz�, λq

� �
sE

� 1

pa� z�qpa� z��λq2
�
� tE

� 1

pb� z�qpb� z��λq2
�

sE
� 2a� 2 z��λ
pa� z��λq2pa� z�q2

�
� tE

� 2b� 2 z��λ
pb� z��λq2pb� z�q2

�
for 0   λ   λ1 ^ λ2. Letting λ Ó 0 yields z�1p0�q � �1{2. It follows that
z�pλq � ζ � λ{2 � opλq as λ Ó 0. We obtain L1s,tpλq � gz� �λps, tq � gps, tq �
B2
zgζps, tqλ2{8� opλ2q as λ Ó 0. Then,

I1s,tpgps, tq � εq � 2
?

2aB2
zgζps, tq

ε1{2 � opε1{2q,

and integrating gives

Is,tpgps, tq � εq � 4
?

2ε3{2

3
aB2

zgζps, tq
� opε3{2q (8.4)

� 4

3

ε3{2c
sE

� 1

pa� ζq3
�
� tE

� 1

pb� ζq3
� � opε3{2q

as ε Ó 0. Now, suppose that s{t ¤ c1. Then Erpa �
¯
αq�2s   8, ζ � �

¯
α and

z� � �
¯
α. Under condition (8.2), when c1 � s{t, L1s,tpλq � g�

¯
α�λps, tq � gps, tq�

B2
zg�

¯
αps, tqλ2{2� opλ2q and we reach (8.4) multiplied with 1{2. If c1 ¡ s{t then

Bzg�
¯
αps, tq ¡ 0 and we have L1s,tpλq � g�

¯
α�λps, tq � gps, tq�Bzg�

¯
αps, tqλ�opλq.

This leads to

Is,tpgps, tq � εq � ε2

2Bzg�
¯
αps, tq � opε2q

� 1

2

ε2

�sE
� 1

pa�
¯
αq2

�
� tE

� 1

pb�
¯
αq2

� � opε2q.

Analysis of the case s{t ¥ c2 is similar. l
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Proof of Theorem 2.8. In the case c1   s{t   c2, Hölder’s inequality gives

lim
λÓ0

z�1pλq � � lim
λÓ0

BλBzF pz�, λq
B2
zF pz�, λq

� �
sE

� 1

pa�ζq2
�

E
� 1

a�ζ
�
� 2tE

� 1

pb�ζq3
�
�tE

� 1

pb�ζq2
�

E
� 1

b�ζ
�

2sE
� 1

pa�ζq3
�
�2tE

� 1

pb�ζq3
�

¤ �
sE

� 1

pa� ζq2
�

E
� 1

a� ζ

�
� tE

� 1

pb� ζq3
�

2sE
� 1

pa� ζq3
�
� 2tE

� 1

pb� ζq3
� .

Hence, z�pλq � ζ � cλ� opλq, where c   0. We have

L1s,tpλq � s
E
� 1

a� z�

�
E
�a� z��λ

a� z�

� � t

E
� b� z�
pb� z��λq2

�
E
� b� z�
b� z��λ

� (8.5)

� gz� �λps, tq � λ
�
sVar

� 1

a� ζ

�
� tVar

� 1

b� ζ

�	
� opλq (8.6)

� gps, tq � λ
�
sVar

� 1

a� ζ

�
� tVar

� 1

b� ζ

�	
� opλq. (8.7)

Then, arguing as in the preceding proof, we obtain

Js,tpgps, tq � εq � 1

2

ε2

sVar
� 1

a� ζ

�
� tVar

� 1

b� ζ

� � opεq. (8.8)

Now consider s{t ¤ c1. Then ζ � z� � �
¯
α and (8.5) still holds. If s{t � c1

subsequent arguments go through assuming (8.2). This condition is needed in
step (8.6), which relies on (8.1) with ζ � �

¯
α. Hence, we have (8.8). If s{t   c1

then the coefficient of λ in (8.7) has an additional term Bzg�
¯
αps, tq ¡ 0, which

leads to

Js,tpgps, tq � εq � 1

2

ε2

�sE
� 1

a�
¯
α

�2

� tVar
� 1

b�
¯
α

�
� tE

� 1

pb�
¯
αq2

� � opεq.

The case s{t ¥ c2 is analyzed similarly. l
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A. Right tail rate functions and Lyapunov exponents

Proposition A.1.

(a) µ-a.s., for s, t ¡ 0 and r P R, there exists (nonrandom) Js,tprq P r0,8q such
that

lim
nÑ8�

1

n
logPa,bpGptns u, tnt uq ¥ nrq � Js,tprq. (A.1)

(b) For all s, t ¡ 0 and r P R, there exists Js,tprq P r0,8q such that

lim
nÑ8�

1

n
logPpGptns u, tnt uq ¥ nrq � Js,tprq. (A.2)

(c) J and J are convex and homogeneous in ps, t, rq, nonincreasing in ps, tq and
nondecreasing in r.

Proof. Fix r P R and s, t P N. For integers 0 ¤ m   n, define

Xm,n � � logPτmspaq,τmtpbqpGppn�mqs, pn�mqtq ¥ pn�mqrq.
We verify that tXm,nu satisfy the hypotheses of the subadditive ergodic theorem
in [17]. For subadditiviy, note that

X0,n � � logPa,bpGpns, ntq ¥ nrq
¤ � logPa,bpGpms,mtq ¥ mrq
� logPa,bpGppn�mqs, pn�mqtq � θms,mt ¥ pn�mqrq

� X0,m �Xm,n.

For k P N, by the ergodicity assumptions on µ, the sequence pXk,k�nqnPN has
the same distribution as pX0,nqnPN and the sequence pXpn�1qk,nkqnPN is ergodic.
Moreover, X0,n ¥ 0 and

EX0,n ¤ E r� logPa,bpW p1, 1q ¥ nrqs � nmaxtr, 0uEra� bs   8. (A.3)

Hence, by the subadditive ergodic theorem, (A.1) holds µ-a.s. (and in expecta-
tion under µ) with

Js,tprq � lim
nÑ8

1

n
EX0,n � lim

nÑ8�
1

n
E logPa,bpGpns, ntq ¥ nrq. (A.4)

We record some properties of Js,tprq for s, t P N and r P R. It is clear from
(A.4) that Js,tprq is nonincreasing in ps, tq and nondecreasing in r. In addition,
Js,tprq � 0 for r ¤ 0 as G is nonnegative, and Jcs,ctpcrq � cJs,tprq for c P N.
By (A.3), Js,tprq ¤ rEra � bs   8 for r ¥ 0. Also, for s1, s2, t1, t2 P N and
r1, r2 P R, we have

E logPa,bpGpnps1 � s2q, npt1 � t2qq ¥ npr1 � r2qq
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¥ E logPa,bpGpns1, nt1q ¥ nr1q � E logPa,bpGpns2, nt2q ¥ nr2q
for n P N, which gives Js1�s2,t1�t2pr1 � r2q ¥ Js1,t1pr1q � Js2,t2pr2q. Then, for
0 ¤ r ¤ r1 ¤ r � 1{n,

Js,tpr1q � Js,tprq ¤ Js,tpr � 1{nq � Js,tprq
� 1

n� 1
Jpn�1qs,pn�1qtpnr � r � 1� 1{nq � Js,tprq

¤ Jns,ntpnrq
n� 1

� Js,tprq � Js,tpr � 2q
n� 1

� Js,tpr � 2q � Js,tprq
n� 1

¤ 2r � 2

n
Era� bs, (A.5)

which shows continuity of Js,tprq in r.
There exists a µ-a.s. event E on which (A.1) holds for all s, t P N and r P Q.

It follows from the monotonicity of logPa,bpGpns, ntq ¥ nrq in r and continuity
of Js,t that (A.1) holds for all s, t P N and r P R on E. From now on, let us
work with pa,bq P E.

For c ¡ 0, δ P p0, 1q and large enough n P N, we have

� logPa,bpGptncs u, tnct uq¥nrq¤�logPa,bpGpt cn u s, tcnu tq¥ tcnu rp1�δqq,
� logPa,bpGptncs u, tnct uq ¥ nrq¥�logPa,bpGpr cn s s, rcns tq¥ rcns rp1�δqq.

(A.6)
It follows from these inequalities and continuity of Js,t that (A.1) holds on E
with Jcs,ctpcrq � cJs,tprq. In particular, Js,tprq exists for rational s, t ¡ 0.
Moreover, by homogeneity, the properties of Js,tprq noted in preceding para-
graph hold for rational s, t ¡ 0 as well.

For s, t, δ ¡ 0, choose rational s1, t1 such that s1{p1 � δq   s ¤ s1 and
t1{p1� δq   t ¤ t1. Then

� logPa,bpGptns u, tnt uq ¥ nrq ¥ � logPa,bpGptns1 u, tnt1 uq ¥ nrq,
� logPa,bpGptns u, tnt uq ¥ nrq
¤ � logPa,bpGptns1{p1� δq u, tnt1{p1� δq uq ¥ nrq.

(A.7)

It follows that

lim inf
nÑ8 � 1

n
logPa,bpGptns u, tnt uq ¥ nrq ¥ Js1,t1prq,

lim sup
nÑ8

� 1

n
logPa,bpGptns u, tnt uq ¥ nrq ¤ Js1{p1�δq,t1{p1�δqprq

� Js1,t1pp1� δqrq{p1� δq.
Using (A.5), we obtain

Js1,t1pp1� δqrq
1� δ

� Js1,t1prq ¤ Js1,t1pp1� δqrq � Js1,t1prq ¤ 2r � 2

rprδq�1 s
Era� bs.
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As δ Ó 0, we have s1 Ó s and t1 Ó t. Hence, we conclude that Js,tprq exists and
equals the limit of Js1,t1prq, and also enjoys the properties of mentioned above.
Finally, it follows from subadditivity and homogeneity that J is convex. l

Proposition A.2.

(a) µ-a.s., for any s, t ¡ 0 and λ P R, there exists Ls,tpλq P r�8,8s such that,

lim
nÑ8

1

n
logEa,breλGptns u,tnt uqs � Ls,tpλq. (A.8)

(b) For any s, t ¡ 0 and λ P R,

lim
nÑ8

1

n
logEreλGptns u,tnt uqs � Ls,tpλq. (A.9)

(c) Ls,tpλq and Ls,tpλq are nondecreasing and convex in λ.

(d) λLs,tpλq and λLs,tpλq are nondecreasing, homogeneous and concave in
ps, tq.

Proof. Fix λ P R and s, t P N. Define

Xm,n � �λ logEτmspaq,τmtpbq
�
eλGppn�mqs,pn�mqtq

�
for integers 0 ¤ m   n. Then tXm,n : 0 ¤ m   nu are nonpositive and
subadditive, and the conditions of the subadditive ergodic theorem are in place
to claim the existence of Ls,tpλq P r�8,8s such that (A.8) holds µ-a.s.

For λ P R, s, t P N and c ¡ 0, we have

�λ logEa,b

�
eλGprnc s s,rnc s tq� ¤ �λ logEa,b

�
eλGptncs u,tnct uq�

¤ �λ logEa,b

�
eλGptnc u s,tnc u tq�.

Also, for λ P R, s, s1, t, t1, δ ¡ 0 such that s1, t1 are rational, s1{p1 � δq   s ¤ s1

and t1{p1� δq   t ¤ t1,

�λ logEa,b

�
eλGptns

1 u,tnt1 uq� ¤ �λ logEa,b

�
eλGptns u,tnt uq�

¤ �λ logEa,b

�
exp

!
λG

�Y ns1

1� δ

]
,
Y nt1

1� δ

]	)�
.

Using these inequalities as in the preceding proof, we obtain (A.8) for all s, t ¡ 0
µ-a.s. and the claimed properties of the function ps, tq ÞÑ λLs,tpλq.

Now fix s, t ¡ 0. Note that Ls,tpλq is nondecreasing in λ. Let λ0 �
supλPRtLs,tpλq   8u. For λ1, λ2 P R and c1, c2 P p0, 1q with c1 � c2 � 1,
by Hölder’s inequality,

logEa,b

�
epc1λ1�c2λ2qGptns u,tnt uq�
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¤ c1 logEa,b

�
eλ1Gptns u,tnt uq�� c2 logEa,b

�
eλ2Gptns u,tnt uq�,

which implies that Ls,tpc1λ1 � c2λ2q ¤ c1 Ls,tpλ1q � c2 Ls,tpλ2q. Hence, Ls,tpλq
is continuous in λ on p�8, λ0q. Using this and the monotonicity of last-passage
times, we deduce that (A.8) holds for all s, t ¡ 0 and λ P R µ-a.s. l
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