
MA 266 Lecture 1

Christian Moya, Ph.D.

Sec 1.1 Differential Equations; Mathematical Models

Question: What is a differential equation?

A differential equation is

•

•

Example 1. (Types of equations)

1. Find x in x2 + 6x+ 1 = 0.

2. Find f(t) in f(t) cos(t) = et − sin(t).

3. Find y(t) in y′′ + 10y′ = et.

Question: Why do we study differential equations?

• Many natural phenomena; physical processes involve .

• dx
dt

= f ′(t) is the at which x = f(t) is .

• Differential equations to model .
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Example 2. (An example of mathematical model — object-spring)

Consider an object with a mass m attached to the end of a spring. The mass experiences
a force F (t). Formulate a differential equation to model its motion.

• Notations

• Physical Law: Newton’s law

• Forces that acted on the object

Remark The differential equation contains two constants: m, and k

•

•
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Definitions

• The order of a differential equation is the order of the highest involved
in the ODE.

Example 3. (Find the order)

1. 4x2y′′ + y = 0

2. (y′)2 + y2 = −1

3. y(3)x2 + x10y = sin(x)

• The general form of an n-th order differential equation:

• We say is a solution of the differential equation

• Initial value problem (IVP): together with an .

• The solution to an ODE for is called particular solution.

• General solution

– Without an , the ODE may have solutions.

– If we can write an expression for solution ≡ general solution.
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Example 4. (Population Dynamics)
Consider the time rate of change of a population P (t).

• Notation

– constant birth rate

– constant death rate

• Differential equation

1. Check P (t) = Cekt is a general solution

2. Suppose that the population at time t = 0 (hours, h) was 1000. Find the value of C

3. Assume the population doubled after 1 hour, determine the value of k

4. Write the particular solution. Use it to predict the population after 1.5 hours
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• Ordinary differential equations (ODE): the depends on

a variable.

• Partial differential equations (PDE): If the is a function

of variables.

Example 5. (Thermal Diffusivity)
Consider a one dimensional rod. The temperature satisfies the heat equation:

where is the thermal diffusivity.
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Sec 1.2 Integrals as General/Particular Solutions

In this section, we discuss how to solve differential equations.

• Consider the first order equation:

dy

dx
= f(x, y)

• Consider the simple case
dy

dx
= f(x)

Example 1. Find the solution y(x) of the simple case:

Remarks

• is the solution.

• Involves an arbitrary constant .

• For every choice of , is a solution of .
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• Consider the Initial Value Problem (IVP):

dy

dx
= f(x), y(x0) = y0.

Example 2. Find the particular solution of the IVP.

Example 3. Find the particular solution y(x) of the following IVP.

dy

dx
= sin(x), y(0) = 1.
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Second Order Equations

• Consider the second-order differential equation of the special form:

d2y

dx2
= g(x)

Example 4. Find the general solution of this second-order equation.

Remark

• The above second-order differential equation can be solved by solving successively the
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Velocity and acceleration

Notation

• The motion of a particle along a straight line (the x-axis) is described by its position
function:

• is the x-coordinate at time t.

• The velocity v(t) of the particle is:

• The acceleration a(t) is:

Example 5. Find the general solution when the acceleration is constant a(t) = a.
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Example 6. Given an initial position x(0) = x0 and initial velocity v(0) = 0, find the
particular solution of the corresponding IVP.

Example 7. At 12:00 PM, a car starts from rest at point A and proceeds at constant accel-
eration along a straight road towards point B. The car reaches B at 12:50 PM with velocity
of 60 miles/hour. Find the distance from A to B.
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Vertical Motion and Gravitational Acceleration

Notation

• The weight of a body is the force exerted on the body by gravity.

• If we ignore the air resistance, then the acceleration is

• The velocity equation is:

• The height equation is:

Example 8. Suppose that a ball is thrown straight upward from the ground (y0 = 0) with
initial velocity v0 = 96 ft/s (then g = 32 ft/s2). Find the maximum height the ball attains.
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A Swimmer’s Problem

Consider a northward-flowing river of width w = 2a. The lines x = ±a represent the banks
of the river and the y-axis its center. Suppose that the velocity vR at which the water flows
increases as one approaches the center of the river. vR is given by

vR = v0

(
1− x2

a2

)
.

Example 9. Suppose that a swimmer start at point (−a, 0) on the west bank and swims due
east (relative to the water) with constant speed vS. His velocity (relative to the riverbed) has
a horizontal component vS and a vertical component vR. Find the swimmer trajectory y(x).
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Sec 1.3 Slope Fields and Solution Curves

Consider the first order differential equation:

dy

dx
= f(x, y)

Question: Can we find the solution y(x) using

y(x) =

∫
f(x, y(x))dx+ C ?

Answer: .

• involves the .

Slope fields and Graphical solutions

• For each , determines .

Definition. of the differential equation dy
dx

= f(x, y) is a

whose at each has:
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Example 1. Consider a solution curve of

dy

dx
= x− y

• point (x1, y1)

• point (x2, y2)

• point (x3, y3)

Constructing slope fields.

• Consider a representative collection of points .

• For each , we draw a “short” line segment having:

• The collection of line segments: .
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Example 2. Consider the population dynamics:

dP (t)

dt
= kP (t).

Construct the slope field.

• Recall the general solution:

• How do we draw the tangent line?
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Remark

• We use he slope field to study the of .

Example 3. Consider the differential equation

dy

dx
= ky,

where is the rate of change of .

• The general solution is:

• The solution curves and slope fields for k = 2, 0.5,−1:
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Existence of Solutions

Example 4. Consider the IVP:

dy

dx
=

1

x
, y(0) = 0.

• General solution:

• Particular solution:

The slope field:

Remark

• The forces all curves near to plunge

downward so that none can pass through .

MA 266 Lecture 3 page 5 of 9



Uniqueness of Solutions

Example 5. Consider the IVP:

dy

dx
= 2

√
y, y(0) = 0.

• Check if is a solution:

• Check if is a solution:
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Theorem 1. (Existence and Uniqueness of Solutions) Suppose that both the function f(x, y)
and its partial derivative Dyf(x, y) are continuous on some rectangle R in the xy-plane that
contains the point (a, b) in its interior. Then, for some open interval I containing the point
a, the initial value problem

dy

dx
= f(x, y), y(a) = b

has one and only one solution that is defined on the interval I.

Example 6. Consider
dy

dx
= 2

√
y

MA 266 Lecture 3 page 7 of 9



Example 7. Consider:

x
dy

dx
= 2y

a) Check the existence and uniqueness of the IVP:

x
dy

dx
= 2y, y(0) = b.

• Case b = 0:

• Case b ̸= 0:
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b) Check the existence and uniqueness of the IVP:

x
dy

dx
= 2y, y(a) = b, a, b ̸= 0.
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Sec 1.4 Separable Equations and Applications

Defintion 1. We call a first-order differential equation if it can be
written as:

dy

dx
= f(x, y) =

where .

Example 1. Determine g(x) and h(y)

1. Consider

x3 dy

dx
= e−y

g(x) = and h(y) = .

2. Consider
dy

dx
=

x1000

y

g(x) = and h(y) = .

3. Consider
dy

dx
= 100 · (xy)3/5

g(x) = and h(y) = .

1



Solving Separable Equations

1. The separable equation:
dy

dx
=

g(x)

h(y)

2. Write in the form:

3. Integrate both sides:

4. We only need the :

•

•

Remark

• Equations and are equivalent:
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Example 2. Find the general solution of

dy

dx
= y sin(x)

• For , separating variables gives:

• Integrating both sides:

Remark

• For , has a solution.

Defintion 2. solutions are exceptional solutions that cannot

be obtained by selecting a value for .
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Example 3. Solve the differential equation:

dy

dx
=

4− 2x

3y2 − 5

• Separating variables:

• Is defined for all y? .

• This implies that for , can cross either of

the lines:

• Divides the into:

• Integrating =⇒ general solution:

• Question: Can we solve the general solution for y? .

• are contained in of:
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Example 4. Solve the initial value problem:

dy

dx
=

4− 2x

3y2 − 5
; y(1) = 3.

• Compute C of the general solution:

• lies on the level curve:
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Example 5. Find all solutions of the differential equation:

dy

dx
= 6x(y − 1)2/3

• Separation of variables gives:

• Is a singular solution?

• Are a) y(x) ≡ 1 and b) y(x) = 1 + (x2 − 1)3 solutions of the IVP with IC: y(1) = 1?
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Natural Growth and Decay

The differential equation:
dx

dt
= kx, k a cosntant

serves as a mathematical model for wide range of natural phenomena:

• Population dynamics

• Compound interest

• Radioactive decay

The general solution:

• Separating the variables and integrating:

• We solve for x:

• The particular solution for the IC x(0) = xo is:
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Radioactive Decay

Consider a sample of material that contains N(t) atoms of a certain radioactive isotope
a time t. It has been observed that a constant fraction of those radioactive atoms will
spontaneously decay during each unit of time. Consequently, the sample behaves exactly
like the population dynamics with no births b = 0. The model for the N(t) atoms is then

dN

dt
= −kN(t).

Example 7. An accident at a nuclear plant has left the surrounding area polluted with
radioactive material that decays naturally. The initial amount of radioactive material is 15
(safe units), and 5 months later is still 10 su.

• Write a formula given the amount N(t) of radioactive material (in su) after t months.

• What amount of radioactive material will remain after 8 months?

• How long it will be until N = 1 su, so it is safe for people to return to the area?
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Population dynamics

Example 1. According to a census, the world’s total population reached 6 billion persons
in mid-1999, and was then increasing at a rate of about 212 thousand persons each day.
Assuming that natural population growth at this rate continues:

a) What is the annual growth rate k ?

Let P (t) denote the population in billions and let t be the time in years. Then,
the differential equation describing the population dynamics is:

dP

dt
= (b− d)︸ ︷︷ ︸

=:k

P (t). (1)

Set t = 0 for mid-1999. Then, the initial population is P (0) = 6 billion. Observe that
the instantaneaous increase of population is

212 [thousand persons / day ] ≡ 0.000212 [billion persons / day ]

Hence, the efective increase at time t = 0 is:

P ′(0) = 0.000212 [billion / day ] · 365.25 [days / year] ≈ 0.07743 [billion / year ].

Using the above result, we can compute k as follows:

k =
P ′(0)

P (0)
≈ 0.07743

6
= 0.0129.

The particular solution is then

P (t) = 6 · e0.0129·t (2)

b) What would be the population at the middle of the 21st century?

We use the particular solution (2) to make preditions:

P (t = 51 years) = 6 · e0.0129·51 ≈ 11.58 [billions]

1



c) How long will it take the world to increase tenfold –thereby reaching 60 billion that
some demographers believe to be the maximum for which the planet can provide food
supplies?

Solve for t, the folowing equation:

60 = P (t) = 6 · e0.0129·t

The obtained time t is:

t =
ln(10)

0.0129
≈ 178 [years],

i.e., the population will reach 60 billion in the year 2177.
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Sec 1.5 Linear First-Order Equations

Defintion 1. A is a differential equation of the
form:

dy

dx
+ P (x)y = Q(x).

The coefficients P (x) and Q(x) are assumed to be continuous in some interval on the
x-axis.

Example 1. Determine if the following equations are linear:

1. dy
dx

= −exsin(x)y + x2000.?

2. dy
dx

= x · cos(y) + 2x.?
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METHOD: Solution of linear first-order equations

Step 1) Calculate the factor:

Step 2) Multiply both sides of the diff. eq. by .

Step 3) Left hand side ⇐⇒ derivative of the product:

Step 4) Integrating both sides gives:

Step 5) Solving y, we obtain the solution:
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Example 2. Find the general solution:

(x2 + 1)
dy

dx
+ 3xy = 6x

• Is this a linear equation? .

• P (x) = and Q(x) = .

• Integrating factor:

• L.H.S. is the derivative of the product:

• Integrating both sides:

• General solution:

MA 266 Lecture 5 page 3 of 7



Example 3. Solve the initial value problem:

dy

dx
+ y = 2, y(0) = 0

• P (x) = and Q(x) = .

• Integrating factor:

• We know that:

• Integrating both sides:

• General solution:

• Particular solution:

MA 266 Lecture 5 page 4 of 7



Example 4. Solve the initial value problem:

x
dy

dx
+ y = 3xy, y(1) = 0

• Linear first order form:

• P (x) = and Q(x) = .

• Integrating factor:

• We know that:

• Integrating both sides:

• General solution:

• Particular solution:
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Example 5. Find the general solution:

dy

dx
+ y cotx = cosx

• P (x) = and Q(x) = .

• Integrating factor:

• We know that:

• Integrating both sides:

• General solution:

MA 266 Lecture 5 page 6 of 7

Christian Moya


Christian Moya


Christian Moya


Christian Moya


Christian Moya




Example 6. Express the general solution of

dy

dx
= 1 + 2xy

in terms of the error function

erf(x) =
2√
π

∫ x

0

e−t2dt.

• Linear first order form:

• P (x) = and Q(x) = .

• Integrating factor:

• We know that:

• Integrating both sides:

• General solution:
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Sec 1.5-b Linear First-Order Equations - part 2

• To solve the linear first order equation:

dy

dx
+ P (x)y = Q(x). (1)

• We use the integrating factor .

• Obtain the explicit general solution:

Theorem 1. If the functions P (x) and Q(x) are continuous on the open interval I containing
the point x0, then the initial value problem

y′ + P (x)y = Q(x), y(x0) = y0

has a unique solution y(x) on I , given by the formula in with an appropriate
value of C.

• To find the particular solution, i.e., to find ,

1



Example 1. Solve the initial value problem

x2 dy

dx
+ xy = sin(x), y(1) = y0

• Linear first order form:

• P (x) = and Q(x) = .

• With , the integrating factor:

• The desired solution is:
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Example 2.

a) Show that
yc(x) = Ce−

∫
P (x)dx

is a general solution of dy
dx

+ P (x)y = 0.

b) Show that

yp(x) = e−
∫
P (x)dx

[∫ (
Q(x)e

∫
P (x)dx

)
dx

]
is a solution of dy

dx
+ P (x)y = Q(x).

c) Show that y(x) = yc(x) + yp(x) is a general solution of dy
dx

+ P (x)y = Q(x).
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Mixture problems

Consider a mixture of a solute and a solvent (e.g., salt dissolved in water). There is both
inflow and outflow. Our goal is to compute the amount x(t) of the solute in the tank at
time t, given the amount x(0) at time t = 0. We assume that a solution with a concentration
of ci (g/L) of solute flows into the tank at constant rate ri (L/s), and that the solution in
the tank flows out at constant rate ro (L/s).

• The amount of solute x(t) in the tank satisfies the differential equation:

dx

dt
= rici −

ro
V
x.
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Example 3. Assume that a lake A has a volume of 480 km3 and that its rate of inflow
from Lake B and outflow to Lake C are both 350 km3 per year. Suppose that t = 0 (years),
the pollutant concentration is five times that of Lake B. If the outflow henceforth is perfectly
mixed lake water, how long it will take to reduce the pollution concentration in Lake A to
twice that of Lake B?

• We have:

• The differential equation:

• The particular solution:

• To find when , we solve:
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Example 4. Rework the previous example for the case of Lake C, which empties to a river X
and receives inflow from Lake A. The volume of Lake C is 1640 km3 and an inflow-outflow
rate of 410 km3 per year.

• We have:

• The differential equation:

• The particular solution:

• To find when , we solve:
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Cascade of Tanks

Example 1. Suppose we have a cascade of tanks. Tank 1 initially contains 100 gal of pure
ethanol and tank 2 initially contains 100 gal of water. Pure water flows into tank 1 at 10
gal/min and the two other flow rates are 10 gal/min. a) Find the amount x(t) and y(t) of
ethanol in the two tanks at time t ≥ 0.

Let x(t) denote the amount of ethanol at time t for tank 1 and let y(t) denote the amount
of ethanol at time t for tank 2. Let’s find the differential equation for x(t). The data for
tank 1 is:

• inflow rate: r1i = 10 gal/min

• inflow concentration: c1i = 0 (water)

• outflow rate: r1o = 10 gal/min.

• volume: V 1 = V = 100 gals (remains constant).

• initial amount of ethanol: x(0) = 100 gal

The differential equation for x(t) is then:

dx

dt
= −r1o

V
x(t) = − 1

10
x(t).

The above is a linear equation with P (t) = 1/10 and Q(t) = 0. So, the integrating factor is:

ρ(t) = e
∫
.1dt = et/10.

1



The general solution is then

x(t) = e−t/10

(∫
0 · ρ(t)dt+ C

)
= Ce−t/10.

Using the initial condition x(0) = 100, we find that the amount of ethanol in tank 1 for
t ≥ 0 is:

x(t) = 100e−t/10.

The data for tank 2 is:

• inflow rate: r2i = r1o = 10 gal/min

• inflow concentration: c2i =
x(t)
V

• outflow rate: r2o = 10 gal/min.

• volume: V = 100 gals (remains constant).

• initial amount of ethanol: y(0) = 0 gal (only water)

The differential equation for y(t) is

dy

dt
= r2i c

2
i −

r2o
V
y(t)

= 10 · x(t)
V

− 1

10
y(t)

=
10

100
· 100e−t/10 − 1

10
y(t)

= 10e−t/10 − 1

10
y(t).

The above is a linear equation with P (t) = 1
10

and Q(t) = 10e−t/10. To solve the linear
equation, we use the integrating factor:

ρ(t) = et/10

Thus, the general solution is:

y(t) = e−t/10

(∫
10e−t/10et/10dt+ C

)
= e−t/10 · (10t+ C).

Using the initial condition y(0) = 0, we find that C = 0. Thus, the amount of ethanol
in tank 2 for t ≥ 0 is:

y(t) = 10te−t/10.
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Example 2. Find the maximum amount of ethanol ever in tank 2.

We know that for t ≥ 0, the amount of ethanol in tank 2 is given by:

y(t) = 10te−t/10.

To find the maximum value, we first need to solve

y′(t∗) = 0

for t∗. Using the product rule, we have

y′(t) = 10(e−t/10 − t

10
e−t/10)

= e−t/10(10− t).

The above equation is zero when t∗ = 10. We now check if y(10) is a maximum.

• for t ∈ [0, 10), y′(t) = e−t/10(10− t) > 0. So, y(t) increases for t ∈ [0, 10).

• for t > 10, y′(t) = e−t/10(10− t) < 0. So, y(t) decreases for t > 0.

The above implies that y(t) reaches its maximum at t = 10 min. Thus, the maximum
amount of ethanol in tank 2 is:

y(10) = 100e−1 ≈ 36.79 gal.
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Sec 1.6-a Substitution Methods

• Consider the first order differential equation:

dy

dx
= f(x, y) (1)

• Suppose there exists a function:

• Suppose we can solve for :

• Then, by applying the :

• Replacing for , and solving for :

• If this eq’n is linear or separable, then we can apply the methods from Sec. 1.4 or 1.5.
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Example 1. Solve the differential equation:

x
dy

dx
= y + 2

√
xy.

• For , we rewrite the differential equation as:

• Let’s try the substitution:

• Then

• So, the transformed equation is

• Separating variables:

• The general solution is:
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Homogeneous Equations

Defintion 1. A first-order differential equation is one that can
be written in the form:

• If we make the substitution:

• The is transformed into the :

• Thus every first-order differential equation can be reduced

to an integration problem by means of the substitutions in .
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Example 2. Find general solutions of the differential equation:

xy2
dy

dx
= x3 + y3

• For , we rewrite the differential equation as:

• Substituting

• Separating variables:

• The general solution is:
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Bernoulli Equation

Consider:
dy

dx
+ P (x)y = Q(x)yn

The above equation is called a . If either ,

The substitution

Transforms into :
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Example 3. Consider the homogeneous equation:

2xy
dy

dx
= 4x2 + 3y2

• This is a Bernoulli equation:

• We use the substitution:

• This gives:
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Example 4. Find the general solution of the differential equation:

dy

dx
= y + y3

• Rewrite the differential equation as:

• We use the substitution:

• The substitution gives:
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Example 5. The equation

dy

dx
= A(x)y2 +B(x)y + C(x)

is called a Riccati Equation. Suppose that one particular solution y1(x) of this equation
is known. Show that the substitution:

y = y1 +
1

v

transforms the Riccati equation into the linear equation:

dv

dx
+ (B + 2Ay1)v = −A.
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Sec 1.6-b Exact Differential Equations

Recall that the general solution of

dy

dx
= f(x, y) (1)

is often defined implicitly by:

F (x, y(x)) = C. (2)

We can recover (1) from (2) as follows:

• The general first-order differential eq’n y′ = f(x, y) can be written in this form with:

• As a result, if the exists a function F (x, y) such that:

• defines a general solution of .

• In this case:

1



Theorem 1. Suppose that the functions M(x, y) and N(x, y) are continuous and have con-
tinuous first-order partial derivatives in the open rectangle R : a < x < b, c < y < d. Then
the differential equation

M(x, y)dx+N(x, y)dy = 0

is exact in R if and only if

∂M

∂y
=

∂N

∂x
(3)

at each point of R. That is, there exists a function F (x, y) defined on R with ∂F/∂x = M
and ∂F/∂y = N if and only if (3) holds on R.
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Example 1. Verify that the following differential equation is exact; then solve it.

dy

dx
= − 3x2 + 2y2

4xy + 6y2

• Rewriting the equation in differential form gives:

• We now check if is exact :
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Reducible Second-Order Equations

A second-order differential equation has the general form:

If either the or the is missing from
a second-order equation, then it can be easily reduced to a first-order equation.

Dependent variable y missing.

• If y is missing, takes the form:

• Then the substitution:

• results in:

• If we can solve this equation for a general solution ,

• Observe that the solution involves constants .
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Example 2. Find a general solution of the differential equation:

xy′′ = y′

• Since the is missing, we use the substitution:

• This leads to:

• Separating variables gives:
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Independent variable x missing.

• If x is missing, takes the form:

• Then the substitution:

• results in:

• If we can solve this equation for a general solution ,

• Assuming :
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Example 3. Find a general solution of the differential equation:

yy′′ + (y′)2 = yy′

• Since is missing, we use the substitution:

• This leads to:
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Example 4. Find a general solution of the differential equation:

y′′ = 2y(y′)3

• Since is missing, we use the substitution:

• This leads to:
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