MA 266 Lecture 13

Christian Moya, Ph.D.

Sec 3.1 Second Order Linear Equations

e Recall that a second-order differential equation in the (unknown) function y(z) is:

6(%,4,4.9")=o

e This differential equation is said to be linear provided that G is linear in the dependent
variable y and its derivatives ¢y’ and y”.

e Thus a linear second-order equation takes the form:
AG)y"+ Bl y'+ €y = F(2)

e We assume that the (known) coefficient functions A(x), B(z), C(x), and F(x) are
continuous on some open interval I. ( x- axs)

Defintion 1. A linear equation takes the form:

A(x)¢'+ B(x)y '+ CG) y=o0
that is T(z):o -Vzél‘,

o If i 274) fo ml— , the linear equation is

Example 1. Homogeneous vs. Nonhomogeneous

2,11 / _ _ U
a) z°y" +2xy + 3y —cosx =0 A_L

A=)
b) 2%y +2zy’ + 3y =0 Mawo "'“w

e In case the differential equation models a physical system, the nonhomogeneous term
F(z) frequently corresponds to some external influence on the system.



Example 2. Model the following mass-spring-dashpot system using linear equations.

Spring  Mass  Dashpot

x=0 x>0

Equilibrium
position
° m - mass attached to a spring and a dashpot (shock absorber).
° 7s. force of the spring on the mass
° TR force of the dashpot on the mass

e Assume the restoring force Fg of the spring is proportional to the displacement x of
the mass from its equilibrium position:

s=—- K=z (k)O)

e Assume the dashpot force Fg is proportional to the velocity v = dx/dt of the mass and
acts opposite to the direction of motion:

Fo=-¢ dz (c>¢9

e Newton’s law F' = ma gives

’"J_:,—‘= F= E'/' Fg
é2

e The homogeneous linear equation iso‘;lzn . ; ‘F&) =3
£ =0.
m T+ e aé

e If, in addition to Fs and Fpg, the mass m is acted on by an external force F'(t), the
resulting equation is L
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Homogeneous Second-Order Linear Equations

e Consider the general second-order linear equation
A()y" + B(z)y' + Cla)y = F(x),
o If A (4 #O on L. , we can write the above equation in the form:
iy ]
Y+ p@ y'+ 909y = £

e The corresponding homogeneous equation:

J'+py'+9Y=o0 (i)

Theorem 1 Principle of Superposition for Homogeneous Equations
4)

e Let y; and y, be two solutions of the homogeneous linear equation
- >4
e If ¢; and ¢y are constants, then the linear combination

y= Ct-Yi + Ca-Ya.

is also a solution of this equation on I. J(L)

Why the Theorem 1 is true?

e Note that the linearity of differentiation gives

Y= eyt ay’ Y= €Y 4 G L

° Then because y; and y, are solutions,

Yhpy'18Y = (A% &4 )ip awu)

' G(Wy) + (W ézlya) 5
L/\/\_/

e Thus =

”jc,y,,Ley, ,l.ra.fo/n:)'-‘/(.{.) 5
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Theorem 2 Existence and Uniqueness for Linear Equations

e Suppose that the functions p, ¢, and f are continuous on the open interval I containing
the point a. -

e Then, given any two numbers by and by, the equation @
. Y @)y +q(x)y = f(x) t 5 ; ; 2
ﬂp has a unique (that is, one and only one) solution on the entire interval I that satisfies
/ the initial conditions

* Ya)zbo aud Yla)= by

Remark

e The differential equation and the initial conditions in the theorem constitute a second-
order linear initial value problem.

e Theorem 2 tells us that any such initial value problem has a unique solution on the
whole interval I where the coefficient functions in the equation are continuous.

Example 3. Consider the following homogeneous second-order linear equation:
2 =
° y—2xy+2y_0@ y" v* j

Let y1_= x and yo ixQ. Find a solution of the form y = ciy1 + coys that satzsﬁes the

following initial conditions: JR:=
y(1) =3 and y'(1) = 1. 4 >
e Where the unique solution exists? L= ?x £>0 } ) o

T/,,,,( the Lowgest L7 T coutocws 4.

e Using the given initial conditions:

y: CYt+C Yz = G Z”'f: x‘t
y(')=3 3/(4) 4
3=€ L +Cad Y- 6 Y 46 Y GrIGT
l=C+2Cq
<=5
C= -2
MA 266 Lecture 13 page 4 of 11 o GI:=7 Py x>o}_

=2 Bi+C=3

2
Y=sxz - A2




Ensuring That the Equations Have a Solution

e In order for the procedure of the previous example to succeed, the two solutions y; and
1o must have the property that the equations

CI 'l/,(a) + ‘-',t ﬁ[d) = (V(d): ‘,
Cad'a)t € §(2) = @)= by

can always be solved for ¢; and cp, no matter what the initial conditions by and b,
might be.

Defintion 2. Two functions defined on an open interval I are said to be -&'KW "."dﬁ’a‘d'
on I provided that neither is a constant multiple of the other.

Linear Dependence

e Two functions are said to be W 16'0 on an open interval provided one
of them is a constant multiple of the other. #-_-_- e 7_
v

e We can determine whether two given functions f and g are linearly dependent on an
interval I by noting whether elther of the quotients f/g or g/f is a constant-valued

function on I. / -4 (z) => ,&uw _enel.

Example 4. Determine if the following pair of functions -%re independent. v
- ﬂ“z = '/BO!X <naf,
d-} sinz and cosx; /

b) & ad 16/7— v eud

d sin2x and sinxcoszx.

4 Sinax s eme
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General Solution

e We want to show, finally, that given any two linearly independent solutions y; and s
. )
of the homogeneous equation

y'(@) + p@)y'(z) + ¢(x)y(z) =0,
every solution y of the equation
y' +py +aqy=0

can be expressed as a linear combination

Y = c1y1 + Ca¥Y2

of y; and ys.
The Wronksian
e As suggested by the equations

ca1y1(a) + caya(a) = by,
a1y (a) + cays(a) = by,

the determination of the constants ¢; and ¢, in depends on a certain 2 x 2 determinant
of values of vy, y2, and their derivatives.

”(o”é"a"' of f and g is:

= 19 g' - ? f ,
Example 5. Compute the Wroskian of f(x) = cosx and g(x) = sin .

U
W = Corx ¥ = Coe 4—$¢‘u’x =J4d.#0

—:('“ x w z . .
‘f; ; ore ,&kuvé csof .
e The Wroskian of two linearly dependent functions is zero:

f:(f?-

)t 7
W‘ :f' j' = %—&%:o.
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Theorem 3 General Solutions of Homogeneous Equations

e Let y; and yo be two linearly independent solutions of the homogeneous equation
~——

y' +p@)y +q(x)y =0

with p and ¢ continuous on the open interval I.

e If Y is any solution of this equation on I, then there exist numbers ¢; and ¢y such that

Y(z) = iy () + ca2(x)

for all z in 1.

Linear Second-Order Equations with Constant Coefficients

e Consider the homogeneous second-order linear differential equation
4 ]
ay ./.éy,,_cg-o. (z)

with constant coefficients __&*, be

o€
e Consider the ansatz: 4{”) = e .
e By noting:
£ 200 %"
Y'le)= € Y= '€
2
e We conclude that #(z) = 6 satisfy P
207X r~,e -0.
arde "+bre - g},-

Xk =y’ oz
<> (ar"+br +e )& =o.

e when r is a root of the algebraic equation: >0.
= 0.

oar’bct e =o

. '
e This quadratic equation is called the Charae ‘leﬂ }'AC @47 of the homogeneous
linear differential equation. ( ”) ’
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Characteristic Roots

e If the algebraic equation

ar* +br+c=0

has two M /’ ﬂ&/ (’: “{) roots r; and 7y, then the corresponding solutions:
rh (A
Y ()= e auel Y(2)- €

(ri-r)=

Afe 4705 > IT_ £
f d

are linearly independent.

e Theorem 3 then implies tIat

, % g 722-
Y)= e + § €

e is a general solution of CZ,)

e This leads to the following theorem.

Theorem 4 Distinct Real Roots

e If the roots r; and ry of the characteristic equation

ar’ +br+c¢=0

are real and distinct, then
y(x) = c1e™” 4 cpe™”
is a general solution of

ay” +by +cy=0.
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Equal Roots

e If the characteristic equation

ar* +br+c=0

r‘ z .
has equal roots r; = r9, we get (at first) only the single solution %’ CZ) =€
of the differential equation

ay” + by +cy = 0.

e The problem in this case is to produce the “missing” second solution of the differential
equation.

e A double root r = r; will occur precisely when the characteristic equation is a constant
multiple of the equation

(f-';)&-ﬁ fz-‘Z",r‘{',;Z:O.

e Any differential equation with this characteristic equation is equivalent to

) 2
[ ] . -
Y'-anyY+ Y=o (3)
g @)z (3)
e But it is easy to verify that X)) e is a second solution of 5 .

e Moreover, it is easy to check that

T

yi(@) =™ and yo(x) = zen

are linearly independent functions, so by Theorem 3, the general solution of the differ-
ential equation

y' = 2ry +riy=0

is f"x I;‘x
+ G-x-C

71(1): é €
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Theorem 5 Repeated roots

e If the characteristic equation
ar* +br+c=0

has equal (necessarily real) roots r; = rq, then

y(@) = (a1 + cow)e™”

is a general solution of the differential equation
ay” + by’ + cy = 0.
Example 6. Find the general solution of the differential equation
y'+ 2y — 15y =0
. /Aé“gfgﬂ"ﬁ'c e?'u :
/.z*@r, )§ =0 r——S"

(f+s') (r—B) ’

\> lfz= 3

Y= Cy - e 1 a. e

Example 7. Find the general solution of the differential equation

9" — 12y + 4y =0

C loou at toris e egn:

qr*-120 +4 =©

<-—> fz-g('l-.g.:

(o)
2
/r,?:)’g-.g. V=73
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MA 266 Lecture 14

Christian Moya, Ph.D.

Sec 3.2 General Solutions of Linear Equations
Review from last class:

e Consider the homogeneous ODE with constant coefficients (a, b, c € R):
ay” + by +cy =0
Look for a solution of the form: y(z) = e™. Then, we find that (ar? + br + c)e™ = 0

results: >0
2 _
ar+br+c=0

The above equation is called characteristic equation of the differential equation.

By solving the characteristic equation, we find r (three possibilities):

— roots r| # ry are real.
— roots r1 = rq 18 real.

— roots rq, 19 are complex.

(First case) Consider distinct real roots r; # ro. (Theorem 3) The general solution of
the homogeneous ODE is:

x) = Cre™" + Cye™"
y’(‘) = er"" " .
% 6)- e



e Consider the homogeneous ODE with constant coefficients (a, b, c € R):

ay’ +by +cy=0

e (Second case) Consider repeated or equal real root r; = ro. Here, we only one have

solution it
@) = e .8 _ i,
- - e 1= s
e The problem is to produce the “missing” second solution. 7 x

e Note that the equal root » = r; occurs when the characteristic equation is a constant
multiple of:

(r — 7“1)2 =r?—2rr+ r%

e Any differential equation with the above characteristic equation is equivalent to:

y'=2ry +rif{=0 (1)

e However, it is easy to verify that y(x) = xze™* is a second (linearly independent)
solution of (1).

7 f=x
e Thus, by Theorem 3, the general solution of (1) is: ?(i): el e + q xe

Example 1. Find the general solution of the differential equation:

9" — 12y +4y=0

e Characteristic equation:

e Solution:

> (r-%)=0 > A3

wits

X
.. 7(7‘): C,_é + czxe
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Example 2. Let y(z) = ¢ + cpe™1”

differential equation of the form

be a general solution of a homogeneous second-order

ay” +by +c =0,

with constant coefficients. Find such coefficients.

=lo2X —10 3¢

x
e Roots: y(”):e.l-,. Cze :flco J-C;Zé

f’=o Q:—IO.

e Characteristic equation:

(r—o) - (f‘+/o) -0

e Homogeneous equation:

y""' Iaj'-__o => b:lo

C=0.

MA 266 Lecture 14 page 3 of 11



General Linear Equations

e Consider the nth-order linear differential equation:

Ty Ry s+ T 0OY ' TGy = FES
e We assume P;(z) and F(z) are continuous on some open interval .

° If‘e(’é #0 eu l—, we obtain:
R &)

R f/m* £1(<) ",/("") ot o) RY AT fe)

e The homogeneous linear equation associated with this differential equation is:
dot
y(n)+ (n-1) l ., £:= 4 0x)
AY"TT et ST ] =0

Theorem (Principle of Superposition for Homogeneous Equations) If
Y1,Y2,-- -, Y, are n solutions of the linear equation on the interval I. If c¢i,co,..., ¢,
are constants, then the linear combination

gf elyl + & ot 4 G Y-

VYSE

is also a solution on [I.
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Theorem (Existence and Uniqueness of Linear equations) Suppose that the
functions py, po, ..., pn, and f are continuous on the open interval I containing the
point a. Then, given n numbers by, by, ..., b,_1, the nth-order linear equation

Y™ 4 pr(@)y ™Y 4 - pai(2)Y + pal)y = flz)

has a unique (that is, one and only one) solution on the entire interval I that satisfies
the n initial conditions

yla) =by, y'(a)=0by, ..., y(”_l)(a) =0b,_1.

Example 3. Without solving the ODE, find the existence and uniqueness interval 1 of the

solution of the IVP: a=|
wa =3y + 2y — @+ 1) =0, y@=1 ya)=2
e Rewrite it in standard form: I neest MC a=l
l
y xt) _o.

(- 3) z(x—z)

e Use Theorem:

2(z-3)4o0 => 2403

Since a=4 LI (2,3) | C ‘%9‘%)

Linear Independent Solution

e Based on our knowledge of general solutions of second-order linear equations, we would
expect that a general solution of the homogeneous nth-order linear equation

y™ + (@)Y 4 4 pa o (2)Y 4 palz)y =0
will be a linear combination
Yy =cyr + cya2 + - -+ + Cpn,

where yq, ¥s, ..., Yy, are particular solutions of

v 4 pu(@)y" Y e paa (@) + pala)y = 0.

e However these n particular solutions must be [‘sufficiently independent”’ that we can
always choose the coefficients ¢y, cz, ..., ¢ to satisty arbitrary initial conditions of the

form y(a) = by, ¥'(a) = by, ..., y" V(a) = b,_;.
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e Recall that two functions f; and f5 are linearly dependent if one is a constant multiple
of the other. That is, if either f; = kf; or fo = kf; for some constant k.

L-kts or o=k
e If we write these equations as
Cl)'fl + (1<) 'fa-—'a or (“)# +(1) sz =0

we see that the linear dependence of f; and f, implies that there exist two constants
c1 and ¢y not both zero such that

e/ il +C:t€g =9:

Linear Dependence of Two Functions

e By analogy, we say that n functions fi, fo, ..., f, are “&.“mg 4?“'{““/

provided that some nontrivial linear combination of them vanishes identically.
CfitGfar. +ate =o.

e Nontrivial means that not all of the coefficients ¢y, ca, ..., ¢, are zero (although some
of them may be zero).

Defintion 1. (Linear Dependence of Functions) The n functions fi, fa, ..., fn are said
to be linearly dependent on the interval I provided that there exist constants ¢y, co,
..., Cp not all zero such that

afi+cfot -+cfn=0

on I, that 1s,
lel(w) + Cgfg(l’) +---+ Cnfn(x) =0

for all x in I.

Remarks:
e If not all the coefficients in
afitefit -+ fn=0
are zero, then clearly we can solve for at least one of the functions as a linear combi-

nation of the others, and conversely.

e Thus the functions fi, fa, ..., f. are linearly dependent if and only if at least one of
them is a linear combination of the others.
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Example 4. Show that the functions f(x) = 0, g(z) = sin(z) and h(z) = e* are linearly

dependent on R. “én* e“ Cs . Cs (m! d m):
&)+ snGd)+ G .e*
Cﬂ‘fei C=kto aud € = Cs =0

Defintion 2. (Linear Independent Functions) The n functions fi, fa, ..., fn are called
linearly independent on the interval I if they are not linearly dependent there. Equiva-
lently, they are linearly independent on I provided that the identity

afi+cfot+ -+ fn=0

holds on I only in the trivial case
e/:C2 =s... = Cq =0.

that is, no nontrivial linear combination of these functions vanishes on I.

e To show that n given functions are linearly independent, we use the Wronksian Deter-
minant.

The Wronskian Determinant

e Suppose that the n functions fi, fo, ..., f,. are each n-4. times dif-
ferentiable.
e Then their Wronskian is the nxn determinant

‘c fz-- ¥u
V: f fz

{"4) .f(;g-l) (l-l)
te The" Wronsklan of n ‘&Wg d?a‘/ﬂ fi, fa, ..., fn is identically zero.

Example 5. Use the Wronskian to show that the functions y,(x) = €*, yo(x) = cos(x), and
ys(z) = sin(x) are linearly independent on R.  p/ = o .

W-[e* -sinx emx [_ € . [-~corx
= o* —eo —ainat eX _ sinx
- _s y 2 M
X -Sin + Siux l e® -stax
MA 266 Lecture 14 page 7 of 11 e" —Ceog9¢
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Wronksians of Solutions

e Provided that W‘ Z, Z oeey 30 )é 0 *, it turns out (Theorem General Solutions
of Homogeneous Equations) that we can always find values of the coefficients in the
linear combination

Yy=c1y1 +Cys+ -+ Culn

that satisfy any given initial conditions of the form

7(a)=ba ) sy y(ml)(“)=ép-/

Theorem (Wronksians of Solutions) Suppose that yi, v, ..., y, are n solutions of
the homogeneous nth-order linear equation

y™ 4 py(2)y" Y o p (1) A+ palz)y =0

on an open interval I, where each p; is continuous. Let

VV’= W@'Jyz, -y 7/")

(a) If y1, ya, ..., y, are linearly dependent, then =9

on I.

(b) If y1, yo, .., y, are linearly independent, then n/% 0. on I.
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Capturing All Solutions of a Homogeneous Equation

e Given any fixed set of n linearly independent solutions of a homogeneous nth-order
equation, every (other) solution of the equation can be expressed as a linear combina-
tion of those n particular solutions.

Theorem (General Solutions of Homogeneous Equations)

e Let yq, 4o, ..., Y, be n/linearly independent solutions of the homogeneous equation

é ”(q’ly'l-") q")¥ o,

y™ i (2)y" Y - p 1 (2)Y A+ palz)y =0

on an open interval I where the p; are continuous.

e If Y is any solution whatsoever of this equation, then there exist numbers ¢y, cs,

..., ¢y such that
y= c]#l +czy2 $.-- 1 &’y‘ﬂ.

for all z in 1.
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Nonhomogeneous Equations

Example 6. Solutions of nonhomogeneous equations.
e Consider the nonhomogeneous nth-order linear differential equation

Y™ + ()" 4t pai (@)Y + pala)y = f()

with associated homogeneous equation

I v+ pi(@)y" Y 4t paa (@)Y + pal@)y = 0.

e Suppose that a single fixed particular solution % of the above nonhomo-
geneous equation is known

’ ('l) y(.) +.-- t P yf' +Fa y/ = #[X)

° Let Y is any other solution of this equation.

@) y" g Y4 p Y=

e Show that if s/~ q’ , then yﬁ is the solution of the associated
homogeneous qua 10n

(n) n=l) M )
% +h Y, o et fa~ A bl = (YQ:/,"') +---4l,’4(}'-?fr)
+£, (V-)

(yrn) p /n.,) Vi 9_

T Lus w
of (‘/f\y‘p; th ,14,+p, b’)
- #&) - 4@)=o. Lus o B

ycg'y-y" /5 a 50f"' 4 -/-&e /anu’ ’h_
|7c=6 Yt +CuYn

o We call '—{& a complementary function of the nonhomogeneous equation.
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Theorem (Solutions Homogeneous Equations)

e Let y, be a particular solution of the nonhomogeneous equation
v 4o @)y -+ pasa @)y + pa(a)y = f(2)
on an open interval I where the functions p; and f are continuous.

e Let y1, s, ..., y, be linearly independent solutions of the associated homogeneous
equation

Y™+ pi(2)y" T 4 4 pai (@)Y + pala)y = 0.

e If Y is any solution whatsoever of the equation nonhomogeneous equation on I,
then there exist numbers ¢y, co, ..., ¢, such that

>

Y(2) = ciyn () + caya(w) + -+ + cuyn () + yp()
A

for all z in 1. = yc

Example 7. We are given (i) the homogeneous IVP:
y'+y=3z, y(0)=2 y(0)=-2
A

(i) the complementary solution: y. = C; cos(x) + Cysin(z), and (i) the particular solution:
Yp = 3x. Find a solution for the IVP.

= Y+ %

= Ceosx+ G Hmx- + 3x.

7' - Y *'9/’

=-C Snx+ G eorx +3-

Wiisd He TCs .
v 2:Y(0)= 1 =D C=2-
-z,y'(o)- Cat3 = (Co=-F
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MA 266 Lecture 15

Christian Moya, Ph.D.

Sec 3.3-1 Homogeneous Eqs. Constant Coefficients

Solving nth-Order Equations

e A general solution of an nth-order homogeneous linear equation is a linear combination
of n linearly independent particular solutions.

Q: How to find a single solution?

The solution of a linear differential equation with Lok ld‘/( coeffi-
cients ordinarily requires numerical methods or infinite series methods.

In this lecture, we show how to find .&‘meafé/ ,'nd- Jp‘&'J of a
given nth-order linear equation if it has constant coefficients.

Consider the homogeneous equation:

Ci) /] _‘/("},‘- A/ y("')-/-..-qr a,y'.,«. “'J = O.

where the coefficients ag, ai, as, ..., a, are real constants with a,, # 0.
N

€R

Finding a single solution

. , e
e Consider the ansatz: y (76) — e

e and observe that any derivative is: d‘

rse
e Substituting 07(?‘) = € in (L) gives:

(‘Zr"(@f"f- @, " b+ A+ )= 0.
\/_v_\/

- 7

G
1/ [x.) = e



e Because e'" is never zero, we see that y = " will be a solution of (‘L)
precisely when r is a root of the algebraic equation:

Ay "+ Quy M ' 4 ...+ ar+a, =0

Defintion 1. (The Characteristic Equation) The characteristic equation of
any™ + apay™ T - ay” + ary + agy =0

15 the algebraic equation

A" + A 17"+ 4 agr? + arr + ag = 0.

e Fundamental theorem of algebra = every nth-degree polynomial has n zeros, though
not necessarily distinct and not necessarily real.

e Finding the exact values of these zeros may be difficult or even impossible.

e For equations of degree n > 2, we may need either to spot a fortuitous factorization or
to apply a numerical technique such as Newton’s method.
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The case of distinct roots

e Assume (the simplest case) the characteristic equation has n distinct (no two equal)

real Toots:
06l

7

e Then the functions
fa nx

e e™.., e

P

are all solutions of "L)

e These n solutions are linearly independent on the entire real line.

Theorem (Distinct Real Roots) If the roots ry, 7, ..., r, of the characteristic
equation

™+ ™ o agr? Far +ag =0
are real and distinct, then

7
u(z);- C’,er'x-r-C:,er"‘xf-...-}- Cre™” \

is a general solution of the differential equation

any™ + ap 1y 4 avy” + ary' + agy = 0.
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Example 1. Find the general solution of
2y" — Ty + 3y = 0.

e Characteristic equation:

.Zf‘—- 7r+3 = 0.
G=> (,zr— .L) -[r-3)=
- 4 =23
-_—=> ,7" 2- M/ < A“ é
{e™, e’ it

e General solution:

Y(x)= €1 €

. -
e

Example 2. Find the general solution of
! /
Yy + 5y + 5y =0.

e Characteristic equation:

rtersc+8=0.
[ -5 £ 4.5' - 20
)2 =
2.
/= —S'#/.(' [Z "5—"/-'-7
7= s’ e

—

2.
Z C ! 2 (:l * } ,[(H eonr
suolep.
e General solution: - f.'-IQ‘) - ( -%@ 2

y=e' * Trqe
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Example 3. Solve the initial value problem
2y —3y" -2y =0;  y(0) =1,4/(0) = —1,4"(0) = 3.

e Characteristic equation:

2r%_3r’_ar =o.
&> 1 (ar? -3r. z):o
> (- 2o 1)

< rr+ -) (r 2
d

/‘ 0 2 = - I- A f' 2
e General solution: ?e s _x ‘_z} f ‘;{wf 9

Lg(z) C,_-/- 7;/-,l- (.956 ‘

e Particular solution:

y(x)_ 7/4_ 2G €
y6)- %—e'“u@e“

2¢

d=YC]= C+C+Cs. Cz-“;.
—1=‘y’&)- C‘+2<‘3 =49 G = 4
3 - j//(o)- 2--/—4C3 C; = Tf.

Y () =- Tise 7, Ze

2%
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Polynomial Differential Operator

If the roots of are not distinct = there are repeated roots

We cannot produce n linearly independent solutions of the differential equation

any™ + an1y" Y + -+ agy” + ary + agy = 0.

by the method of Theorem (Distinct Real Roots).

The problem, then, is to produce the missing linearly independent solutions.
For this purpose, it is convenient to adopt “operator notation” and write
o " ol
| = e Q- Xd—  +...4 o, & + Qo.
de” * ¢ 1 dx
operates on the n-times differentiable function y(x). L [y) — Z y

The result is the linear combination

N =t /
L7 = dn_fz/s:]‘;) % y( )-/-... - ‘?(y +aog

of y and its first n derlvagx ves.

We also denote by 9 = /d > the operation of differentiation with respect
to x, so that

:D?_—_-j". Dzjaagz!):‘yn 333:\?(3)
-=.-]’

and so on.

In terms of D, the operator L may be written

L= a”fj)”-/- a_,E'HA..-f & D + Qo.

L4

We will find it useful to think of the right-hand side of this equation as a (formal)
nth-degree polynomial in the “variable” D

It is a polynomial differential operator.
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Properties of Differential Operators
e A first-degree polynomial operator with leading coefficient 1 has the form D — a, where

a is a real number.

e It operates on a function y = y(z) to produce
@-a)y = D/ - ay = y"‘ a%

e The important fact about such operators is that any two of them commute:

(>-a) (- b)’;[ (2-b)-(P-) Y

for any twice differentiable function y = y(x
a é R .

@) (b)y= (o) (4-54) °©

D (4 by) - & (1-b9)
g _b(y _a:/)-f-aéj
= (d-b)- (- a)
e We see here also that = (D- 6). (D- a) Y &

Cl,a) [D-L)_-_— )Z_(af'b)-.]) + ab.

e Similarly, it can be shown by induction on the number of factors that an operator

product of the form
(3 a) . (D- 02 ('D an

expands—by multiplying out and collecting coefficients—in the same way as does an
ordinary product of linear factors, with x denoting a real variable.

(x —al) : (x- az)..- (Z- a”)

\

u
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The Operator Method and Repeated Real Roots

Two

Let us now consider the possibility that the characteristic equation

" F " Far a9 =0 (3)

has repeated roots.

For example, suppose that this equation has only two distinct roots, o of multiplicity
1 andir; of multiplicity k =n —1 > 1.

distinct real roots

Then (after dividing by a,) the characteristic equation can be rewritten in the form
)(

Slmllarly, the corresponding operator L can be written as the order of the factors

= (D-0)%. (D-1a)= (-13) - (- r)"'

making no difference because of the commutativity discussed earher

Two solutions of the differential equation Ly = 0 are y" = y e
This is, however, not sufficient.

We need k + 1 linearly independent solutions in order to construct a general solution,
because the equation is of order k + 1.

To find the missing k£ — 1 solutions, we note that

L?f = (2;:5) [(3"7)‘(?] = 0.

Consequently, every solution of the kth-order equation

(2-7)"y

will also be a solution of the original equation Ly = 0.

Hence our problem is reduced to that of finding a general solution of this differential
equation.
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e The fact that y; = €™ is one solution of this equation suggests that we try the

substitution ) r, s€
y(,c) = ux) €
where u Ct) is a function yet to be determined.

(b-.rojwz'mzj(z)cf"] = (e }P(?v /5‘6”9

e Upon k applications of this fact, it follows that

- f)z[ue" @w)c —Du)e

for any sufficiently differentiable function u(z). }a

e Hence y = ue™* will be a solution of

(D-6)"y
:Dku_(z) = ZL(K)_—. O.

e But this is so if and only if
u(z): C_t-l-f,zx + . 4 @x B

a polynomial of degree at most k — 1.

if and only if

e Hence our desired solution of

() I’) Y =0

?(z)= e (en«czzw... + G X ")e”

7 y 4 Nx -1 (1 2
e In particular, we see here the additional solutions Z e ) e ML x é
of the original differential equation Ly = 0. 4

e The preceding analysis can be carried out with the operator D — ry replaced with an
arbitrary polynomial operator, resulting in the following theorem.
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Theorem (Repeated Roots) If the characteristic equation
" F " 4 aar? Far +ag =0

has a repeated root r of multiplicity K , then the part of
a general solution of the differential equation

any"™ + ap_ 1y - agy” + ary +agy =0

corresponding to r is of the form:

(¢ +Canct.. 4 c,(x“")er"'

Root of Multiplicity k Py (x 2l 7%
e [t is easy to verify that the k£ functions c J X e )" ) ;( e in

the expression

(c1+ cow + c32® + - + ckxk_l)e”"’

are linearly independent on the real line.

e Thus a root of multiplicity k& corresponds to k linearly independent solutions of the
differential equation.

MA 266 Lecture 15 page 10 of 12



Example 4. Find the general solution of
5y 4 3y® = 0.

e Characteristic equation:
srftr3rizo
&> r3(sr +3)=0

Q: O (wp/é m/zz,o/ux—/y o= 3)

(NN
\
|
Tl

on: 3
e General solution: -
S
(1 => ? € } '

—> %@ xe , J }/ pYs
Example 5. Find the general solution o y[ﬂ CJ -+ (‘2 -tl‘ 6 r 4 4' %

vy =y —y=0

e Characteristic equation:

/34—(2— -1-0
4 /(fz_/).,. [/2-/)=0-

(r~1) (r+)= G ) (r+1)2=.—
(=1 (=-1 (with ¥=2)

[e=t  1eTi=e”

-X
Lq(p)z Ge* +ge  + Gxe
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Christian Moya, Ph.D.

Sec 3.3-2 Homogeneous Eqs. Constant Coefficients

Theorem (Repeated Roots) If the characteristic equation
At 4 Q"+ agr? Far+ap =0

has a repeated root r of multiplicity &, then the part of a general solution of the differential
equation

any"™ + ap 1y - agy” + ary +agy =0

corresponding to r is of the form:

(14 oz + ...+ cpa® e

Example 1. Find a function y(z) such that y™(z) = y®(z) for all x and y(0) = 18,
y'(0) =12, y"(0) = 13, and y® = 7.

e Characteristic equation:

-0 <=> P(r-1)=o.

G:O (I"tfﬁ) ) I;:.l(l(:.l.)

e General solution: f 4 , x X."?]' i 82?7,

e Particular solution:

Y@ = €+ Gx+Gat +ge™

jP=Y() = C +Cq _  Ci=l,6 G=25
2= y'(0) = Cy + C4 =2 G= 3, &« ¥

3= y"@)= 2G+G
¥= —y(')(o).-.- 4

1

9&)- 41 isxi3ziir e




Complex-Valued Functions and Euler’s Formula
Complex roots
e Any complex (nonreal) roots will occur in complex conjugate pairs:

—r € .

e This raises the question of what might be meant by an exponential such as

c (at bi) > -

e Recall from éele‘mentary calculus the Taylor series for the exponential function
. oC (k- =)
f:xfa/' « @ '6“_ 14—_‘:“_.}2 'tg
+0/") ol 04 e L= = — = —l‘-l-——--l--..
&L % neo A 2 3l

. P
e [f we substitute {’:: y 9 ° _in this series and recall that A = =4 ,
and so on, we get

|
RN
]
® \-‘Q
U
R0
&
\F
AN
|
N\Qw
‘.
Qo
+ M
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Euler’s formula

e Because the two real series in the last line are the Taylor series for cosf and sin#,
respectively, this implies that

C% 46+, 5in0

e This result is known as FEuler’s formula.

e Because of it, we define the exponential function e*, for z = x+iy an arbitrary complex
\

number, to be .
*xi Y

se0. somiiy €5 €V gy

Complex-Valued functions

e Thus it appears that complex roots of the characteristic equation will lead to complex-
valued solutions of the differential equation.

o A complezx-valued function F of the real variable x associates with each real number x
(in its domain of definition) the complex number

F o) = f(x) + A z(ﬂd

r magwalf.

e The real-valued functions f and g are called the real and imaginary parts, respectively,

; F o= { ) + 4 ?'(Z)
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Complex Exponentials

e The particular complex-valued functions of interest here are of the form:
e 4
-an',) =€ r=at /
7
e We note from Euler’s formula that

C(afb,i)": ks (c,,, b 4 54n b”)
e(q_é‘.)xz 6‘!“(‘:’4 b _/'s,-q Lx)

e The most important property of e ig that

De(e™)= re’

if r is a complex number.

and

e The proof is straightforward:

() =2u( ) Da k) 26T

» = (a€*eor ba ~be®5inba) +4 @e mﬁ: +
= (atk; )e""(eatx 'Sl b:c) er,‘ -

Complex Characteristic Roots

e As a result, when r is complex (just as when r is real), ¢’ will be a solution of the
differential equation

any™ + ap_ay™ T - ay” + ary + agy =0
if and only if 7 is a root of its characteristic equation.

e If the complex conjugate pair of roots r; = a + bi and ry = a — bt are nonrepeated,
then the corresponding part of a general solution of this differential equation is
Ca-by)oe

Y@ =G e G et e e g e
Qe“"(wbz #;scu LW) - Q_e"(wbz— iscu Lx)
Yo = (eﬂ'&)e“mbx + 4 (C1-C) e%* sen b

Where tl arhitrars, conctantco can ba comnlos

= r'y
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1
e For instance, the choice C7 = (5 = 3 gives the real-valued solution
. 71 ( z) = @ eéeol bx.

1 1
while the choice C] = —éi, Cy = 5@ gives the independent real-valued solution

‘ %[x): e‘xio'u bar, yl (o) awol Y2()

are /r‘twr

e This yields the following result. (n ‘/‘/ ’

Theorem (Complex Roots) If the characteristic equation

At 4 QT+ agr? Far+ap =0
atbs bto.
has an junrepeated pair bf complex conjugate roots a + bi (with b # 0), then the corre-
sponding part of a general solution of the differential equation

any(n) + an—ly(n_l) + e+ a2y” + (lly/ +aoy = 0

has the form

6“"(61/;..6:44 Cy 5pu bx
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Polar Form

e We can employ the polar form .
. (6
Z= =2+ A 7 = re

of the complex number z.

e This form follows from Euler’s formula upon writing .
A
] x -_?}:rwe+ 's'n6)=:fe
2=/ ( 7 47 (eorots st
e Here 7 is the modulus y A i (1, 'J)
1= J=%yz 4
of the number z.

t | ﬁa >

e The argument of z is the angle 6. o
> 4

9.

- l

e For instance, the imaginary number has modulus and argument r =4 , B- %"- .
. o 3. .

_=e "

7

e Similarly,

e Another consequence is the fact that the nonzero complex number z = re has the

two square roots 1/ — . 6/
Y L "c Z
/IE' :f (/’8 19) B i/ rC

where /r denotes (as usual for a positive real number) the positive square root of the
modulus of z.
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Repeated Complex Roots

e Theorem can be extended for repeated complex roots.

e If the conjugate pair a fb} has multiplicity k , then the

corresponding part of the general solution has the form )
- L/ 2c
-1 ) o (xths)x k), @
(AJJ/;% t...4 PeZ C (Bl+8,'2_z-l- .4 B2
k- I

— ze"'"(efeubx + olp Sin bx
r‘D

e It can be shown that the 2k functions

€% epq bx , X e /» bz (’2"/-""9

appearing above are linearly independent.
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Example 2. Find the general solution of the differential equation:
y" — 6y + 13y = 0.

e Characteristic equation:

(t_6r+13 =0.
=> r‘= 6 + /’ -6

2
PY- TN
?ch.zz,e 5/'"2"}-

- 3t

e General selution:

’y(z)—; Cy 63“@1,21 + cz 83":931 1x

Example 3. Find the general solution of the differential equation:
(4) " _
y +18y" +8ly = 0.

e Characteristic equation:

r4+ert+eq4 =o.
=2 (r*1q) =0

(eobs. =13/ (k=2)
Z Coasx, X co17x | 34n 3%, X 3N 3":{7
EA

e Ge solution:

?(75)‘—‘ (C/ +C Z)GM 3 1 (Cs "'Q/"—);in 7%
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Example 4. Solve the following initial value problem:
9" + 6y + 4y =0, y(0) = 3,9'(0) = 4.

e Characteristic equation:

9 2er+d =0 /
& ro_ct Au-m e
(& ™
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Example 5. Find a linear homogeneous constant-coefficient equation with the given general
solution:

y(x) = ¢1 cos 2x + ¢y sin 2x H ¢z cosh 2 + ¢4 sinh 2z.

4) smbCe)s e"; e

cord () = €%+ e %
2.

7(76):?-' ' Iaq Ax + G ;[nu - _C_',_(e“".,_e*‘)*
* Q(e”‘_e:’j
X

Jol= Cremax G yuaz + 3%, G o gt am
o— - —e
2
2

2 2

7@ = G pax tGyuse +1Ce¥1 e

fjsof'.lﬁ' f3= 1.2
/3:‘11 /'4: -2.

C&a/a et

(r%4) (r*-4) =0

y(‘)_ léy —o
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Midterm Review and Sec 3.4 Mechanical Vibrations

Example 1. Consider a pond that initially contains 10 million gal of water. Water contain-
ing a polluted chemical flows into the pond at the rate of 6 million gal/yr, and the mixture in

the pond flows out at the llion. gal/yr. The concentration f chemical in the
incoming water varies as [y(t) = 2+ sin 2t| grams/gal. Let Q(t) be the amount of chemical at

time t measured by millions of grams. Derive the differential equation of the process.

=

dO_ ¢ .

4t 2&)
= lp, - 05
- VGe

Vo:: [0

= 8wl golfyr:
e, = Y(t) = 2+ gt
=5

V@) Vot (o)

= [0 4 (5-5')-[-: j0+ €

44 _ 6. (21simst) - 2 . Q@)
adt lot+€




Example 2. Let y(t) be the solution of the IVP:

y'+y =0, y0)=2, 0 =1, ¢"(0) =1,

then y(m) =7
-9 f3+ [=o

&> fC/'z-l 1).:0.

oX )
(oofs: (=0 & , Sun=, coyx;
Gs=1%t, -t

9

YGo)= €4 G spux + G CAx

3) j'(")’ G(c”x_ @g‘nx
4= - Qe - G enx

z=7(0)= G+ G Ct=3
lrj’(o)" Ca C=41
1=j"(0)='¢3 G= -L

Ly(x), 3 +35pn% ~ (81X
y(rr)= b

MA 266 Lecture 17 page 2 of 13




Example 3. Find the particular solution of the IVP:

1—2x

/

Yy = 9 y1:_27
; (1)

i explicit form.

1) /yag:/(/-.zéo/x +C.
Y2 (e-x"e)

'2{(76)—- z /l/(:.x-.z,x"+ C) ,

2 Y@--2
. —~/
-2 =y(t) = - A/(zz-zz’{-c)

‘C’:ll\

g(x) = —//zz-zzf+4 /

1
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Example 4. Find the solution of the IVP

Y

v'+y —6y=0, y(0)=0, y(0)=5.

(24r-¢ =o.

(r+3)(r-2) = °

61-3 Q:—i

3¢ e )

.Z) u(")=@ e-sr . Cze.nc

3)

2z

_sz
Y- -30€ 4 2¢€”

0--y(0)= Cs+4s- ¢= -4
= S
5-y'(0) = 3€ +2G. 2 = &

y(x) .- et
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Mechanical Vibrations
In Sec 3.1, we considered the following mass connected to a spring and a dashpot.

Spring  Mass  Dashpot

m
X
x=0 x>0
Equilibrium
position

We described the dynamics of this system using the linear equation:

(l.) m-x"t Cx'tpx = F(t)

Here
-
o f‘ =~Kae : spring force, KO : spring constant
Te=-ex’
o« IR= : dashpot force, C? 0- : damping constant
o E = F(t) : external force.
Remarks

. “Mkdﬂ"’f‘d . no dashpot «— €= O-
. d‘”‘f‘d i €>0.

Motion is _ TREE i FE=o0.
Motion is —JFORCED i TFH)Fo0.
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The Simple Pendulum

el /7 Lowest ,m'ﬂ‘/ fe/dﬂd'
° 5 = L 9 . arc distance from O to m.
v
° v;‘ d's/dt . velocity of m
=Ldoge.

Kinetic Energy:

T=dmrst L lz.oia'zl
r=zmr= sml (%

Potential Energy:

‘ V- fm-g--&. = m-g-L(z-,coJm ‘

The sum of the kinetic energy T" and potential energy Vv

‘T‘* V= _—‘Z-L--M-lz[eg—?}: m-g-zﬂ-fo«e) = C.
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Differentiating with respect to ¢t both sides:

Note: We can also obtain the above differential equation using Newton’s second law.

Going from nonlinear to linear
e Small angle approximation:

,if 6 s sneol! = U0 =~ O

ad*é
oft*

+_Z =0.
LO

)
e Adding frictional resistance: cg

0"+ co' ke =o.
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FREE Undamped Motion (= O F(t) = o

/n,x” +k 2 =0O.

—7
e Define: wo S= A/-F" >O-

= | 2"y wazx =0-

e General solution: 2 .
t Ltws =0 iz =% ab)-

)

()= Aeor ot + B Sun wot:

Phase angl @
C=i a2+ &
c B Cotol A G>

%
Siuod = =)
y 4 .

e General solution: x(t) _ c (é M w"* f g sSJn MO
- C (con < fo1ot t ¥ « gpnust )

= x&) = C,an(wot- -°<) %
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The mass oscillates with: é / lﬂf/ e ‘ﬁdf?’w’c
C o feok -

e Amplitude:

()
e Circular frequency: Wo S )

e Phase angle: 0( )

X

|
|
| x(t) = C cos(myt 7,\
|
|
|
|
|
/ |
|

|
|
|
|
|
|
|
|
|
/ | B
| |
| |
|
|
|
|
|
|

T
e Period: r
7= é_’ (5 )
Wo
e Frequency:
V= 4 _ @ CHr)

- T 27
e Time lag: _ (%

= o

= 2@ = C/cod (Wo (t—50>>=€fm@'o(f-5))
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FREE Damped Motion 30 F) =0

mae’ rexx’ +kx= 0.

= z)'+4,¢’+w,‘z=o

wo=//‘%—/7¢‘9’/”MM cire. 1ot

_ C
e Characteristic equation: ‘f - Zm s o

/"2+.z.pr+oUo"’ = O.
om0 RO s (2 aa)R

s
e Sign depends on: 9 cﬂ_ 4 km-
2 woz - Cc . K _
7 am*t m  4m*
e Critical damping;: 2 A Obf\llnb# Cf&dj)
eu : ec( = 4 Km e 2p M@O’

& ep= NaKkm- e é‘;’l"‘
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Overdamped case ¢ > ¢, 2
=P | > 4km-
e — two distinct roots:
Cj 2\ Y. 40
- 2
/;I Q = e f i (F - wo )
T
e General solution: ﬁ Tt

0 ¢ ‘ N
— £ 2 4 kw
Critically damped case c = ¢, 2 - - _
=> |G = 4km G

e — repeated roots:

e General solution: Zc’Pb .ée_pé 9 .

(0, xq)
: Siuce pro o {2
0 7
)CC*) -2 0
0 , ot msst ome cros of €12
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Underdamped case ¢ < ¢,

<=> ‘ < dakm ‘
la
e — two complex roots: r’-' G. _ _ F -+ Pz_ waz') /

K Yo2-p t fl- = g4k

am=2 -
G % ‘ré 4447"1‘:) e 5 X7 (4(;1’_/2 f)j
| Z(¢)- c""(/l eot w, b + oin wt)
lAf 2) 2 //<4km—£z'

e Using derivation ) 2 M
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A

Example 5. Consider the differential equation of a spring-mass-(dashpot) system:
mz" + cx' + kx = 0.
Find the particular solution
a) with damping: m = 1,¢ =10,k = 125,29 = 6, and vy = 50.
b) without damping: m = 1,k = 125,29 = 6, and vy = 50.
Solution a):

e Characteristic equation:

réyor+ 125=0-
=> 1,6 wo1d 20
‘.
= -yt o,
J t9

4t - p_sf ,ywo N
2(#) - e-ré[Awm{' + B n vofj‘

e General solution:

e Particular solution:

V"d 6<x2(0) - A = é A"?,.
|

£h- (o) = -SA+0 8 B=
2&): @’“(éw 101‘ + 85/'“ (o‘l')
J

e Characteristic equation:

Solu%.lon b):

(T4 105 = 0.
——"1‘
=2 (- 4'54/.3‘/

. General solution: ?CM (;/_‘t) AU (5'4[1'(") ?f

/\/ ‘1&1 A@C,[;'t-)+13 4(5'/"')_‘

solution: 6= ZCO) = A 6
SU= %
'C| Z(t)= b Lo [.sft) + ,z/" Sj (s-f't)
MA 266 Lecture 17 Page T30l 15
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Sec 3.5-1 Nonhomogeneous Equations

e Consider the nonhomogeneous nth-order linear equation with constant coefficients:

a,_l/(")fa,., y("")+...4 a;j'-l-do = f(”)

e Recall the following theorem:

Theorem (Solutions Nonhomogeneous Equations)

e Let y, be a particular solution of the nonhomogeneous equation on an open interval
I where the functions p; and f are continuous.

e Let y1, ¥, ..., Yy, be linearly independent solutions of the associated homogeneous
equation

y™ 4 py(2)y" D 4 p i (1) + pa(x)y = 0.

e If Y is any solution whatsoever of the equation nonhomogeneous equation on I,
then there exist numbers ¢y, ¢3, ..., ¢, such that

Y(z) = glyl(m) + o) + - + Cnyn(xl+yp($)

'

::yc(x)

for all z in 1.

e (QQuestion: How to find g’ﬁ (70) ?



Ly = e,

. . w-l
Undetermined Coefficients #X)qu ( 2) = Oy "ty X + .- 1A%

+Qo.
e Suppose that f(t) is a polynomial of degree ’»1

e Note that the derivatives of a polynomial are themselves polynomials of lower degree.

e Thus it is reasonable to guess a particular solution has the form

%(‘) = Amx"# AI'H Xm-’f--“f AIX‘f'A'a-

Example 1. Find a particular solution of
y" + 3y + 4y = 3z + 2.
¥ox)

e Here _f( %) =3Z 2 is a polynomial of degree J , SO OUr guess is:

yf(x)= A=+ B.

YA, Y=o

sy = (0)+ 3(N) +4 (Ax+B)= 3% F2
s (4a)z + (34 +48)= 3% 12

e Solve for the undetermined coefficients A and B ’

e Then

4p = 3 }95 Y ER-
FA448 =2 B--1
/b

Yed=2e-4 | | Vo) 4.6+ Y )
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[ = (7‘)
46e) - a/;a bx + Ly'n k.

e Then it is reasonable to expect a particular solution of the same form:

yf(z)g /4/¢o1kx + .B;;nkx

a linear combination with undetermined coeflicients and

B.

e Any derivative of the linear combination of cos kx and sin kx has the same form.

Example 2. Find a particular solution of

3y" + 1y — 2y =2cosz.

~ X ¢
o We try the guess: yf (”) A (V. - 4 No (LHS ﬁl-”)
'7,» () - Aenx + B3

7/,,'_._ - Asinx 4 Beax :{/”, e - Bsinx
3yt Yy -2 = 2
(S'A‘fe)fﬁx + (A -S'B)/nz_ ‘ZMZ

e Solve for the undetermined coefficients A 3

})—5A+8= ___>{ - - s

i) ~A -sB =0 8= />

o (2)= -5 prx + 5 sin=

e Then

and




Eligible Functions
e The method of undetermined coefficients applies whenever the function f(z) in
any™ + a1y 4+ ay + agy = f(2).
is a linear combination of (finite) products of functions of the following three types:
. ’/ ‘
1. ?,,’(z). fv‘{/wm S 3

- kx ar s.n K
&

3. € .
9 ;{(z)= z"/cnkxe + Sxy'nkx.

Example 3. Find a particular solution of

y' +y +y=sin’z. = 4 - e>j23¢
L.

/‘JP@',)= A+ Blcazx.* f;&n;z

e Then y}___ _Jﬁynzz -/.ZC'jabzz

VII: __46/0522 _4c ;/'dn.zz

y;’.; g;ﬁ/ = .,.; - (— 48t+2C +8){60712Ci(-4f_2,51;:f::zx
=

C-

=

e Solve for the undetermined coefficients Al 6 and

-1, -3 ,¢c-_4 /
/4—- 2! 8—% ) C - -—/; %(z);f“—iwu—é—,ﬁ;x
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Caution!!!
Example 4. Find a particular solution of

Y — 4y = 2e*.

/4%
e We try the guess: 1(9&)

Y- AE™”
I 22
e y;=,z,4¢’z %’,: 4A¢€

eX
37 -4y, = 4A€’ —4(Ae)‘074é‘?~
7-41:’:0 > (fd=o = - {8”‘ '2"}.

22
| | g (>¢) = Cj e C
e Solve for the undetermined coefficient:

-2

¥ A y,o Ae /camw/ sate's i%
Lg— @)

bewa:e /48 s ol«f/z'e.a/u/ an
the CoI«//ck«n/wf colufmu
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Rule 1 Method of Undetermined Coefficients

e Suppose that Ly = f(x) Is a nonhomogeneous linear equation with constant coeffi-
lwm_x isa

cients and tha linear combination of finite products of eligible functions.

e Also suppose that no term appearing either En f(x)lor in any of its derivatives
satisfies the associated homogeneous equation =0. .
g q y %(,,9 sof'e (/ Ly:,a.

e Then take as a guess/trial solution for y, a linear combination of all linearly inde-
pendent such terms and their derivatives.

e Then determine the coefficients by substitution of this trial solution into the non-
homogeneous equation Ly = f(x).

Example 5. Find a particular solution of ’d /‘2*
Y + 9y = 227> + 5. /
N~
e We try the guess: ﬁULE 1 .f(vq
‘ed . ‘3

app-be —— Sen3
’j,,(x)a- A+(B+Cx+Dz)C o) 5. 00....

¢ Then ) y ] x’c’x'xe’x sz-- -
4 f

/

Y 81¢C )e’z (IchzD)xe”-f"
ptaY, = QA +(1284¢C42D)€ 4

94 =€ >y C-- 2
= ) 1t8+éct2d = O A= ,/7

i) 1% +12D = O =y B-: 2 .D=#

iv) 4D = Q-

e Solve for the undetermined coefficients:

¢ (1_2,,4 9 =
3p@°):;+ 5i- axt 3%/¢
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Remarks on Rule 1

e In practice we check the supposition made in Rule 1 by first using the characteristic
equation to find the complementary function ..

e Then we make a list of all the terms appearing in f(x) and its successive derivatives.

e If none of the terms in the list duplicates a term in y., then we use Rule 1.

The Case of Duplication

e Consider the case in which Rule 1 does not apply.

e That is, some of the terms involved in f(x) and its derivatives satisfy the associated
homogeneous equation.

e For instance, suppose that we Want to find a particular solution for:

Ly = £Ce) (2- P’ Y = (2x -3)e™
J(ﬁ:-r) co =0 6"3)

e Proceeding as in Rule 1, our first guess would be Z é =z e r Z 2C r
Pl)=(ax-3)e’™
o gl ,Oblf(z) [,42:-#8)3

A: y ()= 2 LA&f'B)

e This form of y,(x) Wlll not be adequate because the complementary function is

r« 2 I
Y @)-Getgxe rgx’e

so substitution would yield zero rather than (2z —
(2- ) [4ms @] - 0
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2

Amending Our Initial Guess

+ Toamend o st s, e ber d,‘z
(D I’) f(a;)— (D-— [[zx —3) e ] (D z:c#.ﬂ)

by our earlier discussion of differential operators.

e If y(x) is any solution of our differential equation and we apply the operator (D — r)?
to both sides, we see that y(z

@ r) (7) /) Y -—(pr)(ix—z)e

=0 = (D—f)r a

e The general solution of this homogeneous equation is:
B c;c < axe™roxe ™ A0
N rx-
S e
e Thus every solution of our original equation is: yp (”) .
_ z’(Ae”‘+ 62&") Y, ()

e Note that the RHS can be obtained by multiplying each term of our first guess

Yio)= Ae™+ Bz €™

Form of the General Solution

x7¢3

that is, the least positive power of z (in this case, z*) that eliminates duplication
between the terms of the resulting trial solution y,(x) and the complementary function

ye(T).
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The General Case

e To simplify the general statement of Rule 2, we observe that to find a particular solution
of the nonhomogeneous linear differential equation

it suffices to find separately particular solutions Y;(x) and Y3(x) of the two equations

[;;— -;4(76) acof 47’ ;é_[&)
respectively. VI v

e Linearity then gives /

LIV elh]= Loely = H6)r 46
and therefore ? - YI "t )i . is a particular solution of

e (This is a type of “superposition principle” for nonhomogeneous linear equations.)

e Now our problem is to find a particular solution of the equation Ly = f(x), where f(x)
is a linear combination of products of the elementary functions listed earlier.

e Notation: f(x) can be written as a sum of terms each of the form

where P,,(z) is a polynomial in x of degree m.
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MA 266 Lecture 19

Christian Moya, Ph.D.

Sec 3.5-2 Nonhomogeneous Equations ] £‘/J= -f(:a)

Rule 2 Method of Undetermined Coefficients

e If the function f(z) is of the form

Ty Gde™ o0 kx or ﬁ,(%)@rz‘s/.”kz
take as the guess/maz solution
§,6)= X [ (o poct. 4 pmx) /“"”" i
(3ot Bisct--# 6'""'")5 “kx]

where( s/is the smallest nonnegative integer such that no term in the trial solution
yp duplicates a term in the complementary function y.. L [ % ]
cl =

e Determine the coefficients in g, by substituting ¥, into the nonhomogeneous eq'n.

The next table lists the form of y, in various common cases:

f(z) Yp
Po(x) = by + b1 + bow® + -+ + bpx™  2°(Ag + Az + Agx® + -+ + A z™)
acos kx + bsin kx x*(Acoskx + Bsinkx)
e"(a cos kx + bsin kx) z*e"™(Acos kx + Bsinkx)
P, (x)e™ 25(Ag + Arw + Aga® + - + Apa™)e’™

2*[(Ag + A1z + - -+ + A x™) cos ka+

P,(x)(acos kx + bsin kx) (Bo + Bit + - - - + Bypa™) sin ke




Example 1. Find the particular solution of

y® 4y’ = 3e” + da’.
L=

e Characteristic equation: '-f(t)
= (2 —p = [Gco
=2 (3(r+1) S

e Complementary solution y,:

Y= @tGx 4 GeT

e Initial trial y,: s,

y (x,) = (/1629 + (3+ Ce + Dx’)X'
P

e Eliminate duplication terms <= (s =7)

zo. yf(ab) S"O) y, = Ae” + B + Cx + Dx?
y, = Ae* + C +2Dx

y, = Ae® +2D
y;)// — Aeilf

400y < a(ue)s 22 = 374" T
NO
Y e O

y, = Ae® +2C + 6Dx
y, = Ae® 46D

153)1“ ff; . 2AeT1 6Dzt (ZC“D)‘-‘ 56¢+‘*"2'?
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2% y,(») (5=2/)

y, = Ae” +|B2® + Cx* + Da*
y, = Ae” +2Bx + 3Cx" + 4D’
Y, = Ae® + 2B + 6Cx + 12Dz’
y;,” = Ae* +6C + 24Dx

y®+ ; = ghe*+ (28+60) + (sct 24D) + 12D
f e +4x"

e The system of equations:

9A=3 6C+24D =<
284 6C =0 j2D = 4.

e Particular solution y,(z):
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Example 2. Determine the appropriate form for a particular solution of

y" — 6y + 13y = 2e3® sin 2.

(7 e
e Characteristic equation: #(X—)

(- ert+iz=o-
= (;,2 =3t a2,

e The complementary solution is:

Y 6o e’z(ctf""‘" + G Sin 129

e Initial trial y,:

“j‘,@){(MB»)cw,wzx ¥ (crpx)c’z,,}“x :
(A z+ Bz‘)&’zfozx $eoo

e Eliminate duplication terms:

A e”‘fazz € eszs/:u 2Z.

s5=1 => S5=4

e Particular solution:

’%F (70): X [(44624)63?0:x+ CCf- D;c)e”‘;‘-‘,,c
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Example 3. Determine the appropriate form for a particular solution of

yW + 5y + 4y = sin x + cos 2z.
m
{¢)

e Characteristic equation:

wz=*.
f4+5'rz'+4= o. }é‘,a;: a2,
(r¥=) (rzH) =0 =/

e The complementary solution is:

yc(”) 2@160726 t Q2 ;c'ﬂz) e ((,3 e 2x 4 Gf.s/t‘n@

e Initial trial y,:

?f(x% (/460% t 55/4"1)1‘ (C:'Cm 2% +J) 5/'44229

e Eliminate duplication terms:

A// duf&'odréw fer ms-

e Particular solution:

%f (Z)= x [Cwa+ B.S/M)b) } @“’2" +:DS}.“%]
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Variation of Parameters

e Consider
7 "4—’7 = fau x
e N
e Note: f(”’
() = fan x 0O~ mouy Lineary

Awdleg. oler.
sedx | asectrtana . ...,
s

e (: Can we find a finite linear combination to use as trial solution y,?
NO ¥

Method - Variation of Parameters

e Consider the nonhomogeneous equation:
(J) Lyl = 4 + put™ + ..+ iy + oy = f2).

e Assume we know the general solution

%c(") = € YGe)d... 4 e, Yu ()

e of the homogeneous equation:

Lyl ==y + puy™ ™V + .+ piy) + poy = 0.

MA 266 Lecture 19 page 6 of 12



replace ¢, ¢, ..., en.
with /an’«.‘é./
e

e Objective: Select variables/functions in such a way that:

Y= UG Y4+ Un O (=)
e is a solution of (1-) @ L[gp]-'—' {Ct)-

o THIS IS ALWAYS POSSIBLE!!!

1‘[&)’ ”264'.. ‘) 7(4 (&)

Example 4. Consider the following second order nonhomogeneous equation:

(2/) Lyl :==9" + P(x)y + Q(z)y = f(x).

where P, Q) are continuous in some interval I. Assume the above has the complementary
solution:

Ye(r) = c1yn(x) + caya(x)
Find the particular solution y,(x).

e Objective: Find U / U . such that

1/’(») =Y Y+ Y

e is a particular solution of ( ‘2') .

e First condition:

Uy : L¥]={6e)
74r”+ PY'+QY, = f Ge)

e We need a second condition (free of our choice).
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%-mm+%%
)]
Y/ (ury, sy’ )+ (1) 7:1‘7‘2- %) »

e [dea: to avoid l ) 'a , we let our second condition:

U'Y+ Uy, =0

’j‘,’ = WY 4% Y

e Product r ulegves ,g’ («l% oy V‘)"- Cu y, +uz"dz)

e Note: y’,"/z : L[ff,]: o 7 L[y,;]::o

Y+ Py'+ QY =2
yll:_ Fy')_oy,

M
e Replace -% 3)

)I (u, % “z 9, J ?(ul Y, +u7 93_ a@w
=y

+ Pyp gf (7": '{f, -+ 742 yz)

e Thus, we obtain the system: [yp] -f x)
U .71"" U Y= © ( A)
WY gy = 69
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Remarks (
2C
e Determinant of the coefficients M’yl / uz W
(4) U,
e After solving for ( and , We 1ntegrate

to obtain: u J a olx e J'r yz 66) ff(x
WGe)

a(x — y(x) '#(X) y
J v(?) .

e We obtain the desired particular solution:

Y= A Y ) + % &) Y, (=)

Example 5. Find the particular solution of
/1
Yy +y=tanz.

e Complementary solution y,:

y‘(%):Clwx f Cz s/‘ X

A = Cnx 72-35}.“7‘
e Setup ( ) : ’:jyl"; —-S/L.”z Vz'= e X -

e Hence CA) ) (ﬂ,‘) enx +@1’> SnxE =9
@r') (-.gtnx) + ()enx - fon 2
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e Solve for u} and uj:

U'=s er x - secse-
I

Y = 5inze

o Thus A, = j@,,x - se cx) olz = Sj'nx"/&l/s;::;"}

U [sinx ol - ‘F"”'%=d,y,+uf Y, .

Theorem - Variation of Parameters

e If the nonhomogeneous equation:
Llyl :==y" + P(x)y + Qz)y = f(z)
e has complementary function:
Ye(z) = 191 (@) + coya(z)

e Then a particular solution is given by:

Yp() = —y1(x)/%dx+yg(:v)/w T

Y

e where W(x) = W(y,y) is the Wronskian of the two independent solutions y; and
yo of the associated homogeneous equation L[y] = 0.
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MA 266 Lecture 20

Christian Moya, Ph.D.

Sec 3.5 Nonhomogeneous Equations

Method - Variation of Parameters

e [f the nonhomogeneous equation:
Lly| == y" + P(x)y’ + Q(z)y = f(x)
e has complementary function:
Ye(w) = 11 () + cay2(w)
e The particular solution is :
yp(®) = ur(2)y1 () + ua()y2(z)
e To find u; and wus, we first solve the following system of equations for «} and uj:

uiyr + upys = 0 (1a)
uyiy + upyy = f(z). (1b)

e We the find u; and us via integration:

e The determinant of (1) is the Wronksian of the two linear independent solutions y;
and yo: W (y1,y2) = W(z).




Theorem - Variation of Parameters

If the nonhomogeneous equation:

Lyl :==y" + P(x)y + Q(x)y = f(x)

has complementary function:

Ye(r) = c1y1(x) + caya(w)

Then a particular solution is given by:

i) = _yl(x)/%dﬁm(x) { %(fx()gj)dx

where W (z) = W(y1,y2) is the Wronskian of the two independent solutions y; and
y2 of the associated homogeneous equation L[y] = 0.
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Example 1. Find the particular solution of

y" + 9y =|sin 3z.

e Complementary solution:

=2 'yg(z)_- C Co13x + Co pn3X

=Y () = yz (=)
e The Wronksian W (z) is
Y ()= fo13% co13%  §in3x
2)= - 2 .2
Yole)= 3m 3z ( ) : 360192 +3 %"
-35/1032 3,»,33; _ 3

e The desired functions are then

() ¢
U () = - '/,f’()’fz)d /""’“‘Jz_-,( _/u‘

%) =j o / Rl I

e Particular solution:

/'1?{:4)= U(x) Y, &) + Y ) y, (%)

j‘,(z) = z- pot 3¢
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Example 2. Find the particular solution of

y' —dy =

e Complementary solution:

(
l"z-4=0' = {f;

re”. | =: f(")

= -2
= +2.

-2% 2%« -
y.: @)- ¢ T +¢C €
e The Wronksian W (z) is =4 () = yz( %)
e-.uc ezz
W Z): -
¢ et 07| 4

e The desired functions are then

?-ll(x)z-‘/'yz@‘)'fé‘)d,‘
w(x)

_jc"x e

1{2(,5) ___j Y, (0) - f(z) " =/e-¢zxea¢&=_ L

W) r

e Particular solution:

7?(7')_' U, yl + U yz

7’) (7‘) = - -é (3;! fJ—) e»-
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Sec 3.6 Forced Oscillations

Forced Mass-Spring System

e In a previous lecture, we derived the differential equation

fryx"+cx'+ vx = FC&)

K> o
that models the motion of a mass m that is attached to a spring (with constant k) and
a dashpot (with constant ¢) and is also acted on by an external force F(t).
c>»0
e Machines with rotating components commonly involve mass-spring systems (or their
equivalents) in which the external force is simple harmonic:

F@®)- FE carwt | or [FE- & awt
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Undamped Forced Oscillations
l‘uk

Undamped Forced Oscillations (tt\"

e Consider thd external force F(t) = Fcoswt jand let|c = 0. Then, we have:

ma” + kx = Iy cos wt,

The complementary function is:

zo(t) = ¢ coswot + ¢o sin wyt.

The (circular) natural frequency of the mass—spring system is:

k
Wy = —
m

Assuming w # wy, the particular solution is:

E
xp(t) = o/m cos wt.

T2 2
wj — w

The general solution x = x. + z, is given by:

Fo/m

z(t) = c1 coswot + casinwpt - ———— coswit,
Wi — w
0

where the constants ¢; and ¢, are determined by the initial values z(0) and 2/(0).

e As we saw earlier, this can be rewritten as

Fg/m

2

5 COS wt.

z(t) = Ccos(wot — ) +
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Example 3. Use the method of undetermined coefficients to find the particular solution x,(t)

of:
L[z]= ma” + kx = Iy coswt. (-L)
e The trial particular solution is: #(*)
X (t)=Cpawatt
xp(f') = /‘e” wt F(:.s/'n wot
wi w..

Note: No sine term is needed in z, because there is no term involving =’ on the L.H.S.

(L)

This gives

L[zf]= "I{—«)‘AM-I-) + K Aes wt = Fo',c« wt:

e So,
“Muw'A +k A= ¥o.
/4_ B _ E/M
p-ma® K _ W
e Particular solution: V‘:‘-’a.
=: Wo

Fo/m

w'z- “)

Zr(e)= /an wt-
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Example 4. Find the solution x(t) = x.(t) + z,(t) of the following initial value problem:
Liz] := 2" 4+ 42 = 5sin 3t, z(0) =0,2'(0) = 0.
¢)
e The complementary solution: FC

r4a=o =7 =tz

/

‘zca'): ¢ es1at 4 G Sinat

e The trial particular solution:

Zo(t) = Azim 3t

e L[x,] = 5sin 3t gives:

-A-?.S}'MB'IL '/'4/45/" 3£_= 5-5}')!3{'
$ "SA:S ‘_—>/.:-’ —-.L.

‘xf(t); - 53 L—i

e The general solution x = x. + ), is:

(26l apmst ol ~ 5

e Using the ICs, we find ¢; and cs: 0-_— x(o)-_— e.l = ei =0
l
ZCO)=96C°)=O. 0=xl(o)= 26y -3 G =

3
2.

‘X({:)= % guf,z,‘{' - 94';1 3t
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st
Damped Forced Oscillations 4.* "‘

)
)I ﬂl ?
Damped Forced Oscillations c\' P

e Consider the external force [F(t) = Fycoswt jand let ¢ # 0. Then, we have:

e mi"+cx'+kx = Fycoswt,

e The complementary function takes one of the three forms depending on:

c >cor = VAkm,jc = ¢, Or ¢ < Cgp.

Transient solution

e In our previous lectures, we demonstrated that:

ze(t) = 0 as t — +oo. o ‘ =~>
t
e Thus, z.(t) is the transient solution of the damped forced motion.

e — x.(t) dies out with the passage of time.

Particular solution (S‘W‘-’ oS el alo 7 ‘o{"‘/””)

e The particular function is:
. x(t) = Acoswt + Bsinwt

where

(k= mw?) F B_ cwky
(k — mw?)® + (cw)?’ (k — mw?)® 4 (cw)?’

e We can show that the resulting x,(t) corresponds to the steady periodic oscillation:

z,(t) = C cos(wt — a)

has amplitude C' = /A2 + B? = Fo

\/(kfmw2)2+(cw)2

e Phase angle a:

o(é'[o’ iTJ. o tan ™! — if k> mw?,
7+ tan! e itk < mw?

tan'x G [Hh , m4]
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Example 5. Find the particular solution x,(t) of:
ma” + cx’ + kx = Fy cos wt.

e The method of undetermined coefficients indicates = the trial particular function:

Zf&):/cuun' + B ginwt

e Replacing L[z, = Fy coswt gives:

((K'mW')A + Cw B)enwh- éewA-r @-mwz)‘Jg'ul-
= ﬁ./coé'wf‘.
e Two equations:

/) (K-Mw‘)A + CwB= Fo.
4) —cwh+ (k-muw? )3= o.
e The undetermined coeflicients:
A- (k- mw?)FB B - CWF"; ¥o
i | T T
o If we write:
AMW’ +B$}.’u wt = C(cw XMW" + ;.hd &'qdl‘)
(X RN, y SN o := §

o ResSlts int the steady perigﬁic oscillation: %(f) = e Ica ( wt- ot )
C- N 418> = B >0 | >
ta 5.

4’(& ) Few)

n k-wm.
Fo>9 €30 wpo. £
- oS - 0'1%] . 'ﬁW—I cw) le-w™m >O.
Sinol> 0. = X'= k- mw®
~ k-w*m<o.
o(€Efo,T] - Ty fau C
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MA 266 Lecture 21

Christian Moya, Ph.D.

Sec 3.6 Forced Oscillations

Damped Forced Oscillations

e Consider the external force F(t) = Fycoswt and let ¢ # 0. Then, we have:

ma” + cx’ + kx = Fy cos wt,

Transient solution
e In our previous lectures, we demonstrated that:

z.(t) — 0 as t — +o0.

e Thus, z.(t) is the transient solution of the damped forced motion.

e —> 1x.(t) dies out with the passage of time.

Particular solution
e The particular function is:
z(t) = Acoswt + Bsinwt

where
(k — mw?) Fy B cwFy

(k — mw2)2 + (cw)?’ (k — mcu?)2 + (cw)?’

e We can show that the resulting x,(¢) corresponds to the steady periodic oscillation:
xp(t) = C cos(wt — )

. _ 2 2 Iy
has amplitude C' = A* + B* = —m—"trrrs

e Phase angle a:

7+ tan! e itk < mw?

{tan_l — if k> mw?,
o = —mw




Example 1. Find the steady state periodic solution of the differential equation:

L(z]= " +3¢' + 50 = —4cos5t. w=5 % o
F(¢e)-

e Trial particular solution:

Zsy()) = A eov 5€ + Bpn st

e Replacing into the differential equation gives: L [‘* ] = - 4 s é
xyp = ~sASMTLt B pmst 6th)on st +(-230-1A478).
e arhonst - ach gt (C1sAUBIAonst 4 et
=-¢ pr St

,,) -20A +/T 8 =

e The undetermined coefficients are:

6 . j2

S = =

12§

-4/) 208+1cAa O

e Write as steady periodic solution:

s
Asp(t) = C pon (5t~ «) o = ta” '(ﬁ) .
2
e Amplitude and angle: c:'. /u A2+62 = .2::: > 0. %&{

ol =11 5. Ke [3, 27 ] b
S,cna(- 2
(o & =4_¢>o o = le@l'uu" (‘-f-)x 543 9¢
c —_—
bl 4 raut- <33T
47 guadr augte >3

2y () 2 ems (5t - 5639%) .
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Example 2. Find the transient solution and the steady periodic solution of the initial value
roblem:
Y w=) #Wo
L [27:-.- 2" + 8% + 25z = 200 cos t + 520 sin t, z(0) = =30,2'(0) = —10.
=T FCE).

e Steady periodic solution:

‘%.sp(f)--/cwé + B sent

L["J,ﬂ: 200 co1 i /-s:ws/‘ml-- =

(24'4 “5) et -+ GYA 1-M‘5> synt= o00csnl +520 et

: _
/) 24A 468 = 00 Z A
i) -2A1248= 520

So

0\
IS
X

AN

'

ol m"(g) it (@)= 153 <F.
Lop(e) = Aatr e (- 153).
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Zer

M-

To

7:”4- Ix'+2y = '-F[i')

e Transient solution:

r*+9%rtas-o.

/,:z-: 4 Tt 3}

=> j e'“wsi'/ e_4+9'u 2{"}‘_

4t |
Z.(t)- € <¢10’”£ + G 5/»13) _

= z2()<- K@)+ %, (¥

2.’(1’)-= 8-466‘-’1 3t t+ @, é««'h-?") L Coqt f-.zz.y.'n"‘

m
= e () - 2plt)
}fu'wo/ C/AC’;, we wude Zé
2(o) = -30 - z'(o)= -10.

/
= -30<x(0) = e, +4 = €= -34.
10 =x'(0)= ~4¢, +8€1 422 = Cg=—5<
= Xy ()« C4Y(-3/eo 5t - 54 84" a-t—) :

D= iGH & =M3us e Gh-p g

=
p=11 4 sup= Z<o, = o 'i‘:/‘«'”/

pelr%.]
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Z(%)- e""(,/EZc?'w(#-mw)') F Zep (t)-

Resonance - Forced Undamped Oscillations @ =0 ) wjéﬁ-jo
w Wo.

e Allowing to approach
e Recall the particular solution:
Fo/m
xp(t) = e cos wt.
[V

=:A.
o If w becomes approximately equal to wy, the amplitude A of z,, becomes large.

e It is sometimes useful to rewrite z,(¢) in the form:

A- Fo n/‘ =i-/a?
T E-mwr 1-6@&)‘

o
F 2 is the static displacement of a spring with k£ due to a constant force Fy.

° ‘ is the amplification factor defined as:

— /o-—a,oo a4 w— W,

_ 4
Io /1_(‘”/‘09)4/ — A —> 00.

The phenomenon of resonance—the increase without bound (as w — wp) in the ampli-
tude of oscillations of an undamped system with natural frequency wy in response to an
external force with frequency w =~ wy.
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Example 3. Pure Resonance - Find the particular solution x,(t) of the following un-
damped system:

Fy
"+ wir = — coswyt.
(/) s + Ox m o

A\
o Complementary solution: e F’({— y w.)
‘ .
r *w"?: o =7 f"‘= f‘d.’/.

X (t)= C pos wel +Cq Gruat:

o Trial Particular solution:

7‘/“’)‘-éwa.£-)l;- NO
Zf&)= 'l'(Aw Wet + .3.34,'nubf)

' _ (i t 541 ot
o —> ?%(Q-‘gmwo e

t — .

Bm(dge Crossings and Resonance

e [n practice, a mechanical system with very little damping can be destroyed by reso-
nance vibrations.

o Any complicated structure such as a bridge has many natural frequencies of vibra-
tion.

e The resulting resonance vibrations can be of such large amplitude that the bridge
will collapse.
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MA 266 Lecture 22

Christian Moya, Ph.D.

Practical Resonance - Forced Damped Oscillations

e Consider the damped system:

ma” + cx’ + kx = Fycoswt

e Note that if ¢ > 0, then the “forced amplitude” C(w):

Fy
Clw) = \/(k — mw?)? + (cw)? < e

always remains finite.

e However, the forced amplitude may attain a maximum for some value of w, in
which case we speak of practical resonance.

Example 1. Show that if ¢ > v/2km the amplitude C(w) decreases for all w > 0;
otherwise C'(w) attains a maximum value.
C<¢ Wam.
1. Use C"(w):

W (ex- 2km) + LMw”

€)= - 2 [(x- mw)*t (w)"]%
—

2. If ¢ > /2km: &> c'- > alkm. - 7
C'(w)fo. -uJFo (C’--t-kn' F2mwt <o
- o - C(w) <9

ew) VO
3. But ifc<\/2km:6 ct “2""“ c(‘))

-wFo((c :.ku)+.tnw) /\

i S —e - =
>0 wl CW)




w*: prachica] cuonance frag’ . Cé"’9 -

Example 2. Find the amplitude C(w) and the practical resonance frequency w of the fol-
lowing forced mass-spring-dashpot system:

4
2" + 102" + 650 = 100 cos wt. 4

e Particular solution:

‘ zr(e)= Aesn wt 4 Bain wt ‘

i [
%.%p,%p — (1)
e Solving for the coefficients A and B

(65‘0-«/")14 ;10w B =100
{ —jowA 4 (¢0-w?)6 =0

= |4- joo (650 - w?) B 000w
#2200 ~j200 w *+ 07 422500 - Poow yw 4
e The amplitude C'(w) of the steady periodic forced oscillations with freq. w :

C(w) = A B@*
C(“’) = 02 o

(422 500~ |30°0 . *“’4)/3 '

e Find the practical resonance by solving C'(w) = 0:
C\[w) —200 W <—600 +wz)

4)%-

(422 §00 - 300 W™+
\.).—P‘

~D.

Honee,
.fradt'w/ r. frcg.mq w® : C)(Zd') =0

< —-éoo f-w*’..—_ 0.
Ware. appliborde (° (1)%) W'=4 600

'#( P;q!- f Yoensce
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