
MA 266 Lecture 13

Christian Moya, Ph.D.

Sec 3.1 Second Order Linear Equations

• Recall that a second-order differential equation in the (unknown) function y(x) is:

• This differential equation is said to be linear provided that G is linear in the dependent
variable y and its derivatives y′ and y′′.

• Thus a linear second-order equation takes the form:

• We assume that the (known) coefficient functions A(x), B(x), C(x), and F (x) are
continuous on some open interval I.

Defintion 1. A linear equation takes the form:

that is .

• If , the linear equation is .

Example 1. Homogeneous vs. Nonhomogeneous

a) x2y′′ + 2xy′ + 3y − cosx = 0

b) x2y′′ + 2xy′ + 3y = 0

• In case the differential equation models a physical system, the nonhomogeneous term
F (x) frequently corresponds to some external influence on the system.
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Example 2. Model the following mass-spring-dashpot system using linear equations.

Spring Mass Dashpot

x (t)
x  = 0

Equilibrium

position

x  > 0

m

• mass attached to a spring and a dashpot (shock absorber).

• force of the spring on the mass

• force of the dashpot on the mass

• Assume the restoring force FS of the spring is proportional to the displacement x of
the mass from its equilibrium position:

• Assume the dashpot force FR is proportional to the velocity v = dx/dt of the mass and
acts opposite to the direction of motion:

• Newton’s law F = ma gives

• The homogeneous linear equation is then:

• If, in addition to FS and FR, the mass m is acted on by an external force F (t), the
resulting equation is
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Homogeneous Second-Order Linear Equations

• Consider the general second-order linear equation

A(x)y′′ +B(x)y′ + C(x)y = F (x),

• If , we can write the above equation in the form:

• The corresponding homogeneous equation:

Theorem 1 Principle of Superposition for Homogeneous Equations

• Let y1 and y2 be two solutions of the homogeneous linear equation

• If c1 and c2 are constants, then the linear combination

is also a solution of this equation on I.

Why the Theorem 1 is true?

• Note that the linearity of differentiation gives

• Then because y1 and y2 are solutions,

• Thus
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Theorem 2 Existence and Uniqueness for Linear Equations

• Suppose that the functions p, q, and f are continuous on the open interval I containing
the point a.

• Then, given any two numbers b0 and b1, the equation

y′′ + p(x)y′ + q(x)y = f(x)

has a unique (that is, one and only one) solution on the entire interval I that satisfies
the initial conditions

Remark

• The differential equation and the initial conditions in the theorem constitute a second-
order linear initial value problem.

• Theorem 2 tells us that any such initial value problem has a unique solution on the
whole interval I where the coefficient functions in the equation are continuous.

Example 3. Consider the following homogeneous second-order linear equation:

x2y′′ − 2xy′ + 2y = 0.

Let y1 = x and y2 = x2. Find a solution of the form y = c1y1 + c2y2 that satisfies the
following initial conditions:

y(1) = 3 and y′(1) = 1.

• Where the unique solution exists?

• Using the given initial conditions:
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Ensuring That the Equations Have a Solution

• In order for the procedure of the previous example to succeed, the two solutions y1 and
y2 must have the property that the equations

can always be solved for c1 and c2, no matter what the initial conditions b0 and b1
might be.

Defintion 2. Two functions defined on an open interval I are said to be
on I provided that neither is a constant multiple of the other.

Linear Dependence

• Two functions are said to be on an open interval provided one
of them is a constant multiple of the other.

• We can determine whether two given functions f and g are linearly dependent on an
interval I by noting whether either of the quotients f/g or g/f is a constant-valued
function on I.

Example 4. Determine if the following pair of functions are independent.

sinx and cosx;

ex and e−2x;

sin 2x and sinx cosx.
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General Solution

• We want to show, finally, that given any two linearly independent solutions y1 and y2
of the homogeneous equation

y′′(x) + p(x)y′(x) + q(x)y(x) = 0,

every solution y of the equation

y′′ + py′ + qy = 0

can be expressed as a linear combination

y = c1y1 + c2y2

of y1 and y2.

The Wronksian

• As suggested by the equations

c1y1(a) + c2y2(a) = b0,

c1y
′
1(a) + c2y

′
2(a) = b1,

the determination of the constants c1 and c2 in depends on a certain 2×2 determinant
of values of y1, y2, and their derivatives.

• Given two functions f and g, the of f and g is:

Example 5. Compute the Wroskian of f(x) = cos x and g(x) = sin x.

• The Wroskian of two linearly dependent functions is zero:
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Theorem 3 General Solutions of Homogeneous Equations

• Let y1 and y2 be two linearly independent solutions of the homogeneous equation

y′′ + p(x)y′ + q(x)y = 0

with p and q continuous on the open interval I.

• If Y is any solution of this equation on I, then there exist numbers c1 and c2 such that

Y (x) = c1y1(x) + c2y2(x)

for all x in I.

Linear Second-Order Equations with Constant Coefficients

• Consider the homogeneous second-order linear differential equation

with constant coefficients .

• Consider the ansatz : .

• By noting:

• We conclude that satisfy

• when is a root of the algebraic equation:

• This quadratic equation is called the of the homogeneous
linear differential equation.
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Characteristic Roots

• If the algebraic equation

ar2 + br + c = 0

has two roots r1 and r2, then the corresponding solutions:

are linearly independent.

• Theorem 3 then implies that

• is a general solution of .

• This leads to the following theorem.

Theorem 4 Distinct Real Roots

• If the roots r1 and r2 of the characteristic equation

ar2 + br + c = 0

are real and distinct, then

y(x) = c1e
r1x + c2e

r2x

is a general solution of

ay′′ + by′ + cy = 0.
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Equal Roots

• If the characteristic equation

ar2 + br + c = 0

has equal roots r1 = r2, we get (at first) only the single solution
of the differential equation

ay′′ + by′ + cy = 0.

• The problem in this case is to produce the “missing” second solution of the differential
equation.

• A double root r = r1 will occur precisely when the characteristic equation is a constant
multiple of the equation

• Any differential equation with this characteristic equation is equivalent to

• But it is easy to verify that is a second solution of .

• Moreover, it is easy to check that

y1(x) = er1x and y2(x) = xer1x

are linearly independent functions, so by Theorem 3, the general solution of the differ-
ential equation

y′′ − 2r1y
′ + r21y = 0

is
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Theorem 5 Repeated roots

• If the characteristic equation

ar2 + br + c = 0

has equal (necessarily real) roots r1 = r2, then

y(x) = (c1 + c2x)e
r1x

is a general solution of the differential equation

ay′′ + by′ + cy = 0.

Example 6. Find the general solution of the differential equation:

y′′ + 2y′ − 15y = 0

Example 7. Find the general solution of the differential equation:

9y′′ − 12y′ + 4y = 0
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MA 266 Lecture 14

Christian Moya, Ph.D.

Sec 3.2 General Solutions of Linear Equations

Review from last class:

• Consider the homogeneous ODE with constant coefficients (a, b, c ∈ R):

ay′′ + by′ + cy = 0

• Look for a solution of the form: y(x) = erx. Then, we find that (ar2 + br + c)erx = 0
results:

ar2 + br + c = 0

• The above equation is called characteristic equation of the differential equation.

• By solving the characteristic equation, we find r (three possibilities):

– roots r1 ̸= r2 are real.

– roots r1 = r2 is real.

– roots r1, r2 are complex.

• (First case) Consider distinct real roots r1 ̸= r2. (Theorem 3) The general solution of
the homogeneous ODE is:

y(x) = C1e
r1x + C2e

r2x
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• Consider the homogeneous ODE with constant coefficients (a, b, c ∈ R):

ay′′ + by′ + cy = 0

• (Second case) Consider repeated or equal real root r1 = r2. Here, we only one have
solution

y1(x) = er1x

• The problem is to produce the “missing” second solution.

• Note that the equal root r = r1 occurs when the characteristic equation is a constant
multiple of:

(r − r1)
2 = r2 − 2r1r + r21

• Any differential equation with the above characteristic equation is equivalent to:

y′′ − 2r1y
′ + r21 = 0 (1)

• However, it is easy to verify that y(x) = xer1x is a second (linearly independent)
solution of (1).

• Thus, by Theorem 3, the general solution of (1) is:

Example 1. Find the general solution of the differential equation:

9y′′ − 12y′ + 4y = 0

• Characteristic equation:

• Solution:
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Example 2. Let y(x) = c1 + c2e
−10x be a general solution of a homogeneous second-order

differential equation of the form
ay′′ + by′ + c = 0,

with constant coefficients. Find such coefficients.

• Roots:

• Characteristic equation:

• Homogeneous equation:
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General Linear Equations

• Consider the nth-order linear differential equation:

• We assume Pi(x) and F (x) are continuous on some open interval I.

• If , we obtain:

• The homogeneous linear equation associated with this differential equation is:

Theorem (Principle of Superposition for Homogeneous Equations) If
y1, y2, . . . , yn are n solutions of the linear equation on the interval I. If c1, c2, . . . , cn
are constants, then the linear combination

is also a solution on I.
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Theorem (Existence and Uniqueness of Linear equations) Suppose that the
functions p1, p2, . . . , pn, and f are continuous on the open interval I containing the
point a. Then, given n numbers b0, b1, . . . , bn−1, the nth-order linear equation

y(n) + p1(x)y
(n−1) + · · ·+ pn−1(x)y

′ + pn(x)y = f(x)

has a unique (that is, one and only one) solution on the entire interval I that satisfies
the n initial conditions

y(a) = b0, y′(a) = b1, . . . , y(n−1)(a) = bn−1.

Example 3. Without solving the ODE, find the existence and uniqueness interval I of the
solution of the IVP:

x(x− 3)y′′ + 2xy′ − (x+ 1) = 0, y(1) = 1, y′(1) = 2.

• Rewrite it in standard form:

• Use Theorem:

Linear Independent Solutions

• Based on our knowledge of general solutions of second-order linear equations, we would
expect that a general solution of the homogeneous nth-order linear equation

y(n) + p1(x)y
(n−1) + · · ·+ pn−1(x)y

′ + pn(x)y = 0

will be a linear combination

y = c1y1 + c2y2 + · · ·+ cnyn,

where y1, y2, . . . , yn are particular solutions of

y(n) + p1(x)y
(n−1) + · · ·+ pn−1(x)y

′ + pn(x)y = 0.

• However these n particular solutions must be “sufficiently independent” that we can
always choose the coefficients c1, c2, . . . , cn to satisfy arbitrary initial conditions of the
form y(a) = b0, y

′(a) = b1, . . ., y
(n−1)(a) = bn−1.
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Linear Dependence of Two Functions

• Recall that two functions f1 and f2 are linearly dependent if one is a constant multiple
of the other. That is, if either f1 = kf2 or f2 = kf1 for some constant k.

• If we write these equations as

we see that the linear dependence of f1 and f2 implies that there exist two constants
c1 and c2 not both zero such that

• By analogy, we say that n functions f1, f2, . . . , fn are
provided that some nontrivial linear combination of them vanishes identically.

• Nontrivial means that not all of the coefficients c1, c2, . . . , cn are zero (although some
of them may be zero).

Defintion 1. (Linear Dependence of Functions) The n functions f1, f2, . . . , fn are said
to be linearly dependent on the interval I provided that there exist constants c1, c2,
. . . , cn not all zero such that

c1f1 + c2f2 + · · ·+ cnfn = 0

on I, that is,
c1f1(x) + c2f2(x) + · · ·+ cnfn(x) = 0

for all x in I.

Remarks:

• If not all the coefficients in

c1f1 + c2f2 + · · ·+ cnfn = 0

are zero, then clearly we can solve for at least one of the functions as a linear combi-
nation of the others, and conversely.

• Thus the functions f1, f2, . . . , fn are linearly dependent if and only if at least one of
them is a linear combination of the others.
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Example 4. Show that the functions f(x) = 0, g(x) = sin(x) and h(x) = ex are linearly
dependent on R.

Defintion 2. (Linear Independent Functions) The n functions f1, f2, . . . , fn are called
linearly independent on the interval I if they are not linearly dependent there. Equiva-
lently, they are linearly independent on I provided that the identity

c1f1 + c2f2 + · · ·+ cnfn = 0

holds on I only in the trivial case

that is, no nontrivial linear combination of these functions vanishes on I.

• To show that n given functions are linearly independent, we use the Wronksian Deter-
minant.

The Wronskian Determinant

• Suppose that the n functions f1, f2, . . . , fn are each times dif-
ferentiable.

• Then their Wronskian is the determinant

• The Wronskian of n f1, f2, . . . , fn is identically zero.

Example 5. Use the Wronskian to show that the functions y1(x) = ex, y2(x) = cos(x), and
y3(x) = sin(x) are linearly independent on R.
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Wronksians of Solutions

• Provided that , it turns out (Theorem General Solutions
of Homogeneous Equations) that we can always find values of the coefficients in the
linear combination

y = c1y1 + c2y2 + · · ·+ cnyn

that satisfy any given initial conditions of the form

Theorem (Wronksians of Solutions) Suppose that y1, y2, . . . , yn are n solutions of
the homogeneous nth-order linear equation

y(n) + p1(x)y
(n−1) + · · ·+ pn−1(x)y

′ + pn(x)y = 0

on an open interval I, where each pi is continuous. Let

(a) If y1, y2, . . . , yn are linearly dependent, then on I.

(b) If y1, y2, . . . , yn are linearly independent, then on I.
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Capturing All Solutions of a Homogeneous Equation

• Given any fixed set of n linearly independent solutions of a homogeneous nth-order
equation, every (other) solution of the equation can be expressed as a linear combina-
tion of those n particular solutions.

Theorem (General Solutions of Homogeneous Equations)

• Let y1, y2, . . . , yn be n linearly independent solutions of the homogeneous equation

y(n) + p1(x)y
(n−1) + · · ·+ pn−1(x)y

′ + pn(x)y = 0

on an open interval I where the pi are continuous.

• If Y is any solution whatsoever of this equation, then there exist numbers c1, c2,
. . . , cn such that

for all x in I.
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Nonhomogeneous Equations

Example 6. Solutions of nonhomogeneous equations.

• Consider the nonhomogeneous nth-order linear differential equation

y(n) + p1(x)y
(n−1) + · · ·+ pn−1(x)y

′ + pn(x)y = f(x)

with associated homogeneous equation

y(n) + p1(x)y
(n−1) + · · ·+ pn−1(x)y

′ + pn(x)y = 0.

• Suppose that a single fixed particular solution of the above nonhomo-
geneous equation is known

• Let Y is any other solution of this equation.

• Show that if , then is the solution of the associated
homogeneous Equation

• We call a complementary function of the nonhomogeneous equation.
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Theorem (Solutions Homogeneous Equations)

• Let yp be a particular solution of the nonhomogeneous equation

y(n) + p1(x)y
(n−1) + · · ·+ pn−1(x)y

′ + pn(x)y = f(x)

on an open interval I where the functions pi and f are continuous.

• Let y1, y2, . . . , yn be linearly independent solutions of the associated homogeneous
equation

y(n) + p1(x)y
(n−1) + · · ·+ pn−1(x)y

′ + pn(x)y = 0.

• If Y is any solution whatsoever of the equation nonhomogeneous equation on I,
then there exist numbers c1, c2, . . . , cn such that

Y (x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x) + yp(x)

for all x in I.

Example 7. We are given (i) the homogeneous IVP:

y′′ + y = 3x, y(0) = 2, y′(0) = −2

(ii) the complementary solution: yc = C1 cos(x)+C2 sin(x), and (iii) the particular solution:
yp = 3x. Find a solution for the IVP.
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MA 266 Lecture 15

Christian Moya, Ph.D.

Sec 3.3-1 Homogeneous Eqs. Constant Coefficients

Solving nth-Order Equations

• A general solution of an nth-order homogeneous linear equation is a linear combination
of n linearly independent particular solutions.

• Q: How to find a single solution?

• The solution of a linear differential equation with coeffi-
cients ordinarily requires numerical methods or infinite series methods.

• In this lecture, we show how to find of a
given nth-order linear equation if it has constant coefficients.

• Consider the homogeneous equation:

where the coefficients a0, a1, a2, . . . , an are real constants with an ̸= 0.

Finding a single solution

• Consider the ansatz :

• and observe that any derivative is:

• Substituting in gives:

1



• Because erx is never zero, we see that y = erx will be a solution of
precisely when r is a root of the algebraic equation:

Defintion 1. (The Characteristic Equation) The characteristic equation of

any
(n) + an−1y

(n−1) + · · ·+ a2y
′′ + a1y

′ + a0y = 0

is the algebraic equation

anr
n + an−1r

n−1 + · · ·+ a2r
2 + a1r + a0 = 0.

• Fundamental theorem of algebra =⇒ every nth-degree polynomial has n zeros, though
not necessarily distinct and not necessarily real.

• Finding the exact values of these zeros may be difficult or even impossible.

• For equations of degree n > 2, we may need either to spot a fortuitous factorization or
to apply a numerical technique such as Newton’s method.
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The case of distinct roots

• Assume (the simplest case) the characteristic equation has n distinct (no two equal)
real roots:

• Then the functions

are all solutions of .

• These n solutions are linearly independent on the entire real line.

Theorem (Distinct Real Roots) If the roots r1, r2, . . . , rn of the characteristic
equation

anr
n + an−1r

n−1 + · · ·+ a2r
2 + a1r + a0 = 0

are real and distinct, then

is a general solution of the differential equation

any
(n) + an−1y

(n−1) + · · ·+ a2y
′′ + a1y

′ + a0y = 0.
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Example 1. Find the general solution of

2y′′ − 7y′ + 3y = 0.

• Characteristic equation:

• General solution:

Example 2. Find the general solution of

y′′ + 5y′ + 5y = 0.

• Characteristic equation:

• General solution:
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Example 3. Solve the initial value problem

2y(3) − 3y′′ − 2y′ = 0; y(0) = 1, y′(0) = −1, y′′(0) = 3.

• Characteristic equation:

• General solution:

• Particular solution:
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Polynomial Differential Operator

• If the roots of are not distinct =⇒ there are repeated roots

• We cannot produce n linearly independent solutions of the differential equation

any
(n) + an−1y

(n−1) + · · ·+ a2y
′′ + a1y

′ + a0y = 0.

by the method of Theorem (Distinct Real Roots).

• The problem, then, is to produce the missing linearly independent solutions.

• For this purpose, it is convenient to adopt “operator notation” and write

operates on the n-times differentiable function y(x).

• The result is the linear combination

of y and its first n derivatives.

• We also denote by the operation of differentiation with respect
to x, so that

and so on.

• In terms of D, the operator L may be written

• We will find it useful to think of the right-hand side of this equation as a (formal)
nth-degree polynomial in the “variable” D.

• It is a polynomial differential operator.
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Properties of Differential Operators

• A first-degree polynomial operator with leading coefficient 1 has the form D−a, where
a is a real number.

• It operates on a function y = y(x) to produce

• The important fact about such operators is that any two of them commute:

for any twice differentiable function y = y(x).

• The proof of this formula is:

• We see here also that

• Similarly, it can be shown by induction on the number of factors that an operator
product of the form

expands—by multiplying out and collecting coefficients—in the same way as does an
ordinary product of linear factors, with x denoting a real variable.
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The Operator Method and Repeated Real Roots

• Let us now consider the possibility that the characteristic equation

anr
n + an−1r

n−1 + · · ·+ a2r
2 + a1r + a0 = 0 (3)

has repeated roots.

• For example, suppose that this equation has only two distinct roots, r0 of multiplicity
1 and r1 of multiplicity k = n− 1 > 1.

Two distinct real roots

• Then (after dividing by an) the characteristic equation can be rewritten in the form

• Similarly, the corresponding operator L can be written as the order of the factors

making no difference because of the commutativity discussed earlier.

• Two solutions of the differential equation Ly = 0 are .

• This is, however, not sufficient.

• We need k + 1 linearly independent solutions in order to construct a general solution,
because the equation is of order k + 1.

• To find the missing k − 1 solutions, we note that

• Consequently, every solution of the kth-order equation

will also be a solution of the original equation Ly = 0.

• Hence our problem is reduced to that of finding a general solution of this differential
equation.
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• The fact that y1 = er1x is one solution of this equation suggests that we try the
substitution

where is a function yet to be determined.

• Observe that

• Upon k applications of this fact, it follows that

for any sufficiently differentiable function u(x).

• Hence y = uer1x will be a solution of

if and only if

• But this is so if and only if

a polynomial of degree at most k − 1.

• Hence our desired solution of

is

• In particular, we see here the additional solutions
of the original differential equation Ly = 0.

• The preceding analysis can be carried out with the operator D − r1 replaced with an
arbitrary polynomial operator, resulting in the following theorem.
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Theorem (Repeated Roots) If the characteristic equation

anr
n + an−1r

n−1 + · · ·+ a2r
2 + a1r + a0 = 0

has a repeated root of multiplicity , then the part of
a general solution of the differential equation

any
(n) + an−1y

(n−1) + · · ·+ a2y
′′ + a1y

′ + a0y = 0

corresponding to r is of the form:

Root of Multiplicity k

• It is easy to verify that the k functions in
the expression

(c1 + c2x+ c3x
2 + · · ·+ ckx

k−1)erx

are linearly independent on the real line.

• Thus a root of multiplicity k corresponds to k linearly independent solutions of the
differential equation.
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Example 4. Find the general solution of

5y(4) + 3y(3) = 0.

• Characteristic equation:

• General solution:

Example 5. Find the general solution of

y(3) + y′′ − y′ − y = 0.

• Characteristic equation:

• General solution:

MA 266 Lecture 15 page 11 of 12



MA 266 Lecture 16

Christian Moya, Ph.D.

Sec 3.3-2 Homogeneous Eqs. Constant Coefficients

Theorem (Repeated Roots) If the characteristic equation

anr
n + an−1r

n−1 + · · ·+ a2r
2 + a1r + a0 = 0

has a repeated root r of multiplicity k, then the part of a general solution of the differential
equation

any
(n) + an−1y

(n−1) + · · ·+ a2y
′′ + a1y

′ + a0y = 0

corresponding to r is of the form:

(c1 + c2x+ . . .+ ckx
k−1)erx

Example 1. Find a function y(x) such that y(4)(x) = y(3)(x) for all x and y(0) = 18,
y′(0) = 12, y′′(0) = 13, and y(3) = 7.

• Characteristic equation:

• General solution:

• Particular solution:
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Complex-Valued Functions and Euler’s Formula

Complex roots

• Any complex (nonreal) roots will occur in complex conjugate pairs:

• This raises the question of what might be meant by an exponential such as

• Recall from elementary calculus the Taylor series for the exponential function

• If we substitute in this series and recall that ,
and so on, we get
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Euler’s formula

• Because the two real series in the last line are the Taylor series for cos θ and sin θ,
respectively, this implies that

• This result is known as Euler’s formula.

• Because of it, we define the exponential function ez, for z = x+iy an arbitrary complex
number, to be

Complex-Valued functions

• Thus it appears that complex roots of the characteristic equation will lead to complex-
valued solutions of the differential equation.

• A complex-valued function F of the real variable x associates with each real number x
(in its domain of definition) the complex number

• The real-valued functions f and g are called the real and imaginary parts, respectively,
of F .
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Complex Exponentials

• The particular complex-valued functions of interest here are of the form:

• We note from Euler’s formula that

and

• The most important property of erx is that

if r is a complex number.

• The proof is straightforward:

Complex Characteristic Roots

• As a result, when r is complex (just as when r is real), erx will be a solution of the
differential equation

any
(n) + an−1y

(n−1) + · · ·+ a2y
′′ + a1y

′ + a0y = 0

if and only if r is a root of its characteristic equation.

• If the complex conjugate pair of roots r1 = a + bi and r2 = a − bi are nonrepeated,
then the corresponding part of a general solution of this differential equation is

where the arbitrary constants C1 and C2 can be complex.
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• For instance, the choice C1 = C2 =
1

2
gives the real-valued solution

while the choice C1 = −1

2
i, C2 =

1

2
i gives the independent real-valued solution

• This yields the following result.

Theorem (Complex Roots) If the characteristic equation

anr
n + an−1r

n−1 + · · ·+ a2r
2 + a1r + a0 = 0

has an unrepeated pair of complex conjugate roots a ± bi (with b ̸= 0), then the corre-
sponding part of a general solution of the differential equation

any
(n) + an−1y

(n−1) + · · ·+ a2y
′′ + a1y

′ + a0y = 0

has the form
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Polar Form

• We can employ the polar form

of the complex number z.

• This form follows from Euler’s formula upon writing

• Here r is the modulus

of the number z.

• The argument of z is the angle θ.

• For instance, the imaginary number has modulus and argument .

• Similarly, .

• Another consequence is the fact that the nonzero complex number z = reiθ has the
two square roots

where
√
r denotes (as usual for a positive real number) the positive square root of the

modulus of z.
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Repeated Complex Roots

• Theorem can be extended for repeated complex roots.

• If the conjugate pair has multiplicity , then the
corresponding part of the general solution has the form

• It can be shown that the 2k functions

appearing above are linearly independent.
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Example 2. Find the general solution of the differential equation:

y′′ − 6y′ + 13y = 0.

• Characteristic equation:

• General solution:

Example 3. Find the general solution of the differential equation:

y(4) + 18y′′ + 81y = 0.

• Characteristic equation:

• General solution:

MA 266 Lecture 16 page 8 of 10



Example 4. Solve the following initial value problem:

9y′′ + 6y′ + 4y = 0, y(0) = 3, y′(0) = 4.

• Characteristic equation:

• General solution:

• Particular solution:

MA 266 Lecture 16 page 9 of 10



Example 5. Find a linear homogeneous constant-coefficient equation with the given general
solution:

y(x) = c1 cos 2x+ c2 sin 2x+ c3 cosh 2x+ c4 sinh 2x.
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Christian Moya, Ph.D.

Midterm Review and Sec 3.4 Mechanical Vibrations

Example 1. Consider a pond that initially contains 10 million gal of water. Water contain-
ing a polluted chemical flows into the pond at the rate of 6 million gal/yr, and the mixture in
the pond flows out at the rate of 5 million gal/yr. The concentration γ(t) of chemical in the
incoming water varies as γ(t) = 2+ sin 2t grams/gal. Let Q(t) be the amount of chemical at
time t measured by millions of grams. Derive the differential equation of the process.

1



Example 2. Let y(t) be the solution of the IVP:

y′′′ + y′ = 0, y(0) = 2, y′(0) = 1, y′′(0) = 1,

then y(π) =?
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Example 3. Find the particular solution of the IVP:

y′ =
1− 2x

y
, y(1) = −2,

in explicit form.
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Example 4. Find the solution of the IVP

y′′ + y′ − 6y = 0, y(0) = 0, y′(0) = 5.
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Mechanical Vibrations

In Sec 3.1, we considered the following mass connected to a spring and a dashpot.

Spring Mass Dashpot

x (t)
x  = 0

Equilibrium

position

x  > 0

m

We described the dynamics of this system using the linear equation:

Here

• : spring force, : spring constant

• : dashpot force, : damping constant

• : external force.

Remarks

• : no dashpot ⇐⇒

• : if .

• Motion is if .

• Motion is if .

MA 266 Lecture 17 page 5 of 13



The Simple Pendulum

θ

O

h m

L

We let

• : arc distance from O to m.

• : velocity of m

Kinetic Energy:

Potential Energy:

The sum of the kinetic energy T and potential energy V :
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Differentiating with respect to t both sides:

Note: We can also obtain the above differential equation using Newton’s second law.

Going from nonlinear to linear

• Small angle approximation:

• Adding frictional resistance:
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FREE Undamped Motion

• Define:

• General solution:

Phase angle

A

B
C

α

• General solution:
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The mass oscillates with:

• Amplitude: .

• Circular frequency: .

• Phase angle: .

t

C

x

T

x(t) = C cos(ω0t – α) 

δ

–C

• Period:

• Frequency:

• Time lag:
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FREE Damped Motion

• Characteristic equation:

• Sign depends on:

• Critical damping:

MA 266 Lecture 17 page 10 of 13



Overdamped case c > cr

• =⇒ two distinct roots:

• General solution:

0
t

x

0

(0, x0)

Critically damped case c = cr

• =⇒ repeated roots:

• General solution:

0
t

x

0

(0, x0)
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Underdamped case c < cr

• =⇒ two complex roots:

• General solution:

• Using derivation :

α

ω1ω

α

x = Ce–pt cos( 1t –  )ω α

x = +Ce–pt

x = –Ce–pt

0
t

2π

ω1
ω

π
T1 =

x 0
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Example 5. Consider the differential equation of a spring-mass-(dashpot) system:

mx′′ + cx′ + kx = 0.

Find the particular solution

a) with damping: m = 1, c = 10, k = 125, x0 = 6, and v0 = 50.

b) without damping: m = 1, k = 125, x0 = 6, and v0 = 50.

Solution a):

• Characteristic equation:

• General solution:

• Particular solution:

Solution b):

• Characteristic equation:

• General solution:

• Particular solution:
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Sec 3.5-1 Nonhomogeneous Equations

• Consider the nonhomogeneous nth-order linear equation with constant coefficients:

• Recall the following theorem:

Theorem (Solutions Nonhomogeneous Equations)

• Let yp be a particular solution of the nonhomogeneous equation on an open interval
I where the functions pi and f are continuous.

• Let y1, y2, . . . , yn be linearly independent solutions of the associated homogeneous
equation

y(n) + p1(x)y
(n−1) + · · ·+ pn−1(x)y

′ + pn(x)y = 0.

• If Y is any solution whatsoever of the equation nonhomogeneous equation on I,
then there exist numbers c1, c2, . . . , cn such that

Y (x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x)︸ ︷︷ ︸
=:yc(x)

+yp(x)

for all x in I.

• Question: How to find ?

1



Undetermined Coefficients

• Suppose that is a polynomial of degree .

• Note that the derivatives of a polynomial are themselves polynomials of lower degree.

• Thus it is reasonable to guess a particular solution has the form

Example 1. Find a particular solution of

y′′ + 3y′ + 4y = 3x+ 2.

• Here is a polynomial of degree , so our guess is:

• Then

• Solve for the undetermined coefficients and .
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• Similarly, suppose that

• Then it is reasonable to expect a particular solution of the same form:

a linear combination with undetermined coefficients and .

• Any derivative of the linear combination of cos kx and sin kx has the same form.

Example 2. Find a particular solution of

3y′′ + y′ − 2y = 2 cos x.

• We try the guess :

• Then

• Solve for the undetermined coefficients and .
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Eligible Functions

• The method of undetermined coefficients applies whenever the function f(x) in

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = f(x).

is a linear combination of (finite) products of functions of the following three types:

Example 3. Find a particular solution of

y′′ + y′ + y = sin2 x.

• We try the guess :

• Then

• Solve for the undetermined coefficients and .
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Caution!!!

Example 4. Find a particular solution of

y′′ − 4y = 2e2x.

• We try the guess :

• Then

• Solve for the undetermined coefficient:
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Rule 1 Method of Undetermined Coefficients

• Suppose that Ly = f(x) is a nonhomogeneous linear equation with constant coeffi-
cients and that f(x) is a linear combination of finite products of eligible functions.

• Also suppose that no term appearing either in f(x) or in any of its derivatives
satisfies the associated homogeneous equation Ly = 0.

• Then take as a guess/trial solution for yp a linear combination of all linearly inde-
pendent such terms and their derivatives.

• Then determine the coefficients by substitution of this trial solution into the non-
homogeneous equation Ly = f(x).

Example 5. Find a particular solution of

y′′ + 9y = 2x2e3x + 5.

• We try the guess :

• Then

• Solve for the undetermined coefficients:
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Remarks on Rule 1

• In practice we check the supposition made in Rule 1 by first using the characteristic
equation to find the complementary function yc.

• Then we make a list of all the terms appearing in f(x) and its successive derivatives.

• If none of the terms in the list duplicates a term in yc, then we use Rule 1.

The Case of Duplication

• Consider the case in which Rule 1 does not apply.

• That is, some of the terms involved in f(x) and its derivatives satisfy the associated
homogeneous equation.

• For instance, suppose that we want to find a particular solution for:

• Proceeding as in Rule 1, our first guess would be

• This form of yp(x) will not be adequate because the complementary function is

so substitution would yield zero rather than (2x− 3)erx.
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Amending Our Initial Guess

• To amend our first guess, we observe that

by our earlier discussion of differential operators.

• If y(x) is any solution of our differential equation and we apply the operator (D− r)2

to both sides, we see that y(x):

• The general solution of this homogeneous equation is:

Form of the General Solution

• Thus every solution of our original equation is:

• Note that the RHS can be obtained by multiplying each term of our first guess

by

that is, the least positive power of x (in this case, x3) that eliminates duplication
between the terms of the resulting trial solution yp(x) and the complementary function
yc(x).
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The General Case

• To simplify the general statement of Rule 2, we observe that to find a particular solution
of the nonhomogeneous linear differential equation

it suffices to find separately particular solutions Y1(x) and Y2(x) of the two equations

respectively.

• Linearity then gives

and therefore is a particular solution of

• (This is a type of “superposition principle” for nonhomogeneous linear equations.)

• Now our problem is to find a particular solution of the equation Ly = f(x), where f(x)
is a linear combination of products of the elementary functions listed earlier.

• Notation: f(x) can be written as a sum of terms each of the form

where Pm(x) is a polynomial in x of degree m.
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Sec 3.5-2 Nonhomogeneous Equations

Rule 2 Method of Undetermined Coefficients

• If the function f(x) is of the form

take as the guess/trial solution

where s is the smallest nonnegative integer such that no term in the trial solution
yp duplicates a term in the complementary function yc.

• Determine the coefficients in yp by substituting yp into the nonhomogeneous eq’n.

The next table lists the form of yp in various common cases:

f(x) yp

Pm(x) = b0 + b1x+ b2x
2 + · · ·+ bmx

m xs(A0 + A1x+ A2x
2 + · · ·+ Amx

m)
a cos kx+ b sin kx xs(A cos kx+B sin kx)

erx(a cos kx+ b sin kx) xserx(A cos kx+B sin kx)
Pm(x)e

rx xs(A0 + A1x+ A2x
2 + · · ·+ Amx

m)erx

Pm(x)(a cos kx+ b sin kx)
xs[(A0 + A1x+ · · ·+ Amx

m) cos kx+

(B0 +B1x+ · · ·+Bmx
m) sin kx]

1



Example 1. Find the particular solution of

y(3) + y′′ = 3ex + 4x2.

• Characteristic equation:

• Complementary solution yc:

• Initial trial yp:

• Eliminate duplication terms ⇐⇒ (s =?)

yp = Aex +B + Cx+Dx2

y′p = Aex + C + 2Dx

y′′p = Aex + 2D

y′′′p = Aex

yp = Aex +Bx+ Cx2 +Dx3

y′p = Aex +B + 2Cx+ 3Dx2

y′′p = Aex + 2C + 6Dx

y′′′p = Aex + 6D

MA 266 Lecture 19 page 2 of 12



yp = Aex +Bx2 + Cx3 +Dx4

y′p = Aex + 2Bx+ 3Cx2 + 4Dx3

y′′p = Aex + 2B + 6Cx+ 12Dx2

y′′′p = Aex + 6C + 24Dx

• The system of equations:

• Particular solution yp(x):
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Example 2. Determine the appropriate form for a particular solution of

y′′ − 6y′ + 13y = xe3x sin 2x.

• Characteristic equation:

• The complementary solution is:

• Initial trial yp:

• Eliminate duplication terms:

• Particular solution:
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Example 3. Determine the appropriate form for a particular solution of

y(4) + 5y′′ + 4y = sinx+ cos 2x.

• Characteristic equation:

• The complementary solution is:

• Initial trial yp:

• Eliminate duplication terms:

• Particular solution:
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Variation of Parameters

• Consider

• Note:

• Q: Can we find a finite linear combination to use as trial solution yp?

Method - Variation of Parameters

• Consider the nonhomogeneous equation:

L[y] := y(n) + pn1y
(n−1) + . . .+ p1y

′ + p0y = f(x).

• Assume we know the general solution

• of the homogeneous equation:

L[y] := y(n) + pn1y
(n−1) + . . .+ p1y

′ + p0y = 0.
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• Idea:

• Objective: Select variables/functions in such a way that:

• is a solution of .

• THIS IS ALWAYS POSSIBLE!!!

Example 4. Consider the following second order nonhomogeneous equation:

L[y] := y′′ + P (x)y′ +Q(x)y = f(x).

where P,Q are continuous in some interval I. Assume the above has the complementary
solution:

yc(x) = c1y1(x) + c2y2(x)

Find the particular solution yp(x).

• Objective: Find such that

• is a particular solution of .

• First condition:

• We need a second condition (free of our choice).
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• Idea: to avoid , we let our second condition:

• Product rule gives:

• Note:

• Replace .

• Thus, we obtain the system:
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Remarks

• Determinant of the coefficients .

• After solving for and , we integrate
to obtain:

• We obtain the desired particular solution:

Example 5. Find the particular solution of

y′′ + y = tanx.

• Complementary solution yc:

• Setup :

• Hence :
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• Solve for u′
1 and u′

2:

• Thus

Theorem - Variation of Parameters

• If the nonhomogeneous equation:

L[y] := y′′ + P (x)y′ +Q(x)y = f(x)

• has complementary function:

yc(x) = c1y1(x) + c2y2(x)

• Then a particular solution is given by:

yp(x) = −y1(x)

∫
y2(x)f(x)

W (x)
dx+ y2(x)

∫
y1(x)f(x)

W (x)
dx

,

• where W (x) = W (y1, y) is the Wronskian of the two independent solutions y1 and
y2 of the associated homogeneous equation L[y] = 0.
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Sec 3.5 Nonhomogeneous Equations

Method - Variation of Parameters

• If the nonhomogeneous equation:

L[y] := y′′ + P (x)y′ +Q(x)y = f(x)

• has complementary function:

yc(x) = c1y1(x) + c2y2(x)

• The particular solution is :

yp(x) = u1(x)y1(x) + u2(x)y2(x)

• To find u1 and u2, we first solve the following system of equations for u′
1 and u′

2:

u′
1y1 + u′

2y2 = 0 (1a)

u′
1y

′
1 + u′

2y
′
2 = f(x). (1b)

• We the find u1 and u2 via integration:

u1(x) =

∫
u′
1(x)dx

u2(x) =

∫
u′
2(x)dx.

• The determinant of (1) is the Wronksian of the two linear independent solutions y1
and y2: W (y1, y2) = W (x).
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Theorem - Variation of Parameters

• If the nonhomogeneous equation:

L[y] := y′′ + P (x)y′ +Q(x)y = f(x)

• has complementary function:

yc(x) = c1y1(x) + c2y2(x)

• Then a particular solution is given by:

yp(x) = −y1(x)

∫
y2(x)f(x)

W (x)
dx+ y2(x)

∫
y1(x)f(x)

W (x)
dx

• where W (x) = W (y1, y2) is the Wronskian of the two independent solutions y1 and
y2 of the associated homogeneous equation L[y] = 0.
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Example 1. Find the particular solution of

y′′ + 9y = sin 3x.

• Complementary solution:

• The Wronksian W (x) is

• The desired functions are then

• Particular solution:
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Example 2. Find the particular solution of

y′′ − 4y = xex.

• Complementary solution:

• The Wronksian W (x) is

• The desired functions are then

• Particular solution:
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Sec 3.6 Forced Oscillations

Forced Mass-Spring System

• In a previous lecture, we derived the differential equation

that models the motion of a mass m that is attached to a spring (with constant k) and
a dashpot (with constant c) and is also acted on by an external force F (t).

• Machines with rotating components commonly involve mass-spring systems (or their
equivalents) in which the external force is simple harmonic:
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Undamped Forced Oscillations

Undamped Forced Oscillations

• Consider the external force F (t) = F0 cosωt and let c = 0. Then, we have:

mx′′ + kx = F0 cosωt,

• The complementary function is:

xc(t) = c1 cosω0t+ c2 sinω0t.

• The (circular) natural frequency of the mass–spring system is:

ω0 =

√
k

m

• Assuming ω ̸= ω0, the particular solution is:

xp(t) =
F0/m

ω2
0 − ω2

cosωt.

• The general solution x = xc + xp is given by:

x(t) = c1 cosω0t+ c2 sinω0t+
F0/m

ω2
0 − ω2

cosωt,

where the constants c1 and c2 are determined by the initial values x(0) and x′(0).

• As we saw earlier, this can be rewritten as

x(t) = C cos(ω0t− α) +
F0/m

ω2
0 − ω2

cosωt.
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Example 3. Use the method of undetermined coefficients to find the particular solution xp(t)
of:

mx′′ + kx = F0 cosωt.

• The trial particular solution is:

• Note: No sine term is needed in xp because there is no term involving x′ on the L.H.S.

of .

• This gives

• So,

• Particular solution:
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Example 4. Find the solution x(t) = xc(t) + xp(t) of the following initial value problem:

L[x] := x′′ + 4x = 5 sin 3t, x(0) = 0, x′(0) = 0.

• The complementary solution:

• The trial particular solution:

• L[xp] = 5 sin 3t gives:

• The general solution x = xc + xp is:

• Using the ICs, we find c1 and c2:
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Damped Forced Oscillations

Damped Forced Oscillations

• Consider the external force F (t) = F0 cosωt and let c ̸= 0. Then, we have:

mx′′ + cx′ + kx = F0 cosωt,

• The complementary function takes one of the three forms depending on:

c > ccr :=
√
4km, c = ccr, or c < ccr.

Transient solution

• In our previous lectures, we demonstrated that:

xc(t) → 0 as t → +∞.

• Thus, xc(t) is the transient solution of the damped forced motion.

• =⇒ xc(t) dies out with the passage of time.

Particular solution

• The particular function is:

x(t) = A cosωt+B sinωt

where

A =
(k −mω2)F0

(k −mω2)2 + (cω)2
, B =

cωF0

(k −mω2)2 + (cω)2
.

• We can show that the resulting xp(t) corresponds to the steady periodic oscillation:

xp(t) = C cos(ωt− α)

has amplitude C =
√
A2 +B2 = F0√

(k−mω2)2+(cω)2

• Phase angle α:

α =

{
tan−1 cω

k−mω2 if k > mω2,

π + tan−1 cω
k−mω2 if k < mω2
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Example 5. Find the particular solution xp(t) of:

mx′′ + cx′ + kx = F0 cosωt.

• The method of undetermined coefficients indicates =⇒ the trial particular function:

• Replacing L[xp] = F0 cosωt gives:

• Two equations:

• The undetermined coefficients:

• If we write:

• Results in the steady periodic oscillation:
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Sec 3.6 Forced Oscillations

Damped Forced Oscillations

• Consider the external force F (t) = F0 cosωt and let c ̸= 0. Then, we have:

mx′′ + cx′ + kx = F0 cosωt,

Transient solution

• In our previous lectures, we demonstrated that:

xc(t) → 0 as t → +∞.

• Thus, xc(t) is the transient solution of the damped forced motion.

• =⇒ xc(t) dies out with the passage of time.

Particular solution

• The particular function is:

x(t) = A cosωt+B sinωt

where

A =
(k −mω2)F0

(k −mω2)2 + (cω)2
, B =

cωF0

(k −mω2)2 + (cω)2
.

• We can show that the resulting xp(t) corresponds to the steady periodic oscillation:

xp(t) = C cos(ωt− α)

has amplitude C =
√
A2 +B2 = F0√

(k−mω2)2+(cω)2

• Phase angle α:

α =

{
tan−1 cω

k−mω2 if k > mω2,

π + tan−1 cω
k−mω2 if k < mω2

1



Example 1. Find the steady state periodic solution of the differential equation:

x′′ + 3x′ + 5x = −4 cos 5t.

• Trial particular solution:

• Replacing into the differential equation gives:

• The undetermined coefficients are:

• Write as steady periodic solution:

• Amplitude and angle:
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Example 2. Find the transient solution and the steady periodic solution of the initial value
problem:

x′′ + 8x′ + 25x = 200 cos t+ 520 sin t, x(0) = −30, x′(0) = −10.

• Steady periodic solution:
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• Transient solution:
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Resonance - Forced Undamped Oscillations

• Allowing to approach .

• Recall the particular solution:

xp(t) =
F0/m

ω2
0 − ω2

cosωt.

• If ω becomes approximately equal to ω0, the amplitude A of xp becomes large.

• It is sometimes useful to rewrite xp(t) in the form:

• is the static displacement of a spring with k due to a constant force F0.

• is the amplification factor defined as:

The phenomenon of resonance—the increase without bound (as ω → ω0) in the ampli-
tude of oscillations of an undamped system with natural frequency ω0 in response to an
external force with frequency ω ≈ ω0.
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Example 3. Pure Resonance - Find the particular solution xp(t) of the following un-
damped system:

x′′ + ω2
0x =

F0

m
cosω0t.

• Complementary solution:

• Trial Particular solution:

Bridge Crossings and Resonance

• In practice, a mechanical system with very little damping can be destroyed by reso-
nance vibrations.

• Any complicated structure such as a bridge has many natural frequencies of vibra-
tion.

• The resulting resonance vibrations can be of such large amplitude that the bridge
will collapse.
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Practical Resonance - Forced Damped Oscillations

• Consider the damped system:

mx′′ + cx′ + kx = F0 cosωt

• Note that if c > 0, then the “forced amplitude” C(ω):

C(ω) =
F0√

(k −mω2)2 + (cω)2
< +∞,

always remains finite.

• However, the forced amplitude may attain a maximum for some value of ω, in
which case we speak of practical resonance.

Example 1. Show that if c ≥
√
2km the amplitude C(ω) decreases for all ω > 0;

otherwise C(ω) attains a maximum value.

1. Use C ′(ω):

2. If c ≥
√
2km:

3. But if c <
√
2km:

1



Example 2. Find the amplitude C(ω) and the practical resonance frequency ω of the fol-
lowing forced mass-spring-dashpot system:

x′′ + 10x′ + 650 = 100 cosωt.

• Particular solution:

• Solving for the coefficients A and B

• The amplitude C(ω) of the steady periodic forced oscillations with freq. ω :

• Find the practical resonance by solving C ′(ω) = 0:
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