MA 266 Lecture 24

Christian Moya, Ph.D.

Sec 5.1 Matrices and Linear Systems

Review of Matrices

e A matrix A with m rows and n columns can be written as:

a, Qa --- a/ﬂ }‘M"
Ao [ O %2 @ | [ag]

a;.u a'mz ... dmn

e The transpose of A é AT (n XM)
Ais (mua)
AT: [aj(,' 7
cpmplfl

3 2-i :
A:(4—|—3i —5+2¢) (sz) wfafrizx

Example 1. Let

Then AT =7

Q. dim A7 (L\“’—)

- /3 4430
A= 2L -5+



Properties of Matrices

e Equality: A = B if and only if

(»txn) [a‘_/_] _ [b,/ ] ‘b//}./'-
o Addition: A+ B = [a_,-/'y # [b,;,']:— [ai/’ + bcj]-_- c
= [eyJ

e Scalar Multiplication: oA = M [al/] = [daa"l ]'—' C'
KER. = [ei].

Vectors

e A row vector u {/Xﬂ)— )7& {Tl.d
7,/: (ul) "'JZ} ) 'un)

e A column vector v (ﬂ X I) - )yafﬂ'%

e Convenient to describe an m x n matrix in terms of either its m row vectors or its n
column vectors:

— a — I |

/4:-_ ‘—d.z'—' D - Ll Ll.bn
A (o) " (en) \ |||

a, : low Ve etar- LJ /.s a eoﬂmw
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Scalar or Dot Product 2 lL
o If (’ Xf) blz (kx ')

A= (a,)az, p) A b=

then b
C’ ol e b 2 B
}=l
¢ () ()
Product of Matrices }
e If A is an m X p matrix and B is a p X n matrix, then their product is the m x n matrix:
4 Lo — —

C= AB-= [“i ‘ é’.j7= [eij].
(m xn) (nxp ) (pr»)

e Visualizing AB :

a1 Qg - Qip _b11 b12 cee Pt bln-

21 Qoo -+ Q2p b21 b22 cee P b2n
a; — | e

Am1  Am2 Amp _bpl bp2 bpn
C};}' = a/' o b., b;

ot
Example 2. Let A = and Yy = cos 3t . Find Ay =7
3 —2 —1
sin 4t

(3)(3\ XI —_25/"4'6'
C'—‘- 3 .9- , i L & 2_6943( I}“4e
(z1)
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e Identity: The identity matrix [ is defined as (ﬂ X n )

( of oroler ")

— (‘t._o
L= 5

e Inverse: The matrix A is called nonsingular or invertible if ( nxn

e -t -
) / Sy
W'qut '

Mote <f A ‘7( )= A &
e Determinant: The determinant of a (2 x 2) matrix is defined as

| a b _b.e A= (a )

/A‘I— / ¢ a /: Q-d :
. -l
"-f/A/i‘O-A=m'(_Cd).

We consider vectors or matrices whose elements are functions of real variable , i.e.,

2, (¢) A (t) --- Gn (*)
I@’)= x"(t) A(*) = : . :.
(4’) ( xu) Au (£) ... Qma (d

The derivative of a matrix function is defined by = [ . Y] (f) j

A(mm) A(e)‘ dA [d‘z'/] “‘2 olim (mxn)

If A, B are matrix functions, and C' is a constant matrix, then
4, - "~

dlA 8 o6, dA g
A cg; g - & f f,,é 4P - Adé % °

(mxn) (nvp) (pxn)

Matrix Functions
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First-Order Linear Systems

e Consider a general system of n first-order linear equations

zy = pu(t)zy + pr2(t)xe + - + pro(t)z, + fi(t)
xh = pa(t)xyr + pae(t)xe + -+ + pon(t)zy, + falt)
[ ] .’L‘g = pgl(t)$1 + pgg(t)l’g + e+ pgn(t)xn + f3(t)

e We introduce the coefficient matrix:

Pt) - [ﬁ'j(f)].

and the column ¢Vectors: ﬁ (-{*
X = 2.-!2 WI f(b) g ‘ ‘
o iy

e Then the above system takes the form of a single matrix equation:

)

)

Y

(nxl)

dz _ pe).- 40,
ax _ pR) o2 +
ole (,,x(n% (ex)  (nx

Example 3. Write the given system in the form x' = P(t)x + £(t),

x’l:3.7:1—él.x2+a:3—i—t,x'2=x1—3x3+t2,x§:6x2—7x3

94‘“ x‘ 3 -4 ‘l'
x] P=[414 0-3

x3 0 6 -%

(9x¢)

R
|

+ 3.

f6@)-
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ii% PE) =+ £(¢)

A4,

('é) [Z/, a.) 7 ( Z2(t)

A
zc+) satifor:  X'= Pi)z+ F(&).

e A solution of our system on some open interval I is a colum>zect0r function:

Example 4. Verify that the given vector solutions satisfy the given linear system:

, -3 2 e3t 2e2t
=34 )% X7 ge )0 2T 2 |-

z'-?x

3e* ' ° 2_ ”* /
/ st |= - 4 96
qe 3
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Associated Homogeneous Equation

e To investigate the general solutions of the (linear) matrix differential equation

dx_

= =Ptz+10), | ,

we consider first the associated homogeneous equation

dx _ |
o PE) x

in which f(ﬁ = D )

Principle of Superposition

e Let xq, X9, ..., X, be n solutions of the homogeneous linear equation
d dxi _ P(t) =i
ax _ P(t)x -7 ?(t
dt . ol€
on the open interval I. ‘fof/.‘ ’, “ ey n.
o If ¢y, co, ..., ¢, are constants, then the linear combination

(.L) X@): @ %) +G Rl +._. + G (Y

is also a solution of the homogeneous linear equation on I.

Why the principle of superposition is true?

Show (') Z(_é) )5 a soT'a 0'/ x'_._ ?(t)z-

2 '(8)= € x,'C)+... + G 2% (¥)
. O PAHc)+ QPR ¢+ GPH )
= ?(‘b)r (C, xl-('('\ R &Xn(f))

. _
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Linear Independence

e The vector-valued functions xi, Xo, ..., X, are linearly dependent on the interval
I provided that there exist constants ¢y, co, ..., ¢, not all zero such that

CHKCt) + ... 4 & Enlt)=0] -

for all ¢t in I.

@,:Czl.‘-.. = c, =0

e Otherwise, they are linearly independent.
PN ™ N

To tell whether or not n given solution s of the associated homogeneous equation are linearly
dependent, we can use the Wronksian Determinant.

Wronksian Determinant

o Ifx;, x5, ..., X, are such solutions, then their Wronskian is the n x n determinant
r |

/l
WC#) = W(z.'...,Xn)= ¢| xz cet )(n

| |

/
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Theorem - Wronksian of Solutions

e Suppose that x;, X, ..., X, are n solutions of the homogeneous linear equation
x' = P(t)x on an open interval I.

o Let
W =W(x1,Xa,...,Xp).
[V
e Then: V
— If x4y, X9, ..., X, are linearly dependent ¢n I, then W‘ 0 é é r

— If x4, X9, ..., X, are linearly independent on I, then W# 0 V‘ée '! :

General Solution of Homogeneous Systems

Theorem - General Solutions of Homogeneous Systems

e Let X1, X, ..., X, be n linearly J)ﬁdfm J‘(I’ solutions of the homogeneous
linear equation x’ = P(¢)x on an open interval /, where P(¢) is continuous.

e If x(¢) is any solution of x’ = P(¢)x on I, then there exist numbers ¢, ¢, ..., ¢,
such that

2(t)= ¢ =) 1 Ca %) +.-+ &, %n ()

for all ¢t in [.
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Example 5. Use the Wronksian to show that the following solutions are linearly independent.

Then, write the general solution.

, -3 2 et 2e~2t
X7\ 34 )% X7 et )0 27 2 |-

WE = " ., , [=e-ee
Je e ¢
= -5 £ o
Vo
>0
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MA 266 Lecture 25

Christian Moya, Ph.D.

Sec 5.1 Linear Systems

Conclusion - Theorem: General Solutions of Homogeneous Linear Systems

e [t suffices to find 'Z linearly independent solution vectors:

x’/ xz, .--l x‘.
e The linear combination

AE)= €1z () + GHRE) 4. 4 GF ()

with arbitrary coefficients will then be a general solution of our system

x' = Ax.

Example 1. Write a general solution of the following Linear System:

,_<—3 2
=: A

e The general solution obtained was:

€3t 26—275
z(t) = ¢ ( 33t ) +C ( o2t ) .
|/v— VW o
) 2.




Example 2. Find a particular solution of the following Linear System Initial Value Prob-
lem (IVP):

x = < :g i >x, 21(0) = 0,25(0) = 5.

e Recall the general solution is:

e3t 26—2t
x(t) =1 ( 33t ) +c2 < o2t ) .

s
'z c et 2™
> x6): G3e*+ & e‘”)

et ge-tt c;)
= (5 e3'l’ e_;f C2

—— C.

= X(*)
= |x®)- X(t)-cj

e Use the initial conditions: 9" (0):—" o M’ %(‘0) -5
0
(5) -x(0)= X(2)¢

_ /L 2 CL

- (3 L/ \Cse
,’—> g Ci= 4. \
Cyj=-4 esi' (28, e

Safu TvP: Zé;)= 2 (5e3t' -4 ( o-at
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-k“
wt
Sec 5.2 Eigenvalue Method for Homogeneous Systems o ’};

Q: How to find the n needed linearly independent solution vectors?

e To find these linearly independent solution vectors, we proceed by analogy with the
characteristic root method for solving a single homogeneous equation with constant

coefficients.
rt

Form of the Solution Vectors e

e It is reasonable to anticipate solution vectors of the form

> ((,) Vz. e _ l/z A ¢ Ad

x(e)=( 1T s [E=vE
( Xna') Va € \/l‘/;

where x'; ,;:. Vz_, =" '/‘ ’ are appropriate scalar constants.

Matrix Form

e Consider the Homogeneous System in matrix form:
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e We cancel the nonzero scalar factor eM to get

A= Av (1)

Conclusion:

l At
) ° i&') = v—c will be a nontrivial solution of
/
2'= Ao

o
3

provided that v is a nonzero vector and A is a constant such that the matriz product
Av is a scalar multiple of the vector v. (L)

e The question now is this: How do we find v and \?

Finding v and A

e To answer this question, we rewrite the equation Av = \v in the form
(A A ) V=0 \

e By a standard theorem of linear algebra, it has a nontrivial solution if and only if the
determinant of its coefficient matrix vanishes; that is, if and only if

[A- AT] £t (- 4T) =0
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The Eigenvalue Method

The Eigenvalue Method

e For solving the homogeneous system:
y & l: A 2Z
e consists of finding A so that

olet (A- AT)= [A- 41| = 0.

and next solving

(A~T)v=©

with this value of A to obtain ‘

it
e Then 7( @) = d—e will be a solution vector.

e The name of the method comes from the following definition.

Definition Eigenvalues and Eigenvectors

e The number A (either zero or nonzero) is called an eigenvalue of the n x n matrix

A provided that
ak./.é.[r):m — M| =0.

e An eigenvector associated with the eigenvalue \ is a nonzero vector v such that
Av = \v, so that

(A —XM)v=0.
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Example 3. Find the eigenvalues and eigenvectors of the matriz

a=(53)

e Eigenvalues (2x2) ,
o/e{(,, iz)- a/e.f(ﬁ 4 _;_J
i) el o
| s

- (a /\) {,{1 =2

A2 =1,

e Eigenvectors:

(,4 AT =0

(A 2—1')"‘-0 < ( >(“‘> {)

4‘V/—4Vz ::0
.5)(’7‘(_% 78’ esn.
p0- 50 w teo
/u:f(u/ oxe ;eﬂ,j ‘/' [ = i;[,_.= pi
Code 2 ,(-—..J_ ”r-__ ‘L)
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Characteristic Equation

e The equation

-A Oz .-. A
b A2-f --- Q‘n

A — | =

“m 4.,,,...-. a‘n—A

is called the] characteristic equation of the matrix A.

Its roots are the eigenvalues of A.

Expanding this determinant, we evidently get an nth-degree polynomial of the form

(D)X + by A" b A+ by = 0.

By the fundamental theorem of algebra, this equation has n roots.

Possibly some are complex, possibly some are repeated.

(1x0) o v
e Thus an _4 ¥n matrix has eigenvalues (counting repetitions).
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Outline of the Eigenvalue Method

Steps for the Eigenvalue Method

e In outline, this method for solving the n x n homogeneous constant-coefficient
system x’ = Ax proceeds as follows:

ok-‘(l-—‘]:): 9.

1. Solve the characteristic equation for the eigenvalues A\, A9, ..., A, of the ma-
TN
trix A. ——
2. Attempt to find n linearly independent eigenvectors vy, va, ..., Vv, associated

with these eigenvaflﬁes.

3. Step 2 is not always possible, but when it is, we get n linearly independent

solutions:
42t hut
2,(t)= /,e"*) 2 (t)-1,e JRre , 2y Ctl=Y,e

e In this case the general solution of x’ = Ax is a linear combination
2() = Cx/(t) +--- I Gz C8).

of these n solutions.

Distinct Real Eigenvalues

o If the eigenvalues Ai, Ao, ..., A\, are real and distinct, then we substitute each of
them in turn in the equation

(A—-A)v=0
and solve for the associated eigenvectors vy, va, ..., v,.
e

e Then it can be proved that the particular solution vectors

x1(t) = vieM xy(t) = veet, L x,(t) = vpet

are always linearly independent.
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Example 4. Use the eigenvalue method to find the general solution of:
xy = 2x1 + 3y, xh = 231 + X9,
M

e Linear system in matrix form: ¢ / = A x -

%! =

' 0/6{_(/44 T). det ((’ )-(42 ))
=JJ‘<2J:A _,3.1->

e Eigenvector equation: = @-A) (.l.—‘) - 6.
eh eg'n: “2_34 ~<f -.-_-a.‘

(-4x)me {323
Case 1: A= -4.
(:jr)r.—o-‘_@ & f)@ = (3)

= - =C
e General solution:
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Example 5. Use the eigenvalue method to find the general solution of:
xy =4z, + 1‘2 x2 6x1 — To.

e Linear system in matrix form: x= =

(z)-( —)()

e Characteristic equation:
4L 4
def(A “:) o/e/f (4 1= £>

= (4=h) (1-4) - 6
&L.eg'n'. |A’.3L_zo = 0. f

e Eigenvector equation:

e General solution:

:r(é):&( e +q() 2e
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Example 6. Find the solution of the IVP:
) =921 + by, xh = —6x1 — 219, =1,25(0) = 0.

e Linear system in matrix form:
) )
e Characteristic equation: 5
et (A-4T) = et _6 9 A h = 4

= (@-4)(2-4) + 30
=2 Ch ¢$'n: IXZ ~24A 412 =0.

e Eigenvector equation:

(A Ar)r—
)

ke ) (D) ()G

Coue 2: ‘=3 - _,i | X({‘)c

- .
e General solution: ‘ t - cl &4f + 5cz e &

&t 2 - 4
xz(t)=Gye" + G e Z(*) C,e _ eqe’

(of
e Particular solution: = (3‘(‘ 5 6 e ) (CL )
( ) 1) - X()e

- 4)("') > fals
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MA 266 Lecture 26

Christian Moya, Ph.D.

Sec 5.2 Eigenvalue Method for Homogeneous Systems

The Eigenvalue Method

e To solve the n x n homogeneous constant-coefficient linear system:
x' = Ax.

1. Solve the characteristic equation

det(A — A\I) = 0.
for the eigenvalues A\, Ao, ..., A, of the matrix A.
2. Attempt to find n linearly independent eigenvectors vi,vs,..., Vv, associated
with these eigenvalues using
(A= A)v=0.
3. Step 2 is not always possible, but when it is, we get n linearly independent
solutions:
X1 (t) = vieMt X (t) = voe? L x,(t) = vy

e In this case, the general solution of X' = Ax is a linear combination
x(t) = e1x1(t) + coxa(t) + ... + 1%, (1).

of these n solutions.




Distinct Real Eigenvalues

o If the eigenvalues Ai, A9, ..., \, are real and distinct, then we substitute each of
them in turn in the equation

(A—X)v=0
and solve for the associated eigenvectors vy, va, ..., V.

e Then, the particular solution vectors

At Aot
) )

x1(t) = vie Xo(t) = vae

are always linearly independent.

Example 1. Find the solution of the IVP:
2] =91 + by, 7y = —6x1 — 239, 21(0) = 1,25(0) = 0.
Solution

e The matrix form of the system is

e The characteristic equation of the coefficient matrix is

det (9__6A _25_ A) = (9= N\)(=2—=X\)+30

=M -TA+12=(A—4)(\A—3) =0,
so we have the distinct real eigenvalues Ay = 4 and \ = 3.

e For the coefficient matrix A, the eigenvector equation (A — A\I)v =0 is

(=2 6) =)

e Case 1: \; = 4. Substitution of the first eigenvalue \; =4 in (A — A\I)v = 0 yields

(o %)) =)
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The choice a = 1 yields b = —1, and thus v; = (_11)

Case 2: )\ = 3. Exercise - Answer: vy, = (—56)

The general solution:

X(t) = e;vieM! + cyvae?!

therefore takes the form:

The resulting scalar equations are

n=ectesn e 2(8)=X(Ee

xo(t) = —c1e™ — bege

e When we impose the initial conditions z1(0) = 1 and x5(0) = 0, we get
1 5 c 1

O).: X (0) . ) — )
(-@ x( c <—1 —6) (Cg 0

that is readily solved (in turn) for ¢; = 6 and ¢y = —1. Thus, finally, the solution of
the initial value problem is:

x(t) = 6 (_11) et — ( _56) e

r1(t) = 6e* — 5
To(t) = —6e* + 6e*.

or equivalently
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-
~” J
7 =

Example 2. The amounts x1(t) and z5(t) of salt in two brine tanks satisfy the differential %C—b)
equations
% = —k‘ll'l + kzl‘g, VZ -

dl’z
— =k — k2$2,

dt
where

Find the general solution assuming that r = 10 (gal/min), Vi = 25 (gal), and V4 = 40 (gal).

Solution

o If r =10 (gal/min), V; ) 5,(ogal) a,nd;fg =40 (gal)kthen - -L ~ _._l_
— = = -—- X v - a0
Ky = |/ 25 / e 4 ‘
e The matrix form of the system is /4

%
A: z

e The characteristic equatjon is £ 1/ | A ,
oet (A- AT / - 4 =(E-4)(_— >-_
( ‘%_ _% _ ‘ S < /9
/{24- @(: o
20

{(+%)-

e Thus, the coeflicient matrix A has

_43
/<1=0 y (z= 20
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e Casel. \=_©O . Substituting / =0 —> (A OI

Av=o & ,{(7; —Z‘:)()

-=-_-> =
a= 5 = b=5 4 |

e Case 2. \ = "'"3/”' . Exercise - Answer

()

x(t) = c1vieM + covae

e The general solution:
Aot

therefore takes the form: -—— -b .

2@)- ¢, (j} ' G (_f) e”
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Distinct Complex Eigenvalues

e Even if some eigenvalues are complez, so as long as they are distinct the eigenvalue
method yields n linearly independent solutions.

Problem: The eigenvectors associated to complez eigenvalues are COMf‘/ew ”&‘w(

Lt c 2x|
e Thus, we will have complex-valued solutions. Z(‘l‘f) = l/ e 6 —
eom,/ox mtdl‘ .

Suppose by solving characteristic equation
q’eé 0 - AT )= o.

we get the pair of complex-conjugate eigenvalues

{= pisg , A= p-47

Eigenvectors

° z is the eigenvector associated to A, so that
( A - ,( A ) V= ©
e Similarly, v is the eigenvector associated to the complex conjugate ‘\5, so that
AP
( A - ( 4 ) =0

e v defined componentwise:

d’ +/‘ L' g‘ ° bz 6
_ actibr | = [ €2 4 S]l=at) b
v : / bn
Au
(O g ™

Qa */"’

_ =:q
V= a-ib
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Complex-Valued Solution

e The complex-valued solution associated with A and v is then
. Gt
26)- ve's B A e‘ = (ats )€ c«gf*/

that ic

a!@')=8#a. qt- by ?"L) T4
(&\ (=P @”‘(bmqév‘a nqt).

Real-Valued Solution o1 (1)

e Because the real and imaginary parts of a complex-valued solution are also solutions,
we thus get two real-valued solutions 25' = /4 2 -

Cl«\ %y ()= Reix&*)} e’ ajpeigl - éynqt-)
2 (t) = TIm ?z(t)} e’ (b /canf-a nq.t-)

e [t is easy to check that the same two real-valued solutions result from taking real and

imaginary parts of vet
a—d

Procedure for Finding Real-Valued Solutions

Find explicitly a single complez-valued solution x(t) associated with the complex

eigenvalue \;

2. Then, find the real and imaginary parts x;(t) and xs(t) to get two independent
real-valued solutions corresponding to the complex conjugate eigenvalues A and \.
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Example 3. Find the solution of the IVP:

x) =221 — By, xh = 4wy — 229, 21(0) = 2, 25(0)

Solution

e The matrix form of the system is x = / *

L -5
/4 "4 -2
e The characteristic equation of the coefficient matrix is

det(A-AT) - J; ‘:‘I=

afj (A')
(L o, l‘)

so we have the complex eigenvalues:

2(/") '{:z= 4

= 3.

Az_‘.[b = 0.

o Substituting / 4 —> ( A- 4T ) =

& : 4/ :’4})( )(

,204-—4/@[—54 =0

S 2, 44, =o0.
?a—?d/—-b

/-

.

£f a=5 = b=24
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e The corresponding complex-valued solution Seceo14 f {/'f .;lﬂ4t

it /s o [ N
*()- éi) e - é"/«) (e 41 1y2" #) smattisindt)

=4 (oo 4T 1p5Hn4

e The real and imaginary parts of x(¢) are the real-vilued solutions

5co1 46 Sgin s
%(Hz&{z@'}z é‘”’“* fein ) fﬁgﬁ) N Csju4f-4/cu4f

il

“Tnf(t) }

[4

e The real-valued general solution is

0)4 1(4,): G X (el ¢ S z:.(i’) ,

P

e The resulting scalar equations are

(*) %y (#) = &G (romatrisindt) +C . o)

e When we impose the initial conditions X ( 0 ) =2 x& ( D) = 3.
[

WL A0 = 2= XE)e- gc,_ 2
6/ i) 2 (o) = X(o) e. ”

° ThU.S, «nn]]w7 thocolution of £ho TN/D Lo,

X (t)= 2 e 4t - ;f‘-'- send
Xy (t= 3 o0 4t + 3’:5}'»14{--
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MA 266 Lecture 27

Christian Moya, Ph.D.

Sec 5.2 Eigenvalue Method for Homogeneous Systems

Distinct Complex Eigenvalues

Formula for distinct complex eigenvalues Wdé‘d W4

e Distinct complex conjugate eigenvalues \; o = p£iq with eigenvectors v; o = atib
produce two linearly independent real-valued vector solutions:

x,(t) = e’ (acos gt — bsin qt)
Xy(t) = e’ (b cos gt + asin qt)

Procedure for Finding Real-Valued Solutions ’chapd 2

1. Find explicitly a single complez-valued solution x(t) = vie*! associated with the

complex eigenvalue \; and eigenvector vy;

2. Then, find the real and imaginary parts x;(t) and x5(t) to get two independent
real-valued solutions corresponding to the complex conjugate eigenvalues A; 5.




Example 1. Find the the general solution of:

Solution

e The corresponding characteristic equation

det(A — M) = det <1 AP )

13-
= (1= A3 =)+
=N -4\ +8=0

Using the quadratic formula, we obtain the pair of complex eigenvalues:

(37 ) )= ()

Note that y and z satisfy

y 2y
—Z——=—2z=0
5 5
e Choose y = —5, then z = 1 + 2i. Hence, the eigenvector is

-S ) O
vi=a+1tb= -‘-/, Py J +‘Z/‘
N

Substituting A\ = 2 + 2i into the eigenvector equation (A — A I)vy; = 0 gives
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Method 1. a b.
e Use the formulae: p 4 Cf) = XI C.e) - /é x‘! é-")
p& gdf).—.xl (t) = e (acos gt — bsin qt)
T 7Z(t!5 Xo(t) = e’ (b cos gt + asin qt)
2t /-sest 2t
zl(é)=6 wz’{ _‘Z.‘}'n‘t) v

—-s.;éu.z.'l" y
t)\ v

2{2({'): Gzt (z/t.edzé + n2

Method 2.
e Compute the corresponding complex-valued solution

-0 ) e*(cos 2t + i sin 2t)

—bHcos2t — bysin 2t
cos 2t + 1 sin 2t) + 2i cos 2t — 2 sin 2t
. [

5] V.
° i -valued solutions: .
~ S Sunst
x:(*) = € Cor it _29;,.;_{- &I” =€ aju.zl +20034

u
j TInfrt)]

X(t) = e1x1(t) + caxa(t)
2t —5c¢y1 cos 2t — deg sin 2t
(c1 + 2¢2) cos 2t + (—2¢1 + ¢o) sin 2t

Aem lz(*d-aho-
>- £ 00

page 3 of 16
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Sec 5.5 Multiple Eigenvalue Solutions

Repeated Roots

e Suppose the characteristic equation
|A — M| =0

does not have n distinct roots, and thus has at least one repeated root.

Definition. An eigenvalue is of multiplicity k if it is a k-fold root of the characteristic
equation.

e An eigenvalue of multiplicity £ > 1 may_have fewer than k linearly independent asso-
ciated eigenvectors.

e In this case we are unable to find a “complete set” of n linearly independent eigenvectors
of A, as needed to form the general solution of the system.

Complete Eigenvalues

An eigenvalue of multiplicity k& is said to be /,Comlg/e/ e - if it has &

linearly independent associated eigenvectors.

o If every eigenvalue of the matrix A is complete, then—because eigenvectors associated
with different eigenvalues are linearly independent—it follows that A does have a
complete set of n linearly independent eigenvectors vy, va, ..., V,, associated with the
eigenvalues Ay, Ag, ..., A, (each repeated with its multiplicity).

e In this case a general solution of
x' = Ax

is still given by the usual combination

At Ant

X(t) = c1vieMt + covae 4 Ve
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Example 2. Find a general solution of the system

9 4 0
xX=-6 -1 0]x.
6 4 3
—A

Solution
e The characteristic equation of the coefficient matrix A is

9—-A 4 0
det(A — AI) = det 6 -1-Xx 0
A

4 3 —

dt( 0 - _/\)—(0)-det<9gA i)+(3—)\)-det(9__6)\ _14—A)

—(5-N(E-\?=0.

Thus A has

A= § (k:L) y Ay = (k—:z)

Case 1. A\; = 5. The eigenvector equation (A — \I)vy =0 is:

4 4 0\ [a 0
(A=5D)vi=(-6 =6 0 | |b]=10
6 4 -2/ \c 0

Each of the first two eq’ns implylb = —a

W -
Then, one cz'm reduce the third equation to

ba -4a -2 =0. & 94 2¢= O.

e The choice of a = 1 yields the eigenvector: q=C
b ==4 )C= L.
- (-
L= 4

MA 266 Lecture 27

page 5 of 16



e Case 2. )\, = 3. Here the eigenvector equation is:

4 0 a 0
(A= 50v, = ( 4 ) (b) ()
4 0 c 0

e Here v, is an eigenvector if and only if

b,-‘_aag.
2

e The above does not involve c¢. Thus c is arbitrary.

1) uf eso

2) jf e=s

e Thus, we have found the complete set vy, vy, and vz of linearly independent elgenvec—
tors associatedys 08 5 - -
general solutiof i
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Defective Eigenvalues

We start with an illustrative example.

Example 3. Find the eigenvalues and the eigenvectors of the matrix
1 —4
=)
e The coefficient matrix has characteristic equation

1—-X —4
det(A — AI) = det ( 49— A)

Solution

= (1-X)(9—\)+16

2
:)\2—10>\+25:0-| >, ([—g"): 9.

Aj_ =S (“ =-&)

The corresponding eigenvector equation is
—4 —4\ (a 0
asne- (35 ()= ()
=¥

—dag -db=0 auwl 4datdb=o.

Hence ’> b_: - a ‘L
e

Thus the multiplicity -Z eigenvalue ‘ =5 has ON one -
independent eigenvector. Hence A S

23 _/,) /,nanl /0{?
/“) D/g}_ﬂ‘,,ﬁ',m (fdc“o/ef;ed(

MA 266 Lecture 27 page 7 of 16
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Definition. An eigenvalue A of multiplicity k£ > 1 is called JG{;‘AV¢'
if it is not complete.

e If X\ has only p < k linearly independent eigenvectors, then the number
N

9= k-p:

of “missing” eigenvectors is called the defect of the defective eigenvalue \.

o If the eigenvalues of the n x n matrix A are not all complete, then the eigenvalue
method as yet described will produce fewer than the needed n linearly independent
solutions of the system x’ = Ax.

e We therefore need to discover how to find the “missing solutions” corresponding to a
defective eigenvalue A of multiplicity & > 1.

The Case kK = 2

e Suppose there is a single eigenvector v; associated with the defective eigenvalue \.

e Then at this point we have found only the single solution

x,(t) = vieM

of X' = Ax.

The Second Solution

o We.exnplare a second salution of the form

z,(¢)- (I/Af +‘Q)€“= 'ﬁe'{*’fze—

At

ht At
A= /Lfc +"2 e in X' = Ax, we get

e When we substitute

4t At At
aée“,uu,te Hi,e*t = Aqte’ts Aue

2’ Ax

At

MA 266 Lecture 27 page 8 of 16




Attt = py et
heFrdnet = A

e We obtain the two equations V‘ + A [/2 = /A Yg .
(= 4y & |(A-4T)v =0| & [(a-4D)v, - v

that the vectors v and v, must satisfy in order for

Xa(t) = (vt + vz)e’\t = viteM + voe
to give a solution of X' = Ax.

e The first eq'n confirms that v; is an eigenvector of A associated with eigenvalue A.

e Then the second equation says that the vector vy satisfies

T)% = (AT ) [(AA T T=(A-AT )Y = O
(4-AT) %= (AT, e

e To solve the two equations simultaneously, it suffices to
equation (A — AI)?v, = 0 such that the resulting vector v = (A — A)v is nonzero.

Algorithm Defective Multiplicity 2 Eigenvalues

1. First find a nonzero solution v, of the equation

(A-AT)"Y= O

such that

(A-AT) Up= i % O

is nonzero, and therefore is an eigenvector v; associated with \.

2. Then form the two independent solutions

A€

2(t)= Ve

x,)- (4t+1) et

of x’ = Ax corresponding to \.

and

MA 266 Lecture 27 page 9 of 16



Example 4. Find a general solution of the system
(1 —4
x={, ¢ |%

e In the previous example, we showed that A has a defective eigenvalue:

A=s (k-2) -1

e Following the Algomthm we start by calculati g

(- sT)V, & ( V2 = 63) '“4

O T
o Tf we try ‘./z-‘-(-‘;o)

(A-sT)le = (7 j‘) (o‘): (ﬂ;;.
%)= e’ Cf/

A
{
Z(4) - (\/éﬂ’)@" (4f+1 5t

e The general solutlon 1S:

x(): Gacle) + G %28 -

Solution
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MA 266 Lecture 28

Christian Moya, Ph.D.

Sec 5.5 Multiple Eigenvalue Solutions

Generalized Eigenvectors

e The vector vy in the equation
(A - AD)*vy =0

is an example of a generalized eigenvector.

Rank of a Generalized Eigenvector

e If )\ is an eigenvalue of the matrix A, then a rank r generalized eigenvector associ-
ated with A is a pecteiisuch-that

(A-41)" v 4 ©

e A rank 1 generalized eigenvector is an ordinary eigenvector because

(A-AT)'v= 0 (A-4 r)’r= Iv=Vv#o0

e The vector vy in the equation
(A — )\I)QVQ =0
g

¥

')’) // Chains of Generalized Eigenvectors

A 1

\

is a rank 2 generalized eigenvector (and not an ordinary eigenvector).



) (A-/\I)zt(zw- A O =0

. i) OVy = O
) ~AT) 2=
i) (A-AT)2=Vi # O ) AV - ©

e The multiplicity 2 method described earlier boils down to finding a pair 2)0-‘1 V2 }
of generalized eigenvectors, one of rank 1 and one of rank 2, such that

(A‘XI)Q:J}:#O

e Higher multiplicity methods involve longer “chains” of generalized eigenvectors.

Length k£ Chain

o A length k chain of generalized eigenvectors based on the eigenvector vy is a set
v Ve, T )
?jﬂ@m)muk.

of k generalized eigenvectors such that

(A-AZ)g = Ve-
(A-AL )0 = Vi-2-

(A-A:I) Vo = Vi.

e Because vy is an ordinary eigenvector, (A — A\I)vy = 0. Therefore,

(a- 4x) = ©

Length 3 Chain
e Suppose that {vy, vo, v} is a length 3 chain of generalized eigenvectors associated with

the multiple eCigenvalue A of the matrix A.
K= 3)

e It is easy to verify that three linearly independent solutions of x’ = Ax are given by

2, (4)= e’
2 &)= (v t+ Vz)e‘t.
2, (8) = (Lut'rvpt+iy)e’t
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Example 1. In this example, the eigenvalues are given. Find the general solution of

5 —1 1
xX=11 3 0]x; X=33,3.
-3 2 1
Solution
e The eigenvector equation is
2 -1 1 a 0
(A-3O)v=1|1 0 ©0 bl =10
-3 2 =2 c 0

The second row implies that a = 0. Then, ¢ = b. Thus, to within a constant multiple,
the eigenvalue A = 3 has only one single eigenvector (with b # 0)

0
Vi = b
b

So the defect of A = 3 is lz

e To apply the method described for triple eigenvalues, we first calculate

2 -1 1 2 -1 1 o oo
(A-3D*=|1 0 0 1 0 0|=(4 -4 4

2 -1 1 Do O o o0 &
A-31*=(1 0 o0|(ll-24 4 |=[p O O
-3 2 =2 -4 4L Vo X7
T
e Beginning with V’ =( 1,0, 0) , for instance, we calculate

2 -1 1 yi ’-)
vo=(A=3)vz=( 1 0 O o|=[ 4
-3 2 s |
o
L)/
L

and

|
)
Q

\\}
I

—_

—_
e

V1:(A—3I)V2: 1 0 0
3 2 -2/ \-3
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e The linearly independent solutions are:
/) :
3t 2 st
%‘ (‘b) = y 1 e = e

3t 2 -
x‘z(t)-? (‘h‘é‘f V.Z e = (zf 1 -L)est
2

t-3

763({:) ( t_l. -t' .3(:)

the 7@« . ﬁﬂl:

xM= aBm @+ G x(8) +G G
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. X2 ‘neaf
Sec 5.3 Gallery of Solns for Linear Systems ’y;hvwf

Example 2. Solve the linear system:

A= a A== 1L
(-0 w6 w=()

Graph the phase portrait/diagram as a varies from —oo to oo, showing the qualitatively
different cases.

Solution

e Matrix multiplication yields

)
X = a&x

y;___ _y. u

zé") = %o e‘{- fbr I¢: (Xo/ y‘).
Y(t) = Yo e’

e The phase portrait for different values of a are shown next. In each case, y(t) decays
exponentially fast.

e The solution is

e Case q <=l: 1’, ‘Q':»{ ,4) 60110) : 7/0}0. ; yo 20
o9 4) (xe)0) : Ho30 ; Ho<O » 5
Ji) Gog): teye 2o T E
- fait: Spuce la] > 4
“1‘“1"!- xa_) Jew,‘ fa‘ T
. la] >t %)
&< Y
“rpesiod avg . o
:Tmpldt 1
—>— —<— w“'

g
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(o) e Caseae(-1,0) ’“l‘ L

Sfow

y\" a:a&'f.
s\;;'-‘ ()

Z(¥)= QY +G e
2(%)= #o.

k y(b)s ‘yo e-t
4) (o, o)

/ oe
y;‘&";“" i 4) (z., V‘)
o (4
f
|4 -
e Casea > 1 x(‘e)’ x.ela‘t

=129

& -t-
' - v €
\o( 7 d
A ’:./ \.ﬁ; v )58
/r* ad 3% yce)/f-ao
\ tlaffna‘& ﬁe aw/.lqydww

ad t®
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Example 3. Solve the linear system:
2y (1 1 x
y) \4 =2)\y)
———

Graph the corresponding phase portrait/diagram.
Solution

e The characteristic equation is

det(A —AXI) = \> + )\ — 6 =0.

Hence, the eigenvalues of A are

Al=.£>0 M

The eigenvector equation is:

(A —A)v = (1 B A _21_ A) (‘g)

For A = 2, this yields
-1 1 a
a-= (3 9) (i) -

The corresponding non-trivial eigenvector is

- (1

Similarly, for A = —3, this yields

(A +3D)v = Ct 1) (Z) _ (8

The corresponding non-trivial eigenvector is

L= (5

,{z =-3<8é
sadolte j"""‘%.

)
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e The general solution is

st
x(f):al (j)e"‘t + G (ﬁ e’

Waiul-
e The phase portrait is \\bL 3§’
éka)

0‘"‘ G130, €220

x(d)- were e
"(t) = Cjc’t"fc.z e

MA 266 Lecture 28 page 8 of 11
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Example 4. Determine the nature of the eigenvalues and eigenvectors associated to the

following phase portrait.

%, -
Jy 50'1"

v

T
fomet

(0,0)-. sloble - nede -

'(l P '(.L <0.
7“,0(4'“&‘!.0"-
,&'ne'hoﬂ

li.- a’ow e

v, : fah‘ ecgeu

MA 266 Lecture 28
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Example 5. Determine what happens when the eigenvalues of the 2 x 2 linear system are
complex numbers.

Solution

e Let’s write the eigenvalues as
h=ptre Ay= P-+%

e Case if p = 0, the general solution is

y= @i b.
IIZ

x(t) = ¢1(acosqt — bsingt) 4 co(bcos gt + asingt).

ts

center _

Z:

ort ‘3‘ 0/

um“ f:r X "’)p

e Case if p # 0, the general solution is

x(t) = e’ (ci(acos gt — bsinqt) + cx(b cos gt + asin qt)).

3o
f

/fé o

MA 266 Lecture 28 page 10 of 11
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Example 6. Determine what happens when the eigenvalues of the 2 x 2 linear system are
equal.

Solution J,, ‘Iz .

e Complete eigenvalue. If there are two independent eigenvectors, then they span the
plane and so every vector is an eigenvector with this same eigenvalue. To see this, let

V- A\/l=’;‘\$l V= CJ_V1+@_2V.9_.
Va: Ava= AV Alf'-‘- C’_t/ll/l“'elsz'-
—C_l/\t’_l_"'e,t/“/z
A(eﬂﬁ%&) LV

=>,4=('f,f = x()- e’

A0 140") = Yo C‘
,jf hyo
e /

e Defective eigenvalue. The eigenspace corresponding to A is one-dimensional.

b
(0)" = ,4-:(24 b"'fo

e
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MA 266 Lecture 29

Christian Moya, Ph.D.

Sec 5.6 Matrix Exponentials and Linear Systems

e Consider the single equation linear system IVP:

%’: oL ) %(O):—" 72to.

e The corresponding solution:

¢
x(t)=¢"" #o.

e Now consider the n equations linear system IVP:

2 pn; wl)- o
A (axn’ 2 x(”"-’)

e We expect the solution to be of the form:

At
x(t)=- € 7




8At750 = A
e We can verify is the solution of x B x .

Series definition of eAt

3
At T+ At E (Af)i}l? .

:'_/(e“)xo
o/[eAé) /]4/4-4'-#-1/1t7‘

olt 2
4 /4t)
= ,4(3_‘4 A + £ (A 7. )

—

YAt
c

A S o= e 0 = A S
_o#[e )xo ﬂ:.x

How to compute e?!?

1. Series definition™.
2. Fundamental matrix solution ®(t).

3. n linearly independent eigenvectors.
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Properties of e?!

1. If D = diag(d,, ..., d,), then p/,

2. If 0 is the n X n zero matrix, then

0
N

\|
N

3. If A and B are two n x n matrices that (COM Mu’{c, ie.,

AB=- BA

then

A+B A B

¢’ ele

4. The inverse of e®
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Computing ¢! using the series definition

n

2 t
M =T+ AL+ A’ + .+ A"+ ..
21 n!

Q: When can we use this series?

A”_-__ O #/ some M]>O0 é’rz/éjd)

=> Serced Lewinatles a{?er ;ﬁwv‘e
# a:,lf terms.

Definition -Nilpotent matrix

e A n x n matrix is said to be nilpotent if

/]'7: O far some M >0 &m‘)

MA 266 Lecture 29 page 4 of 11



Example 1. Show that the following matriz A is nilpotent and then use this fact to find the
matriz exponential eAl.

Solution. V>, -2,
_ 4 o
_/ -4 -4 -2
A{— 1-11-:{ 4 -4 l"(@?a)
o © O 4 @

Z
e so A" = 0 for 4 ~ 3 . It therefore follows from the series definition of the
matrix exponential that
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Example 2. Solve the following IVP

Solution.

e Show that A =1+ B.

=: B
e Show B is nilpotent. = -'I-
D o 4
2 o 2 3 023 2
B = o © 2 oco2 | = 0‘90
o © © 000 o ©
)
B: o o 2 o o O | - 000
O o O o o O o O
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e Compute A,

i) TB= BT cxeecs®

(+8) € @Iﬁ €

<" (I+£( ‘Zi ‘3))

(,’7‘9 2\ /1 2t 9%4.06 ﬁ,ée(smf
v O
= [0o& . o 1 st lo & et
© o 4 o U

0o ©

1 st 3t+eé
At t P ot )
e N e o O ‘L

2]
e Solve the IVP: 'l: 4
2)-e” xo 2= [ 5
t 4+/o++/f++/u‘)
. ( et

6
2
i [ 4+ 25t 112t
=€ [ s 418t
&
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Fundamental Matrix Solutions

e The general solution of the linear system x' = Ax:
2(@d)- €1 2@) +.. + CanZn ¢

can be written in the form

|;(t)= E{-&) C.

e
wh l 1 / cz
b(r)- [ =@ %2).. z?g) . C- i

} |

(nx n) (MJ-)

e To solve the IVP for a given initial condition

2(0)= xo
it suffices to find ___© =
x@)__ @_(o C =|C= é (o) xo.
mn?w&”

x (%) = E(f)f_,(o 2o

e Conclusion:

x@,—),e""'xo- => CM:= gtg@)f—/(o)
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Example 3. Compute the matriz exponential et for the system >

x) = by — 3wg, xh = 214, A

Solution.

e Characteristic equation:
_A -
4'_.{(/4_,{1')_-_- olet (.L —A)
=R R)re A2

= f2-5h+6 = A;:J
e Case 1: A,’z' A(‘-})(‘ 2)

e (5 3) (- ()

=> 34 -3b =0. J_){ al=-l ‘> b=
Cﬁ ,,__b_o

’sw ) “

(A - 31)& ( )(:) (>

(%)
=> aa,_-3bs =0 L vem (46
=t > b3 2, (+)= (J/)

e The fundamental matrix is then

eat' -Le
_%; (ﬁ" (C"t _-; et
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§(o)=(f p

$m ltox Xp-n ential e .
6 e (2

iy
£-4 L4 0 ]
3t
o (& e | [T
- (et #e”) (¢ °
— —.Z.ed-f 3 0:23é se“ - 38%
o5 -2¢€ 4.263{' 36#"263{_
n linearly independent eigenvectors
-1 4
4. AV ARV Ay
= VAT

c/'*, % VAV ¢
4 VAVE+S VA syt

6/4* v (7’+/1£+ LAES- )V

é"”’
M A e’
e e v v e |V
M 8
ectiire 20 na T?aj

As (%)



Example 4. Compute the matriz exponential et for the system
x) = by — 3wg, xh = 214,

Solution with the alternative method.

_ el
-3
1 J/J) ( J

- %(e) = ¢
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MA 266 Lecture 30

Christian Moya, Ph.D.

Sec 5.6 Matrix Exponentials and Linear Systems
Example 1. Compute the matriz exponential et for the system

¥y = by — 3wg, 1l = 214,
Solution.

e The characteristic equation is

det(A — M) = \* =5\ +6 = 0.
So, the eigenvalues of A are \; = 2 and \y = 3.

e Case 1: \; = 2. The associated eigenvector equation is

3 -3
(A - 21)V1 — (2 _2> Vi = 0.
. . 1
The eigenvector is v = <

1). The associated solution is:

o2t
xi(t) = vie* = (€2t> :

e Case 2: \; = 3. The associated eigenvector equation is

2 -3
(A - 3I)V2 = (2 _3> Vo = 0.

The eigenvector is vy = ( > The associated solution is:

WD

o= (5 52 = (@ )
e So,



e The matrix exponential e?! is

Al =®(t)d1(0) =

N,

—2e?t + 33t 3e?t — 33
_2€2t + 2€3t 3€2t _ 26315

Suppose we have n linearly independent eigenvectors.
A=VAVL

Then, using the series definition of eA?, we have
1
eM =1+ VAV 't + §VA2V*1t2 +...

1
:V(I+At+—(At)2+...)V1

21
eMt 0
0 eMt 0
=V ) v
0 0 ernt

Example 2. Compute the matriz exponential et for the system
x) = bry — 3wa, hy, = 2.

Solution with the alternative method.

- -l

b )y %) 88

W

—2e* 4 33t 3e? — 3et
—2€2t + 26375 3€2t _ 263t
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Sec 5.7 Nonhomogeneous Linear Systems

e Given the nonhomogeneous linear system A ( )
I A ) nun
x's Az 1 46 A= Ale)

e The general solution of the nonhomogeneous system is

2 () = 2, (¥) + 5&(/15)
(43 l) (mﬂ) (ﬂ-‘")
where

1. Xe(®= G% ('d - Cu ol (6') is the general solution of the associated

homogeneous system x' = Ax.

2. E EC‘) is a particular solution of the nonhomogeneous system.

Undetermined Coefficients

Undetermined Coefficients
e Suppose f(t) is a linear combination of products of

1. Polynomials
2. Exponential functions

3. Sines and cosines
e Make a guess of the particular solution x,,.

e Then, we determine the undetermined wvector coefficients by substitution in the
original nonhomogeneous equation.
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Example 3. Apply the method of undetermined coefficients to find a particular solution of
the system
¥ =2zx+3y+5, y =2z +y— 2t

Solution

e The matrix form: 3 5 0)
p 4 2 .
2- (x) > 2= (2 -l) (v) * (")*(" ¢
7 —\L— A~ O —
=-A =& =: i (t) ‘
e The nonhomogeneous term f is (S -l'b)r Linear- . So it is reasonable to
select the particular solution of the form:

( b
Z(t)- a+bt <:>+ (," ¢
Z'(s) = b

e Upon substitution of x = x,, in the nonhomogeneous system, W)get

) . b 23) /a, +bt §
xf‘Axf+¥‘=> (b,)"'(.u.)(aﬂ-b,_l- +(‘.""+

(z() 2%, +2b €t t3a2 4 31.}-6#5) ’l‘,fﬂ‘g)é_’_ 3,4::.

24, tabt +aztht -2t )7 2b+by-2 12
S T T
Li) 2b+by = 2 ~2by=2 =D | 4o~
/.‘-;} 24,+34,+5= b, i a= Vi

4v) 24,+a, = by q- "%

e The part{cular solution is then

2p(4) - (_{{/:) + (i‘é .

A LA
=4 =:b.
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Example 4. Consider the system

e (e D€ e

3 —1 4

AN~ ¢
Solution. ._:;/4. S #Ce) {rle , /VI‘""V‘ 6‘_7

e The complementary solution is:

—» X Jea/aw coef/,u‘u{.s .
> il (i carer [0 wie Hu e Hood
Of varcaders 0'{ fmﬁ(er‘e(.f .
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Variation of Parameters

e Problem: Find a particular solution x, of the nonhomogeneous linear system
x = A(t)x + f(t)
given that we have already found the general solution of the homogeneous system

X (t) = axq(t) + coxa(t) + ... + cnXn(t).

e Using the Fundamental matriz of solutions, the general solution can be written as

G

<y

e Idea: we seek a particular solution of the form

2o (4 = PC) ulr).

e The derivative of the particular solution is

. xf' (t) = § @Glu@ + ¢ W)

e Substitution of x, and x, into the ngnhomogenoeus equation yie
[ I P _ 3
2@ e 1] &> 'l + BGluwce) - ,(65*) +1()

+ O 2= A,
(x, x‘ x.) /1(1:) :r, z, z’ )
P(¢) v = ’f(*)-
U = _‘Z’-“’(*) 6 = |u)= ‘/;5-’(*) {G) dt-
s e oo | o) e Gl |6 (H Gl




Theorem - Variation of Parameters.

If ®(t) is a fundamental matrix for the homogeneous system x’ = A(t)x, then a particular
solution of the nonhomogeneous system

x' = A(t)x + £(t)

is given by

e Consider the constant-coefficient case A(t) = A of the nonhomogeneous [VP

x' = Ax+£(t), x(0)=xo.

e Here, we cap.usa.as.afundamental matrix

P oAt => Do) = .
Z 2- e = m)a’(o) e*r- e

A 36 &)

e Then, the above theorem yields
t
f,(t )- e* /( A‘) £G) os.

e Thus, the general solution of the homogeneous system is

/P 4’)—’= C el

4
?C({:)=I¢(f)+’x,(t)= (?’“x.,_ + e*f/@""‘f(a) ols .

o

Z
x@)- e +/ e"%'*) £() ols.
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Example 5. Use the method of variations of parameters to solve the IVP

(0 )<+ () 0-()
Solution. 4) _3_1
e The corresponding matrix exponential is (e q{— H-’

eAt_<1+3t —t )
- t 1-3t)"
9 3 ¢

2(t)o et €F )10 A

e (t)—xo+ /(' . a)()d’

1)

(3 4+ 4L¢ r 7t )
at +24t"
s + P
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Example 6. Use the method of variations of parameters to solve the IVP

() () 0= ()

Solution. -/ COJ* SJ)“-J'
(é“) - -9‘41 a‘{_

e The corresponding matrix exponential is
At cost —sint
e =1 .
sint cost

2(4)- %O»L et / “(er) ™ 46 ols-
) - f () 26) o
G )
(A ()
] (Mm))
z(4)- " K;fcw))" o ,ﬁﬁ (;:(w)

-éwt‘+/¢“"”'f9'“'{‘)
2(t)- (,,.d  ducsst port
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