
MA 266 Lecture 24

Christian Moya, Ph.D.

Sec 5.1 Matrices and Linear Systems

Review of Matrices

• A matrix A with m rows and n columns can be written as:

• The transpose of A

Example 1. Let

A =

(
3 2− i

4 + 3i −5 + 2i

)
Then A⊤ =?

1



Properties of Matrices

• Equality: A = B if and only if

• Addition: A+B =

• Scalar Multiplication: αA =

Vectors

• A row vector u

• A column vector v

• Convenient to describe an m × n matrix in terms of either its m row vectors or its n
column vectors:
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Scalar or Dot Product

• If

then

Product of Matrices

• If A is an m×p matrix and B is a p×n matrix, then their product is the m×n matrix:

• Visualizing AB :

ai −→



a11 a12 · · · a1p

a21 a22 · · · a2p
...

...
...

ai1 ai2 · · · aip
...

...
...

am1 am2 · · · amp





b11 b12 · · · b1j · · · b1n

b21 b22 · · · b2j · · · b2n

...
...

...
...

bp1 bp2 · · · bpj · · · bpn


↑
bj

.

Example 2. Let A =

(
1 0 −2
3 −2 −1

)
and y =

 et

cos 3t
sin 4t

. Find Ay =?
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• Identity: The identity matrix I is defined as

• Inverse: The matrix A is called nonsingular or invertible if

• Determinant: The determinant of a (2× 2) matrix is defined as

Matrix Functions

We consider vectors or matrices whose elements are functions of real variable t, i.e.,

The derivative of a matrix function is defined by

dA

dt
=

If A,B are matrix functions, and C is a constant matrix, then

d

dt
(CA) =

d

dt
(A+B) =

d

dt
(AB) =
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First-Order Linear Systems

• Consider a general system of n first-order linear equations

x′
1 = p11(t)x1 + p12(t)x2 + · · · + p1n(t)xn + f1(t),

x′
2 = p21(t)x1 + p22(t)x2 + · · · + p2n(t)xn + f2(t),

x′
3 = p31(t)x1 + p32(t)x2 + · · · + p3n(t)xn + f3(t),

...

x′
n = pn1(t)x1 + pn2(t)x2 + · · · + pnn(t)xn + fn(t).

• We introduce the coefficient matrix:

and the column vectors:

• Then the above system takes the form of a single matrix equation:

Example 3. Write the given system in the form x′ = P(t)x+ f(t),

x′
1 = 3x1 − 4x2 + x3 + t, x′

2 = x1 − 3x3 + t2, x′
3 = 6x2 − 7x3 + t3.
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• A solution of our system on some open interval I is a column vector function:

Example 4. Verify that the given vector solutions satisfy the given linear system:

x′ =

(
−3 2
−3 4

)
x, x1 =

(
e3t

3e3t

)
, x2 =

(
2e−2t

e−2t

)
.
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Associated Homogeneous Equation

• To investigate the general solutions of the (linear) matrix differential equation

dx

dt
= P(t)x+ f(t),

we consider first the associated homogeneous equation

in which .

Principle of Superposition

• Let x1, x2, . . . , xn be n solutions of the homogeneous linear equation

dx

dt
= P(t)x

on the open interval I.

• If c1, c2, . . . , cn are constants, then the linear combination

is also a solution of the homogeneous linear equation on I.

Why the principle of superposition is true?
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Linear Independence

• The vector-valued functions x1, x2, . . . , xn are linearly dependent on the interval
I provided that there exist constants c1, c2, . . . , cn not all zero such that

for all t in I.

• Otherwise, they are linearly independent.

To tell whether or not n given solution s of the associated homogeneous equation are linearly
dependent, we can use the Wronksian Determinant.

Wronksian Determinant

• If x1, x2, . . . , xn are such solutions, then their Wronskian is the n×n determinant
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Theorem - Wronksian of Solutions

• Suppose that x1, x2, . . . , xn are n solutions of the homogeneous linear equation
x′ = P(t)x on an open interval I.

• Let
W = W (x1,x2, . . . ,xn).

• Then:

– If x1, x2, . . . , xn are linearly dependent on I, then .

– If x1, x2, . . . , xn are linearly independent on I, then .

General Solution of Homogeneous Systems

Theorem - General Solutions of Homogeneous Systems

• Let x1, x2, . . . , xn be n linearly solutions of the homogeneous
linear equation x′ = P(t)x on an open interval I, where P(t) is continuous.

• If x(t) is any solution of x′ = P(t)x on I, then there exist numbers c1, c2, . . . , cn
such that

for all t in I.
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Example 5. Use the Wronksian to show that the following solutions are linearly independent.
Then, write the general solution.

x′ =

(
−3 2
−3 4

)
x, x1 =

(
e3t

3e3t

)
, x2 =

(
2e−2t

e−2t

)
.
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MA 266 Lecture 25

Christian Moya, Ph.D.

Sec 5.1 Linear Systems

Conclusion - Theorem: General Solutions of Homogeneous Linear Systems

• It suffices to find linearly independent solution vectors:

• The linear combination

with arbitrary coefficients will then be a general solution of our system

x′ = Ax.

Example 1. Write a general solution of the following Linear System:

x′ =

(
−3 2
−3 4

)
x.

• The general solution obtained was:

x(t) = c1

(
e3t

3e3t

)
+ c2

(
2e−2t

e−2t

)
.

1



Example 2. Find a particular solution of the following Linear System Initial Value Prob-
lem (IVP):

x′ =

(
−3 2
−3 4

)
x, x1(0) = 0, x2(0) = 5.

• Recall the general solution is:

x(t) = c1

(
e3t

3e3t

)
+ c2

(
2e−2t

e−2t

)
.

• Use the initial conditions:
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Sec 5.2 Eigenvalue Method for Homogeneous Systems

Q: How to find the n needed linearly independent solution vectors?

• To find these linearly independent solution vectors, we proceed by analogy with the
characteristic root method for solving a single homogeneous equation with constant
coefficients.

Form of the Solution Vectors

• It is reasonable to anticipate solution vectors of the form

where are appropriate scalar constants.

Matrix Form

• Consider the Homogeneous System in matrix form:

• Verify the trial solution:
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• We cancel the nonzero scalar factor eλt to get

Conclusion:

• will be a nontrivial solution of

provided that v is a nonzero vector and λ is a constant such that the matrix product
Av is a scalar multiple of the vector v.

• The question now is this: How do we find v and λ?

Finding v and λ

• To answer this question, we rewrite the equation Av = λv in the form

• By a standard theorem of linear algebra, it has a nontrivial solution if and only if the
determinant of its coefficient matrix vanishes; that is, if and only if
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The Eigenvalue Method

The Eigenvalue Method

• For solving the homogeneous system:

• consists of finding so that

and next solving

with this value of to obtain .

• Then will be a solution vector.

• The name of the method comes from the following definition.

Definition Eigenvalues and Eigenvectors

• The number λ (either zero or nonzero) is called an eigenvalue of the n×n matrix
A provided that

|A− λI| = 0.

• An eigenvector associated with the eigenvalue λ is a nonzero vector v such that
Av = λv, so that

(A− λI)v = 0.
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Example 3. Find the eigenvalues and eigenvectors of the matrix

A =

(
3 −1
4 −2

)
• Eigenvalues:

• Eigenvectors:
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Characteristic Equation

• The equation

|A− λI| =

is called the characteristic equation of the matrix A.

• Its roots are the eigenvalues of A.

• Expanding this determinant, we evidently get an nth-degree polynomial of the form

(−1)nλn + bn−1λ
n−1 + · · ·+ b1λ+ b0 = 0.

• By the fundamental theorem of algebra, this equation has n roots.

• Possibly some are complex, possibly some are repeated.

• Thus an matrix has eigenvalues (counting repetitions).
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Outline of the Eigenvalue Method

Steps for the Eigenvalue Method

• In outline, this method for solving the n × n homogeneous constant-coefficient
system x′ = Ax proceeds as follows:

1. Solve the characteristic equation for the eigenvalues λ1, λ2, . . . , λn of the ma-
trix A.

2. Attempt to find n linearly independent eigenvectors v1,v2, . . . ,vn associated
with these eigenvalues.

3. Step 2 is not always possible, but when it is, we get n linearly independent
solutions:

• In this case the general solution of x′ = Ax is a linear combination

of these n solutions.

Distinct Real Eigenvalues

• If the eigenvalues λ1, λ2, . . . , λn are real and distinct, then we substitute each of
them in turn in the equation

(A− λI)v = 0

and solve for the associated eigenvectors v1, v2, . . . , vn.

• Then it can be proved that the particular solution vectors

x1(t) = v1e
λ1t, x2(t) = v2e

λ2t, . . . , xn(t) = vne
λnt.

are always linearly independent.
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Example 4. Use the eigenvalue method to find the general solution of:

x′
1 = 2x1 + 3x2, x′

2 = 2x1 + x2.

• Linear system in matrix form:

• Characteristic equation:

• Eigenvector equation:

• General solution:
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Example 5. Use the eigenvalue method to find the general solution of:

x′
1 = 4x1 + x2, x′

2 = 6x1 − x2.

• Linear system in matrix form:

• Characteristic equation:

• Eigenvector equation:

• General solution:
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Example 6. Find the solution of the IVP:

x′
1 = 9x1 + 5x2, x′

2 = −6x1 − 2x2, x1(0) = 1, x2(0) = 0.

• Linear system in matrix form:

• Characteristic equation:

• Eigenvector equation:

• General solution:

• Particular solution:
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MA 266 Lecture 26

Christian Moya, Ph.D.

Sec 5.2 Eigenvalue Method for Homogeneous Systems

The Eigenvalue Method

• To solve the n× n homogeneous constant-coefficient linear system:

x′ = Ax.

1. Solve the characteristic equation

det(A− λI) = 0.

for the eigenvalues λ1, λ2, . . . , λn of the matrix A.

2. Attempt to find n linearly independent eigenvectors v1,v2, . . . ,vn associated
with these eigenvalues using

(A− λI)v = 0.

3. Step 2 is not always possible, but when it is, we get n linearly independent
solutions:

x1(t) = v1e
λ1t,x2(t) = v2e

λ2t, . . . ,xn(t) = vne
λnt.

• In this case, the general solution of x′ = Ax is a linear combination

x(t) = c1x1(t) + c2x2(t) + . . .+ c1xn(t).

of these n solutions.

1



Distinct Real Eigenvalues

• If the eigenvalues λ1, λ2, . . . , λn are real and distinct, then we substitute each of
them in turn in the equation

(A− λI)v = 0

and solve for the associated eigenvectors v1, v2, . . . , vn.

• Then, the particular solution vectors

x1(t) = v1e
λ1t, x2(t) = v2e

λ2t, . . . , xn(t) = vne
λnt.

are always linearly independent.

Example 1. Find the solution of the IVP:

x′
1 = 9x1 + 5x2, x′

2 = −6x1 − 2x2, x1(0) = 1, x2(0) = 0.

Solution

• The matrix form of the system is

x′ =

(
9 5
−6 −2

)
︸ ︷︷ ︸

=:A

x.

• The characteristic equation of the coefficient matrix is

det

(
9− λ 5
−6 −2− λ

)
= (9− λ)(−2− λ) + 30

= λ2 − 7λ+ 12 = (λ− 4)(λ− 3) = 0,

so we have the distinct real eigenvalues λ1 = 4 and λ = 3.

• For the coefficient matrix A, the eigenvector equation (A− λI)v = 0 is(
9− λ 5
−6 −2− λ

)(
a
b

)
=

(
0
0

)
.

• Case 1: λ1 = 4. Substitution of the first eigenvalue λ1 = 4 in (A− λI)v = 0 yields(
5 5
−6 −6

)(
a
b

)
=

(
0
0

)
.
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• The choice a = 1 yields b = −1, and thus v1 =

(
1
−1

)
.

• Case 2: λ1 = 3. Exercise - Answer: v2 =

(
5
−6

)
• The general solution:

x(t) = c1v1e
λ1t + c2v2e

λ2t

therefore takes the form:

x(t) = c1

(
1
−1

)
e4t + c2

(
5
−6

)
e3t

• The resulting scalar equations are

x1(t) = c1e
4t + 5c2e

3t

x2(t) = −c1e
4t − 6c2e

3t.

• When we impose the initial conditions x1(0) = 1 and x2(0) = 0, we get(
1 5
−1 −6

)(
c1
c2

)
=

(
1
0

)
.

that is readily solved (in turn) for c1 = 6 and c2 = −1. Thus, finally, the solution of
the initial value problem is:

x(t) = 6

(
1
−1

)
e4t −

(
5
−6

)
e3t

or equivalently

x1(t) = 6e4t − 5e3t

x2(t) = −6e4t + 6e3t.
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Example 2. The amounts x1(t) and x2(t) of salt in two brine tanks satisfy the differential
equations

dx1

dt
= −k1x1 + k2x2,

dx2

dt
= k1x1 − k2x2,

where
ki =

r

Vi

, i = 1, 2.

Find the general solution assuming that r = 10 (gal/min), V1 = 25 (gal), and V2 = 40 (gal).

Solution

• If r = 10 (gal/min), V1 = 25 (gal), and V2 = 40 (gal), then

• The matrix form of the system is

• The characteristic equation is

• Thus, the coefficient matrix A has
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• Case 1. λ = . Substituting

• Case 2. λ = . Exercise - Answer

• The general solution:
x(t) = c1v1e

λ1t + c2v2e
λ2t

therefore takes the form:
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Distinct Complex Eigenvalues

• Even if some eigenvalues are complex, so as long as they are distinct the eigenvalue
method yields n linearly independent solutions.

• Problem: The eigenvectors associated to complex eigenvalues are .

• Thus, we will have complex-valued solutions.

• Suppose by solving characteristic equation

• we get the pair of complex-conjugate eigenvalues

Eigenvectors

• v is the eigenvector associated to λ, so that

• Similarly, v̄ is the eigenvector associated to the complex conjugate λ̄, so that

• v defined componentwise:
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Complex-Valued Solution

• The complex-valued solution associated with λ and v is then

that is,

Real-Valued Solution

• Because the real and imaginary parts of a complex-valued solution are also solutions,
we thus get two real-valued solutions

• It is easy to check that the same two real-valued solutions result from taking real and
imaginary parts of v̄eλ̄t

Procedure for Finding Real-Valued Solutions

1. Find explicitly a single complex-valued solution x(t) associated with the complex
eigenvalue λ;

2. Then, find the real and imaginary parts x1(t) and x2(t) to get two independent
real-valued solutions corresponding to the complex conjugate eigenvalues λ and λ̄.
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Example 3. Find the solution of the IVP:

x′
1 = 2x1 − 5x2, x′

2 = 4x1 − 2x2, x1(0) = 2, x2(0) = 3.

Solution

• The matrix form of the system is

• The characteristic equation of the coefficient matrix is

so we have the complex eigenvalues:

• Substituting
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• The corresponding complex-valued solution

• The real and imaginary parts of x(t) are the real-valued solutions

• The real-valued general solution is

• The resulting scalar equations are

• When we impose the initial conditions

• Thus, finally, the solution of the IVP is:
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MA 266 Lecture 27

Christian Moya, Ph.D.

Sec 5.2 Eigenvalue Method for Homogeneous Systems

Distinct Complex Eigenvalues

Formula for distinct complex eigenvalues

• Distinct complex conjugate eigenvalues λ1,2 = p±iq with eigenvectors v1,2 = a±ib
produce two linearly independent real-valued vector solutions:

x1(t) = ept(a cos qt− b sin qt)

x2(t) = ept(b cos qt+ a sin qt)

Procedure for Finding Real-Valued Solutions

1. Find explicitly a single complex-valued solution x(t) = v1e
λ1t associated with the

complex eigenvalue λ1 and eigenvector v1;

2. Then, find the real and imaginary parts x1(t) and x2(t) to get two independent
real-valued solutions corresponding to the complex conjugate eigenvalues λ1,2.

1



Example 1. Find the the general solution of:

x′ =

(
1 −5
1 3

)
︸ ︷︷ ︸

=A

x

Solution

• The corresponding characteristic equation

det(A− λI) = det

(
1− λ −5
1 3− λ

)
= (1− λ)(3− λ) + 5

= λ2 − 4λ+ 8 = 0

• Using the quadratic formula, we obtain the pair of complex eigenvalues:

λ1,2 = p± iq = 2± 2i.

• Substituting λ1 = 2 + 2i into the eigenvector equation (A− λ1I)v1 = 0 gives(
1− 2i −5

1 −1− 2i

)(
y
z

)
=

(
0
0

)
• Note that y and z satisfy

−y

5
− 2y

5
− z = 0

.

• Choose y = −5, then z = 1 + 2i. Hence, the eigenvector is

v1 = a+ ib =
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Method 1.

• Use the formulae:

x1(t) = ept(a cos qt− b sin qt)

x2(t) = ept(b cos qt+ a sin qt)

Method 2.

• Compute the corresponding complex-valued solution

x(t) = v1e
λ1t =

(
−5

1 + 2i

)
e(2+2i)t =

(
−5

1 + 2i

)
e2t(cos 2t+ i sin 2t)

= e2t
(

−5 cos 2t− 5i sin 2t
(cos 2t+ i sin 2t) + 2i cos 2t− 2 sin 2t

)
• The real and imaginary parts of x(t) are the real-valued solutions:

• The general solution is

x(t) = c1x1(t) + c2x2(t)

= e2t
(

−5c1 cos 2t− 5c2 sin 2t
(c1 + 2c2) cos 2t+ (−2c1 + c2) sin 2t

)
.
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Sec 5.5 Multiple Eigenvalue Solutions

Repeated Roots

• Suppose the characteristic equation

|A− λI| = 0

does not have n distinct roots, and thus has at least one repeated root.

Definition. An eigenvalue is of multiplicity k if it is a k-fold root of the characteristic
equation.

• An eigenvalue of multiplicity k > 1 may have fewer than k linearly independent asso-
ciated eigenvectors.

• In this case we are unable to find a “complete set” of n linearly independent eigenvectors
of A, as needed to form the general solution of the system.

Complete Eigenvalues

An eigenvalue of multiplicity k is said to be if it has k
linearly independent associated eigenvectors.

• If every eigenvalue of the matrix A is complete, then—because eigenvectors associated
with different eigenvalues are linearly independent—it follows that A does have a
complete set of n linearly independent eigenvectors v1, v2, . . . , vn associated with the
eigenvalues λ1, λ2, . . . , λn (each repeated with its multiplicity).

• In this case a general solution of
x′ = Ax

is still given by the usual combination

x(t) = c1v1e
λ1t + c2v2e

λ2t + · · ·+ cnvne
λnt.
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Example 2. Find a general solution of the system

x′ =

 9 4 0
−6 −1 0
6 4 3


︸ ︷︷ ︸

=A

x.

Solution

• The characteristic equation of the coefficient matrix A is

det(A− λI) = det

9− λ 4 0
−6 −1− λ 0
6 4 3− λ


= (0) · det

(
−6 −1− λ
6 4

)
− (0) · det

(
9− λ 4
6 4

)
+ (3− λ) · det

(
9− λ 4
−6 −1− λ

)
= (5− λ)(3− λ)2 = 0.

• Thus A has

• Case 1. λ1 = 5. The eigenvector equation (A− λ1I)v1 = 0 is:

(A− 5I)v1 =

 4 4 0
−6 −6 0
6 4 −2

a
b
c

 =

0
0
0

 .

• Each of the first two eq’ns imply b = −a. Then, one can reduce the third equation to

• The choice of a = 1 yields the eigenvector:
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• Case 2. λ2 = 3. Here the eigenvector equation is:

(A− 3I)v2 =

 6 4 0
−6 −4 0
6 4 0

a
b
c

 =

0
0
0

 .

• Here v2 is an eigenvector if and only if

• The above does not involve c. Thus c is arbitrary.

• Thus, we have found the complete set v1, v2, and v3 of linearly independent eigenvec-
tors associated to the eigenvalues λ1 = 5, λ2 = 3, and λ3 = 3. Thus, the corresponding
general solution is
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Defective Eigenvalues

We start with an illustrative example.

Example 3. Find the eigenvalues and the eigenvectors of the matrix

A =

(
1 −4
4 9

)
Solution

• The coefficient matrix has characteristic equation

det(A− λI) = det

(
1− λ −4
4 9− λ

)
= (1− λ)(9− λ) + 16

= λ2 − 10λ+ 25 = 0

• Thus A has

• The corresponding eigenvector equation is

(A− λI)v =

(
−4 −4
4 4

)(
a
b

)
=

(
0
0

)

• Hence

• Thus the multiplicity eigenvalue has
independent eigenvector. Hence
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Definition. An eigenvalue λ of multiplicity k > 1 is called
if it is not complete.

• If λ has only p < k linearly independent eigenvectors, then the number

of “missing” eigenvectors is called the defect of the defective eigenvalue λ.

• If the eigenvalues of the n × n matrix A are not all complete, then the eigenvalue
method as yet described will produce fewer than the needed n linearly independent
solutions of the system x′ = Ax.

• We therefore need to discover how to find the “missing solutions” corresponding to a
defective eigenvalue λ of multiplicity k > 1.

The Case k = 2

• Suppose there is a single eigenvector v1 associated with the defective eigenvalue λ.

• Then at this point we have found only the single solution

x1(t) = v1e
λt

of x′ = Ax.

The Second Solution

• We explore a second solution of the form

• When we substitute in x′ = Ax, we get
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• We obtain the two equations

that the vectors v1 and v2 must satisfy in order for

x2(t) = (v1t+ v2)e
λt = v1te

λt + v2e
λt

to give a solution of x′ = Ax.

• The first eq’n confirms that v1 is an eigenvector of A associated with eigenvalue λ.

• Then the second equation says that the vector v2 satisfies

• To solve the two equations simultaneously, it suffices to find a solution v2 of the single
equation (A− λI)2v2 = 0 such that the resulting vector v1 = (A− λI)v2 is nonzero.

Algorithm Defective Multiplicity 2 Eigenvalues

1. First find a nonzero solution v2 of the equation

such that

is nonzero, and therefore is an eigenvector v1 associated with λ.

2. Then form the two independent solutions

and

of x′ = Ax corresponding to λ.
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Example 4. Find a general solution of the system

x′ =

(
1 −4
4 9

)
x.

Solution

• In the previous example, we showed that A has a defective eigenvalue:

• Following the Algorithm, we start by calculating

• If we try

• Therefore the two solutions of x′ = Ax are:

• The general solution is:
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MA 266 Lecture 28

Christian Moya, Ph.D.

Sec 5.5 Multiple Eigenvalue Solutions

Generalized Eigenvectors

• The vector v2 in the equation

(A− λI)2v2 = 0

is an example of a generalized eigenvector.

Rank of a Generalized Eigenvector

• If λ is an eigenvalue of the matrix A, then a rank r generalized eigenvector associ-
ated with λ is a vector v such that

• A rank 1 generalized eigenvector is an ordinary eigenvector because

• The vector v2 in the equation

(A− λI)2v2 = 0

is a rank 2 generalized eigenvector (and not an ordinary eigenvector).

Chains of Generalized Eigenvectors

1



• The multiplicity 2 method described earlier boils down to finding a pair
of generalized eigenvectors, one of rank 1 and one of rank 2, such that

• Higher multiplicity methods involve longer “chains” of generalized eigenvectors.

Length k Chain

• A length k chain of generalized eigenvectors based on the eigenvector v1 is a set

of k generalized eigenvectors such that

• Because v1 is an ordinary eigenvector, (A− λI)v1 = 0. Therefore,

Length 3 Chain

• Suppose that {v1,v2,v3} is a length 3 chain of generalized eigenvectors associated with
the multiple eigenvalue λ of the matrix A.

• It is easy to verify that three linearly independent solutions of x′ = Ax are given by
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Example 1. In this example, the eigenvalues are given. Find the general solution of

x′ =

 5 −1 1
1 3 0
−3 2 1


︸ ︷︷ ︸

=A

x; λ = 3, 3, 3.

Solution

• The eigenvector equation is

(A− 3I)v =

 2 −1 1
1 0 0
−3 2 −2

a
b
c

 =

0
0
0


The second row implies that a = 0. Then, c = b. Thus, to within a constant multiple,
the eigenvalue λ = 3 has only one single eigenvector (with b ̸= 0)

v1 =

0
b
b

 .

So the defect of λ = 3 is .

• To apply the method described for triple eigenvalues, we first calculate

(A− 3I)2 =

 2 −1 1
1 0 0
−3 2 −2

 2 −1 1
1 0 0
−3 2 −2

 =

and

(A− 3I)3 =

 2 −1 1
1 0 0
−3 2 −2



• Beginning with , for instance, we calculate

v2 = (A− 3I)v3 =

 2 −1 1
1 0 0
−3 2 −2


v1 = (A− 3I)v2 =

 2 −1 1
1 0 0
−3 2 −2
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• The linearly independent solutions are:
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Sec 5.3 Gallery of Solns for Linear Systems

Example 2. Solve the linear system:(
x′

y′

)
=

(
a 0
0 −1

)(
x
y

)
.

Graph the phase portrait/diagram as a varies from −∞ to ∞, showing the qualitatively
different cases.

Solution

• Matrix multiplication yields

• The solution is

• The phase portrait for different values of a are shown next. In each case, y(t) decays
exponentially fast.

• Case a < 1:

• Case a = −1
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• Case a ∈ (−1, 0)

• Case a = 0

• Case a > 1
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Example 3. Solve the linear system:(
x′

y′

)
=

(
1 1
4 −2

)
︸ ︷︷ ︸

=A

(
x
y

)
.

Graph the corresponding phase portrait/diagram.

Solution

• The characteristic equation is

det(A− λI) = λ2 + λ− 6 = 0.

• Hence, the eigenvalues of A are

• The eigenvector equation is:

(A− λI)v =

(
1− λ 1
4 −2− λ

)(
a
b

)
=

(
0
0

)
.

• For λ = 2, this yields

(A− 2I)v =

(
−1 1
4 −4λ

)(
a
b

)
=

(
0
0

)
.

• The corresponding non-trivial eigenvector is

• Similarly, for λ = −3, this yields

(A+ 3I)v =

(
4 1
4 1

)(
a
b

)
=

(
0
0

)
.

• The corresponding non-trivial eigenvector is
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• The general solution is

• The phase portrait is
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Example 4. Determine the nature of the eigenvalues and eigenvectors associated to the
following phase portrait.

MA 266 Lecture 28 page 9 of 11



Example 5. Determine what happens when the eigenvalues of the 2 × 2 linear system are
complex numbers.

Solution

• Let’s write the eigenvalues as

• Case if p = 0, the general solution is

x(t) = c1(a cos qt− b sin qt) + c2(b cos qt+ a sin qt).

• Case if p ̸= 0 , the general solution is

x(t) = ept(c1(a cos qt− b sin qt) + c2(b cos qt+ a sin qt)).
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Example 6. Determine what happens when the eigenvalues of the 2 × 2 linear system are
equal.

Solution

• Complete eigenvalue. If there are two independent eigenvectors, then they span the
plane and so every vector is an eigenvector with this same eigenvalue. To see this, let

• Defective eigenvalue. The eigenspace corresponding to λ is one-dimensional.
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MA 266 Lecture 29

Christian Moya, Ph.D.

Sec 5.6 Matrix Exponentials and Linear Systems

• Consider the single equation linear system IVP:

• The corresponding solution:

• Now consider the n equations linear system IVP:

• We expect the solution to be of the form:

1



• We can verify is the solution of .

Series definition of eAt

How to compute eAt?

1. Series definition∗.

2. Fundamental matrix solution Φ(t).

3. n linearly independent eigenvectors.
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Properties of eAt

1. If D = diag(d1, . . . , dn), then

2. If 0 is the n× n zero matrix, then

3. If A and B are two n× n matrices that , i.e.,

then

4. The inverse of eA
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Computing eAt using the series definition

eAt = I+At+A2 t
2

2!
+ . . .+An t

n

n!
+ . . .

Q: When can we use this series?

Definition -Nilpotent matrix

• A n× n matrix is said to be nilpotent if
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Example 1. Show that the following matrix A is nilpotent and then use this fact to find the
matrix exponential eAt.

A =

1 −1 −1
1 −1 1
0 0 0


Solution.

• so An = 0 for . It therefore follows from the series definition of the
matrix exponential that
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Example 2. Solve the following IVP

x′ =

1 2 3
0 1 2
0 0 1


︸ ︷︷ ︸

=A

x, x(0) =

4
5
6



Solution.

• Show that A = I+B.

• Show B is nilpotent.
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• Compute eAt.

• Solve the IVP:
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Fundamental Matrix Solutions

• The general solution of the linear system x′ = Ax:

can be written in the form

where

• To solve the IVP for a given initial condition

it suffices to find

• Conclusion:
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Example 3. Compute the matrix exponential eAt for the system

x′
1 = 5x1 − 3x2, x

′
2 = 2x1.

Solution.

• Characteristic equation:

• Case 1:

• Case 2:

• The fundamental matrix is then

MA 266 Lecture 29 page 9 of 11



• The matrix exponential eAt:

n linearly independent eigenvectors

MA 266 Lecture 29 page 10 of 11



Example 4. Compute the matrix exponential eAt for the system

x′
1 = 5x1 − 3x2, x

′
2 = 2x1.

Solution with the alternative method.
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MA 266 Lecture 30

Christian Moya, Ph.D.

Sec 5.6 Matrix Exponentials and Linear Systems

Example 1. Compute the matrix exponential eAt for the system

x′
1 = 5x1 − 3x2, x

′
2 = 2x1.

Solution.

• The characteristic equation is

det(A− λI) = λ2 − 5λ+ 6 = 0.

So, the eigenvalues of A are λ1 = 2 and λ2 = 3.

• Case 1: λ1 = 2. The associated eigenvector equation is

(A− 2I)v1 =

(
3 −3
2 −2

)
v1 = 0.

The eigenvector is v1 =

(
1
1

)
. The associated solution is:

x1(t) = v1e
2t =

(
e2t

e2t

)
.

• Case 2: λ2 = 3. The associated eigenvector equation is

(A− 3I)v2 =

(
2 −3
2 −3

)
v2 = 0.

The eigenvector is v2 =

(
1
2
1
3

)
. The associated solution is:

x2(t) = v2e
3t =

(
e3t

2
e3t

3

)
.

• The fundamental matrix is then

Φ(t) =

(
e2t e3t/2
e2t e3t/3

)
.

• So,

Φ(0) =

(
1 1/2
1 1/3

)
and Φ−1(0) =

(
−2 3
6 −6

)
.

1



• The matrix exponential eAt is

eAt = Φ(t)Φ−1(0) =

(
−2e2t + 3e3t 3e2t − 3e3t

−2e2t + 2e3t 3e2t − 2e3t

)
.

Suppose we have n linearly independent eigenvectors.

A = VΛV−1.

Then, using the series definition of eAt, we have

eAt = I+VΛV−1t+
1

2!
VΛ2V−1t2 + . . .

= V

(
I+Λt+

1

2!
(Λt)2 + . . .

)
V−1

= V


eλ1t 0 . . . 0
0 eλ2t . . . 0
...

...
. . .

...
0 0 . . . eλnt

V−1

Example 2. Compute the matrix exponential eAt for the system

x′
1 = 5x1 − 3x2, x

′
2 = 2x1.

Solution with the alternative method.

V =

(
1 1/2
1 1/3

)
and V−1 =

(
−2 3
6 −6

)
.

So,

eAt = VeΛtV−1 =

(
1 1/2
1 1/3

)(
e2t 0
0 e3t

)(
−2 3
6 −6

)
=

(
e2t e3t/2
e2t e3t/3

)(
−2 3
6 −6

)
=

(
−2e2t + 3e3t 3e2t − 3e3t

−2e2t + 2e3t 3e2t − 2e3t

)
.
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Sec 5.7 Nonhomogeneous Linear Systems

• Given the nonhomogeneous linear system

• The general solution of the nonhomogeneous system is

where

1. is the general solution of the associated
homogeneous system x′ = Ax.

2. is a particular solution of the nonhomogeneous system.

Undetermined Coefficients

Undetermined Coefficients

• Suppose f(t) is a linear combination of products of

1. Polynomials

2. Exponential functions

3. Sines and cosines

• Make a guess of the particular solution xp.

• Then, we determine the undetermined vector coefficients by substitution in the
original nonhomogeneous equation.
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Example 3. Apply the method of undetermined coefficients to find a particular solution of
the system

x′ = 2x+ 3y + 5, y′ = 2x+ y − 2t.

Solution

• The matrix form:

• The nonhomogeneous term f is . So it is reasonable to
select the particular solution of the form:

• Upon substitution of x = xp in the nonhomogeneous system, we get

• The particular solution is then
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Example 4. Consider the system

x′ =

(
4 2
3 −1

)
x−

(
15
4

)
te−2t.

Solution.

• The complementary solution is:

xc(t) = c1

(
1
−3

)
e−2t + c2

(
2
1

)
e5t.

• The trial particular solution is:
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Variation of Parameters

• Problem: Find a particular solution xp of the nonhomogeneous linear system

x′ = A(t)x+ f(t)

given that we have already found the general solution of the homogeneous system

xc(t) = c1x1(t) + c2x2(t) + . . .+ cnxn(t).

• Using the Fundamental matrix of solutions, the general solution can be written as

xc(t) = Φ(t)c

• Idea: we seek a particular solution of the form

• The derivative of the particular solution is

• Substitution of xp and x′
p into the nonhomogenoeus equation yields

• Observe

• Thus
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Theorem - Variation of Parameters.

IfΦ(t) is a fundamental matrix for the homogeneous system x′ = A(t)x, then a particular
solution of the nonhomogeneous system

x′ = A(t)x+ f(t)

is given by

xp(t) = Φ(t)

∫
Φ(t)−1f(t)dt.

• Consider the constant-coefficient case A(t) = A of the nonhomogeneous IVP

x′ = Ax+ f(t), x(0) = x0.

• Here, we can use as a fundamental matrix

• Then, the above theorem yields

• Thus, the general solution of the homogeneous system is
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Example 5. Use the method of variations of parameters to solve the IVP

x′ =

(
3 −1
9 −3

)
x+

(
7
5

)
, x(0) =

(
3
5

)
.

Solution.

• The corresponding matrix exponential is

eAt =

(
1 + 3t −t
9t 1− 3t

)
.
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Example 6. Use the method of variations of parameters to solve the IVP

x′ =

(
0 −1
1 0

)
x+

(
sec t
0

)
, x(0) =

(
0
0

)
.

Solution.

• The corresponding matrix exponential is

eAt =

(
cos t − sin t
sin t cos t

)
.
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