MA 266 Midterm Review

Christian Moya, Ph.D.

Sec 5.3 Gallery of Solns for Linear Systems

Example 1. Solve the linear system:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 1 \\ 4 & -2 \end{pmatrix}}_{=\mathbf{A}} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Graph the corresponding phase portrait/diagram.

Solution

• The characteristic equation is

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \lambda^2 + \lambda - 6 = 0.$$

• Hence, the eigenvalues of **A** are

 $\lambda_1 = 2 > 0$ and $\lambda_2 = -3 < 0 \implies (0,0)$ saddle point

• The eigenvector equation is:

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \begin{pmatrix} 1 - \lambda & 1 \\ 4 & -2 - \lambda \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

• For $\lambda = 2$, this yields

$$(\mathbf{A} - 2\mathbf{I})\mathbf{v} = \begin{pmatrix} -1 & 1\\ 4 & -4 \end{pmatrix} \begin{pmatrix} a\\ b \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}.$$

• The corresponding non-trivial eigenvector is

$$\mathbf{v}_1 = \begin{pmatrix} 1\\1 \end{pmatrix}$$

• Similarly, for $\lambda = -3$, this yields

$$(\mathbf{A} + 3\mathbf{I})\mathbf{v} = \begin{pmatrix} 4 & 1\\ 4 & 1 \end{pmatrix} \begin{pmatrix} a\\ b \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

• The corresponding non-trivial eigenvector is

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ -4 \end{pmatrix}$$

• The general solution is

$$x(t) = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t} + c_2 \begin{pmatrix} 1 \\ -4 \end{pmatrix} e^{-3t}$$

• The phase portrait is

•

Example 2. Determine the nature of the eigenvalues and eigenvectors associated to the following phase portrait.

Example 3. Determine what happens when the eigenvalues of the 2×2 linear system are complex numbers.

Solution

- Let's write the eigenvalues as
- Case if p = 0, the general solution is

$$\mathbf{x}(t) = c_1(\mathbf{a}\cos qt - \mathbf{b}\sin qt) + c_2(\mathbf{b}\cos qt + \mathbf{a}\sin qt).$$

• Case if $p \neq 0$, the general solution is

$$\mathbf{x}(t) = e^{pt}(c_1(\mathbf{a}\cos qt - \mathbf{b}\sin qt) + c_2(\mathbf{b}\cos qt + \mathbf{a}\sin qt)).$$

Example 4. Determine what happens when the eigenvalues of the 2×2 linear system are equal.

Solution

• **Complete eigenvalue.** If there are two independent eigenvectors, then they span the plane and so *every vector is an eigenvector with this same eigenvalue*. To see this, let

• **Defective eigenvalue.** The eigenspace corresponding to λ is one-dimensional.

Midterm Review

Example 5. (Spring 2019) - Sec 5.3 Given

$$\mathbf{x}' = \begin{pmatrix} 1 & \alpha \\ 3 & 1 \end{pmatrix} \mathbf{x}$$

For which values of α , the origin (0,0) is a saddle-point.

Example 6. (Fall 2019) - Sec 5.3 For the system

$$\mathbf{x}' = \begin{pmatrix} 5 & 5\\ -8 & -7 \end{pmatrix} \mathbf{x}$$

the origin (0,0) is:

- a) a saddle point
- b) a proper node source
- c) a center point
- d) a spiral sink
- e) a spiral source

Example 7. (Fall 2018) - Sec 5.2 The real 2×2 matrix **A** has an eigenvalue $\lambda_1 = 3 + i2$ with corresponding eigenvector $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2i \end{pmatrix}$. Find the general solution of the linear system $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

Solution.

Formula for distinct complex eigenvalues

• Distinct complex conjugate eigenvalues $\lambda_{1,2} = p \pm iq$ with eigenvectors $\mathbf{v}_{1,2} = \mathbf{a} \pm i\mathbf{b}$ produce two linearly independent *real-valued* vector solutions:

$$\mathbf{x}_1(t) = e^{pt} (\mathbf{a} \cos qt - \mathbf{b} \sin qt)$$
$$\mathbf{x}_2(t) = e^{pt} (\mathbf{b} \cos qt + \mathbf{a} \sin qt)$$

Example 8. (Spring 2018) - Sec 5.5 Find the general solution of the linear system

$$\mathbf{x}' = \begin{pmatrix} -4 & 4\\ -1 & -8 \end{pmatrix} \mathbf{x}$$