MA 266 Lecture 1

Christian Moya, Ph.D.

Sec 1.1 Differential Equations; Mathematical Models

Question: What is a differential equation?

A differential equation is

- •
- •

Example 1. (Types of equations)

- 1. Find x in $x^2 + 6x + 1 = 0$.
- 2. Find f(t) in $f(t)\cos(t) = e^t \sin(t)$.
- 3. Find y(t) in $y'' + 10y' = e^t$.

Question: Why do we study differential equations?

- Many natural phenomena; physical processes involve _____.
- $\frac{dx}{dt} = f'(t)$ is the _____ at which x = f(t) is _____.
- Differential equations to model ______.

Example 2. (An example of mathematical model — object-spring)

Consider an object with a mass m attached to the end of a spring. The mass experiences a force F(t). Formulate a differential equation to model its motion.

• Notations

• Physical Law: Newton's law

• Forces that acted on the object

Remark The differential equation contains two constants: m, and k

Definitions

• The **order** of a differential equation is the **order** of the highest ______ involved in the ODE.

Example 3. (Find the order)

- 1. $4x^2y'' + y = 0$
- 2. $(y')^2 + y^2 = -1$
- 3. $y^{(3)}x^2 + x^{10}y = \sin(x)$
- The **general** form of an *n*-th order differential equation:
- We say _____ is a **solution** of the differential equation _____
- Initial value problem (IVP): ______ together with an _____.
- The solution to an ODE for ______ is called **particular** solution.

• General solution

- Without an _____, the ODE may have _____ solutions.
- If we can write an expression for _____ solution \equiv general solution.

Example 4. (Population Dynamics)

Consider the time rate of change of a population P(t).

- Notation
 - constant birth rate ______
 - constant death rate _____
- Differential equation
- 1. Check $P(t) = Ce^{kt}$ is a general solution

2. Suppose that the population at time t = 0 (hours, h) was 1000. Find the value of C

3. Assume the population doubled after 1 hour, determine the value of k

4. Write the particular solution. Use it to predict the population after 1.5 hours

Ordinary differential equations (ODE): the ______ depends on a ______ variable.
Partial differential equations (PDE): If the ______ is a function of ______ variables.

Example 5. (Thermal Diffusivity)

Consider a one dimensional rod. The temperature ______ satisfies the heat equation:

where ______ is the thermal diffusivity.