MA 266 Lecture 3

Christian Moya, Ph.D.

Sec 1.3 Slope Fields and Solution Curves

Consider the first order differential equation:

$$\frac{dy}{dx} = f(x, y)$$

Question: Can we find the solution y(x) using

$$y(x) = \int f(x, y(x))dx + C \quad ?$$

Answer: _____.

• _____ involves the _____.

Slope fields and Graphical solutions

• For each ______, _____ determines ______.

Definition. ______ of the differential equation $\frac{dy}{dx} = f(x, y)$ is a

whose _____ at each _____ has:

Example 1. Consider a solution curve of

$$\frac{dy}{dx} = x - y$$

- point (x_1, y_1)
- point (x_2, y_2)
- point (x_3, y_3)

Constructing slope fields.

• Consider a representative collection of points ______.

- For each _____, we draw a "short" line segment having:
- The collection of line segments: ______.

Example 2. Consider the population dynamics:

$$\frac{dP(t)}{dt} = kP(t).$$

Construct the slope field.

• Recall the general solution:

• How do we draw the tangent line?

Remark

• We use he slope field to study the _____ of _____.

Example 3. Consider the differential equation

$$\frac{dy}{dx} = ky,$$

where _____ is the rate of change of _____.

- The general solution is:
- The solution curves and slope fields for k = 2, 0.5, -1:

Existence of Solutions

Example 4. Consider the IVP:

$$\frac{dy}{dx} = \frac{1}{x}, \qquad y(0) = 0.$$

- General solution:
- Particular solution:

The slope field:

Remark

• The ______ forces all curves near ______ to plunge

downward so that none can pass through _____.

Uniqueness of Solutions

Example 5. Consider the IVP:

$$\frac{dy}{dx} = 2\sqrt{y}, \qquad y(0) = 0.$$

- Check if ______ is a solution:
- Check if _____ is a solution:

Theorem 1. (Existence and Uniqueness of Solutions) Suppose that both the function f(x, y) and its partial derivative $D_y f(x, y)$ are continuous on some rectangle R in the xy-plane that contains the point (a, b) in its interior. Then, for some open interval I containing the point a, the initial value problem

$$\frac{dy}{dx} = f(x, y), \qquad \quad y(a) = b$$

has one and only one solution that is defined on the interval I.

Example 6. Consider

$$\frac{dy}{dx} = 2\sqrt{y}$$

Example 7. Consider:

$$x\frac{dy}{dx} = 2y$$

a) Check the existence and uniqueness of the IVP:

$$x\frac{dy}{dx} = 2y, \quad y(0) = b.$$

• Case b = 0:

• Case $b \neq 0$:

b) Check the existence and uniqueness of the IVP:

$$x\frac{dy}{dx} = 2y, \quad y(a) = b, \quad a, b \neq 0.$$