MA 266 Lecture 8

Christian Moya, Ph.D.

Sec 1.6-b Exact Differential Equations

Recall that the *general* solution of

$$\frac{dy}{dx} = f(x, y) \tag{1}$$

is often defined *implicitly* by:

$$F(x, y(x)) = C.$$
(2)

We can recover (1) from (2) as follows:

- The general first-order differential eq'n y' = f(x, y) can be written in this form with:
- As a result, if the exists a function F(x, y) such that:
- _____ defines a general solution of ______.
- In this case:

Theorem 1. Suppose that the functions M(x, y) and N(x, y) are continuous and have continuous first-order partial derivatives in the open rectangle R : a < x < b, c < y < d. Then the differential equation

$$M(x,y)dx + N(x,y)dy = 0$$

is exact in R if and only if

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \tag{3}$$

at each point of R. That is, there exists a function F(x, y) defined on R with $\partial F/\partial x = M$ and $\partial F/\partial y = N$ if and only if (3) holds on R. **Example 1.** Verify that the following differential equation is exact; then solve it.

$$\frac{dy}{dx} = -\frac{3x^2+2y^2}{4xy+6y^2}$$

- Rewriting the equation in *differential* form gives:
- We now check if ______ is *exact*:

Reducible Second-Order Equations

A second-order differential equation has the general form:

If *either* the ______ or the ______ is missing from a second-order equation, then it can be easily reduced to a first-order equation.

Dependent variable y missing.

- If y is missing, ______ takes the form:
- Then the substitution:
- results in:
- If we can solve this equation for a general solution ______,

• Observe that the solution involves ______ constants ______.

Example 2. Find a general solution of the differential equation:

xy'' = y'

• Since the ______ is missing, we use the substitution:

• This leads to:

• Separating variables gives:

Independent variable x missing.

- If x is missing, ______ takes the form:
- Then the substitution:
- results in:
- If we can solve this equation for a general solution ______,
- Assuming _____:

Example 3. Find a general solution of the differential equation:

$$yy'' + (y')^2 = yy'$$

• Since ______ is missing, we use the substitution:

• This leads to:

Example 4. Find a general solution of the differential equation:

$$y'' = 2y(y')^3$$

• Since ______ is missing, we use the substitution:

• This leads to: