MA 266 Lecture 10

Christian Moya, Ph.D.

Sec 2.2 Equilibrium Solutions and Stability

Qualitative analysis

- Often we use explicit solutions of differential eq's to answer specific numerical questions.
- However, when the DE impossible to solve explicitly, it is often possible to extract

______ about general properties of solutions.

• For example,

Example 1. (Newton's Law of Cooling:) Let:

- temperature of body: _____
- initial temperature: _____
- body immersed in a medium with temperature = _____

Newton's law of cooling:

Separating variables:

Q: $\lim_{t\to\infty} x(t) = ?$

Is ______a solution?

Autonomous equations

Definiton 1. An ______ first-order differential equation takes the form:

That is, the R.H.S. is ______ of _____.

Critical points and equilibrium solutions

Defintion 2. The critical points of ______ are the solutions of the algebraic equation:

If ______ is a critical point of this equation. Then

- Such a solution is called an ______ of the differential equation.
- Qualitative information (behavior) can be described in terms of *critical points*.

Example 2. Find the critical points of:

a)
$$\frac{dx}{dt} = x^2 - 4$$

b) $\frac{dx}{dt} = (2-x)^3$

Stability of critical points (Stable vs. Unstable)

Definition 3. A cri	itical point	of	is stable	provided that:
---------------------	--------------	----	-----------	----------------

- If _____ is sufficiently close to c, then _____ remains close to c for all t > 0.
- (Formally) the critical point is *stable* if, for every _____, there exists

a _____ such that

• Otherwise, the critical point is *unstable*.

Example 3. Consider the logistic initial value problem:

Critical points:

The particular solution:

Equilibrium solutions:

We observed (in previous lecture):

But if _____:

Example 4. Consider:

$$\frac{dx}{dt} = kx - x^3$$

a) Let $k \leq 0$. Show that the only critical point is stable:

b) Let k > 0. Analyze the stability of critical point(s).

Bifurcation points

- As we gradually increase the value of the parameter ______.
- We have seen that the differential equation has
- The value ______, for which the qualitative nature of the solutions changes

as the parameter increases, is called a ______ for the differential equation containing the parameter.

Bifurcation diagram

- A common way to visualize the corresponding "bifurcation" in the solutions is to plot the *bifurcation diagram* for the equation.
- This diagram consists of all points ______, where c is a critical point of the equation

Example 5. Construct the bifurcation diagram of the following logistic equation with harvesting:

$$\frac{dx}{dt} = x(4-x) - h$$

Critical points:

Bifurcation diagram:

Example 6. Given the differential equation:

$$\frac{dx}{dt} = -(3-x)^2$$

Analyze the stability of the critical point(s).

Critical points:

Separating variables:

Particular solution: